BIBLIOGRAPHY ON SOIL EROSION
AND
SOIL AND WATER CONSERVATION

Compiled by
STANLEY H. GAINES
Soil Conservation Service

With Abstracts

By
FRANCESCA VINCENT, MARION BLOOM
and JAMES F. CARTER
BIBLIOGRAPHY ON SOIL EROSION
AND
SOIL AND WATER CONSERVATION

Compiled by
STANLEY H. GAINES
Soil Conservation Service

With Abstracts
By
FRANCESCA VINCENT, MARION BLOOM
and JAMES F. CARTER
CONTENTS

<table>
<thead>
<tr>
<th>Topic / Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of citations by geographic regions</td>
<td>III</td>
</tr>
<tr>
<td>Introduction</td>
<td>V</td>
</tr>
<tr>
<td>Erosion and conservation in general</td>
<td>1</td>
</tr>
<tr>
<td>Conservation in general</td>
<td>57</td>
</tr>
<tr>
<td>Climate and physiography as related to soil erosion</td>
<td>165</td>
</tr>
<tr>
<td>Economic and farm management phases of soil conservation</td>
<td>106</td>
</tr>
<tr>
<td>Educational phases of soil conservation</td>
<td>159</td>
</tr>
<tr>
<td>Engineering in erosion control</td>
<td>214</td>
</tr>
<tr>
<td>Dams and reservoirs</td>
<td>232</td>
</tr>
<tr>
<td>Terraces and outlets</td>
<td>233</td>
</tr>
<tr>
<td>Flood control and related subjects</td>
<td>275</td>
</tr>
<tr>
<td>Forest cover in soil and water conservation</td>
<td>303</td>
</tr>
<tr>
<td>Wildlife management as related to soil conservation</td>
<td>340</td>
</tr>
<tr>
<td>Wetland and woodland conservation</td>
<td>547</td>
</tr>
<tr>
<td>Land-use planning and surveys for soil and water conservation</td>
<td>571</td>
</tr>
<tr>
<td>Legislation</td>
<td>582</td>
</tr>
<tr>
<td>Pasture and range management</td>
<td>383</td>
</tr>
<tr>
<td>Run-off and soil loss</td>
<td>413</td>
</tr>
<tr>
<td>Soil structure, fertility, and moisture studies</td>
<td>430</td>
</tr>
<tr>
<td>Stream flow, sedimentation, and related subjects</td>
<td>455</td>
</tr>
<tr>
<td>Vegetative and tillage control in general</td>
<td>480</td>
</tr>
<tr>
<td>Vegetation in general</td>
<td>500</td>
</tr>
<tr>
<td>Cover crops</td>
<td>524</td>
</tr>
<tr>
<td>Tillage practices</td>
<td>529</td>
</tr>
<tr>
<td>Contour cultivation</td>
<td>534</td>
</tr>
<tr>
<td>Strip cropping</td>
<td>540</td>
</tr>
<tr>
<td>Wildlife management as related to soil conservation</td>
<td>544</td>
</tr>
<tr>
<td>Wind erosion, windbreaks, and shelter belts</td>
<td>559</td>
</tr>
<tr>
<td>Sand dunes</td>
<td>585</td>
</tr>
<tr>
<td>Wood lots</td>
<td>591</td>
</tr>
<tr>
<td>Author index</td>
<td>669</td>
</tr>
<tr>
<td>Item</td>
<td>Illinois...</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>754, 755, 756, 757, 758, 759, 760</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
</tbody>
</table>

List of Citations by Geographic Regions

<table>
<thead>
<tr>
<th>Item</th>
<th>Illinois...</th>
<th>Illinois...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>754, 755, 756, 757, 758, 759, 760</td>
<td>754, 755, 756, 757, 758, 759, 760</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
<tr>
<td></td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
<td>2, 67, 221, 222, 223, 224, 225, 226, 227, 228, 229</td>
</tr>
</tbody>
</table>

1 See p. 590 for author index.
INTRODUCTION

This bibliography is a list of references to published material on soil erosion and soil and water conservation. Some of these references may not appear to deal directly with erosion or conservation, but they all have a pertinent relationship to some phase of the subject. With respect to material of questionable merit, the compiler was guided by the opinions of a committee composed of Mildred Benton, M. H. Cohee, S. D. Frissell, H. E. Middleton, and E. H. Reed.

The scope of this bibliography is indicated both by reference to the table of contents and list of citations by geographic regions. References to writings on erosion in foreign countries have been included only when they contained real historic interest or had a significant bearing on erosion conditions in the United States. The reader is referred to a Selected Bibliography on Erosion and Silt Movement, United States Geological Survey Water Supply Paper No. 797, for references to literature on erosion in foreign languages.

Citations are included which refer to literature on farming practices and conditions from colonial times to the present. Owing to the vastly increased need, however, that interest be taken in conservation problems during the past 25 or 30 years, a large majority of the references are to material published during this period. With very few exceptions, no citations date later than August 1937.

The purpose of the bibliography is primarily to provide authors, subject-matter specialists, and students with a medium by which they may determine, with a minimum of time and effort, what others have written on a given related subject, whether it be scientific or historic in nature or merely indicative of the trend of public opinion. Consistent therewith, references to both popular and scientific material are included.

This bibliography has two major sources. (1) A Bibliography on Soil Conservation by Lillian H. Wieland, 1935, revised by June Henderson in 1936 (mimeographed); and (2) references dating from January 1, 1936, from the library of this Service, which had been selected and abstracted by or under the direction of Mildred Benton, librarian. A systematic search was made for pertinent references in bibliographies issuing from other bureaus, particularly the Bureaus of Agricultural Economics, Agricultural Engineering, and Forest Service of the Department of Agriculture, and the Geological Survey of the Department of the Interior. With few exceptions, all references have been verified and abstracts written.

The abstracts contained herein are not, for obvious reasons, a comprehensive review of the article or publication abstracted. They are intended to amplify ambiguous titles and in many cases, it is hoped, to serve the final purpose of the user of the bibliography. It is suggested that the reader temper his own judgment in this respect by noting from the entry how many pages of material are referred to, by whom written, and the time and place of publication.
BIBLIOGRAPHY ON SOIL EROSION AND SOIL AND WATER CONSERVATION

Compiled by STANLEY H. GAINES, Soil Conservation Service, with abstracts by FRANCESCA VINCENT, MARION BLOOM, and JAMES F. CARTER

EROSION AND CONSERVATION IN GENERAL

ANONYMOUS.
States that our real erosion problem "is to get more farmers to stay put, to get more long-term tenants and permanently established owner-operators... With 33 percent of our farmers moving every two years, what chance is there to check destruction of the soil? Can we ever check erosion until we check the growth of tenancy?"

From an interview with Frank O. Lowden: "When the soil from which the greatness of the city springs is once impoverished, or the people in it are reduced to penury, the city will vanish. History records a long line of great metropolitan centers that disappeared because they neglected the countryside which nourished them."

Brief excerpts from addresses, proceedings, and resolutions passed at meeting held in Cincinnati, Ohio, May 31, 1937. Resolutions were adopted concerning flood control and soil and water conservation.

CONSERVATION GONE WILD. Amer. Cattle Prod. 17: 15. April 1936.
An editorial objecting to the soil conservation program to reclaim plains and prairie grasslands.

"The alarming feature of 'man-made' erosion is the swiftness with which it spreads to take an ever increasing toll of land resources... This accelerated erosion is divided into three categories: sheet erosion, gully, and wind erosion." Demonstration projects in California, West Virginia, and Missouri for soil erosion control are described and illustrated. "Slowly but surely the day of soil exploitation is passing and in its stead is arising a genuine interest in soil conservation."

The writer traces the theory of nature's inexhaustibility to the early Americans whose dominant concern was the conversion of natural wealth into goods.
and money for maintenance of life, and home and community development. It is pointed out, however, that colonial America did have a conservation creed of a kind represented by regulations and ordinances designed to protect resources against waste and theft, measures which were prompted by depletion of local timber supplies. Brief sketches of pioneers and their work in forest conservation are presented.

Anonymous. (8)

Recommends reducing the acreage of corn, wheat, cotton, and similar crops, and putting these acres into grass and legumes which will survive droughts. States that more than 75 percent of the country consists of sloping land, "all of which invites erosion and floods when used for row crops or when grazed down to the grass roots."

"Control of soil erosion has forced its way to the front as a major issue that is loaded with dynamite because preventive measures applied now will have no discernible effect for several years to come."

At a Farm-and-Home-Week meeting at Madison, Wis., H. H. Bennett stated that the United States is depleting its agricultural lands faster than any other nation. Erosion and its prevention and control are discussed.

The United States Department of Agriculture is quoted: "Lower crop yields per acre with resulting higher production costs are among the chief dangers of land erosion." An account is given of how erosion is being checked in many parts of the United States through terracing, sodding, and similar practices, proving that excessive erosion can be controlled.

The writer quotes the appeal of H. H. Bennett before the House Appropriations Committee for increased funds for soil erosion work. Erosion in various sections of the country is described at some length, and methods of cropping, terracing, etc., are discussed.

The writer states that 135 carloads daily is the rate at which the Savannah River alone is carrying the soil of Georgia into the ocean. "There appear to be only three practical methods open to man to retard the waste of the soil, namely, terracing, deep plowing, and the protection of the forests." The life history of a gully in the uplands of the coastal plains is presented.

Emphasizes the fact that the future of soil erosion control rests upon the farmers and soil conservation associations. "More and more the function of the Federal government in this work is to be that of an advisory and administrative agency."

The problem of annual plant-food loss from fields and pastures in the United States is discussed. The rolling lands of southern Iowa are cited, and the results of varied experimental work in erosion control to determine how best to care for soils are described. Practical systems for gully control are illustrated.

The report of the drought investigation commission on the best means of avoiding losses by drought is cited as "likely to appear in history as a beacon, marking a definite period in the country's awakening to the far-reaching danger of soil erosion... The various causes of soil erosion, its present dimensions, and the national disaster to which it is leading, are clearly and unequivocally stated therein. And, above all, there are given remedies which the Commission recommends for checking and ultimately overcoming the evil." Reference is also made to the soil erosion conference at Pretoria in November 1929, and especially, with regard to its decision that the minister of agriculture should be responsible for the policy governing soil erosion, with a strong advisory council composed of state, provincial, and municipal representatives and also of direct farmer representatives from the South African Agricultural Union.

Summary of proceedings of the second International Forestry Congress, held at Budapest, Hungary, in September 1936. Flood control and soil protection were among the topics discussed. The Regent remarked to F. A. Silcox, of the United States Forest Service: "You have a big job ahead of you. Yours is a country of dust storms. Here in Hungary we have not much erosion but we are planting thousands of locust trees on the plains."

Summarizes proceedings of the meeting held September 9-11 in Eagles Mere, Pa. "The need of a more intensive educational program in all phases of conservation was recognized by the conference, and a program enlisting the active interest of states, counties, communities and individuals was urged." The C.C.C. program was endorsed, the program of the United States Forest Service was criticized by speakers, and the necessity for research in the field of wildlife restoration and protection was stressed.

Exception is taken to Hamilton's speech at Albuquerque, N. Mex., at which he said: "The new Triple-A, through its soil conservation provisions and its efforts to put eroding slopes to grass, 'is paying every farmer of this nation to go into competition with the cattle and sheep men of the great grazing states of the West'."

Quotes an address given on August 5, 1889, by John Wesley Powell, Director of the Geological Survey, before the North Dakota Constitutional Convention, and urges the preservation and storage of stream water in North Dakota.

Effects of drought and flood in China and Palestine are sketched briefly, and warning is given that American soil fertility must be preserved. "We have seen that rolling lands, kept too long in crops and washed by repeated rains, has provided only thin crops..." The writer believes that the problem is solvable by making it possible for farmers to handle their land as they know it should be handled—get more land down to grass and avoid cropping land subject to severe erosion. "We are making a start on this..."
by buying up marginal land for forest and pasture, for making erosion control possible for many farmers, and by providing, through the A.A.A., an incentive for farmers to get more land back into grass."

Anonymous.

Learning to Farm with Grass. Wallaces' Farmer 60: 4-9, illus. July 20, 1935.

Gives results of interviews with farmers after a trip through southern Iowa and northern Missouri concerning erosion control and lands returned to grass. "By 1980, at the present rate of erosion, there will remain in the two States 19,000,000 acres that are tillable, as against 69,000,000 acres at the present time. Terracing is an important part of erosion control, but is far from the cure-all for erosion that many have assumed." The consensus of opinion was that it is better to shift to a greatly reduced grain crop acreage and make farming and livestock economy almost entirely dependent upon grass and legumes.

Livestock and Soil Conservation. (Editorial.) Farm and Ranch 55: 8. August 1, 1936.

Discusses the need for soil-conserving crops in southwestern farming regions in conjunction with livestock farming.

"'Crop-control' fades from the New Deal lexicon and 'soil conservation' emerges." Herbert Hoover is quoted as finding the problem still unsolved by New Deal collectivism and offers a policy of his own. Various newspapers are quoted.

Orchard Soil Erosion. Hoosier Hort. 16: 8. 1934.

An article by Dr. Lee, of the New Jersey Agricultural Experiment Station, is quoted as to the value of cover crops in orchards. He stresses the loss of soil in the orchard sections of New Jersey and advocates proper terracing, permanent sod, strip cropping, and dams across gullies as effective control measures.

Our Water- Retaining and Our Water-Evaporating Areas. Forest Leaves 6: 138-142. April 1938.

The writer points out that "just now our areas of water-evaporation in this State [Pennsylvania] are increasing and our areas of water-retention are decreasing." Three dangers menacing the State as a result of increasing drought are: (1) Interference with agriculture; (2) limited water-power for manufacturers, and (3) increase in the virulence of disease germs. In conclusion it is stated: "For all of this impoverished land there is but one hope. It must be restored to a forest condition, or become progressively worse and harder to reclaim."

Pinchot Opposes Department of Conservation. Amer. Forests 43: 196-197. April 1937.

President Leads Great Conservation Rally. Amer. Forests 41: 588-600, illus. October 1935.

"A permanent Civilian Conservation Corps, through which 300,000 American youths will pass each year, the development of a plan of sustained yield management on private forest lands, and the creation of an extensive forest credit system for timberland owners" were envisioned as the goal in the Nation's conservation program by the President in his address to the American Forestry Association at Lake Placid, N. Y., on September 14, 1935.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

The President saw drought devastation in nine States and was deeply impressed with the general efficiency of those agencies of the Federal, State, and local governments which moved in on the immediate task created by the drought. The work provided for farm families is to be paid by the Federal Government, but each State is to take care of its unemployables. Water conservation is being expanded all through the Great Plains area, the western Corn Belt, and in the States that lie farther south. In the Middle West the work projects run more to soil erosion control and the building of farm-to-market roads. This is "spending to save." As the program gets into operation the people will be able better to maintain themselves securely on the land. "Sound policy must maintain farm practices in good crop years as well as in bad crop years. It must function when we have drought; it must also function when we have bumper crops."

"Problems of water use and control are intimately interwoven with the use and abuse of land." The need for vegetative cover and reforestation for lessening the quantity and velocity of water moving over the surface of slopes is stressed. The storage of water for drinking purposes, water and agriculture, and the public aspects of water conservation are discussed. The author urges national planning for water conservation and control of rivers and streams. Investigation has emphasized "the vital necessity of coordinating plans of water conservation and control with those of forestry, soil erosion, and land use generally."

"The schemes inaugurated by the Department of Agriculture and Forestry for combating the soil erosion menace in the Union (South Africa) have received a great measure of support from landowners." Tables show the extent of erosion in certain districts.

Criticizes the claim of Soil Conservation Service writers that "erosion control operations have greatly reduced floods on a number of typical headwater streams in our demonstration watersheds." The writer mentions early American floods and continues: "To assert that restoration of the forests and of sod-cover, strip-cropping, or gully-control check-dams, will cope with the flood problem is deception and demagoguery."

Advocates an agricultural policy for the protection and restoration of the land resources, "designed to bring about such a balance between soil-building and soil-depleting crops as will permanently insure productivity, with reasonable benefits to cooperating farmers on family-type farms . . ."

(35) RESULTS OF FOREST DENUDATION IN MOUNTAINOUS REGIONS. Forest Leaves 11: 122-123. April 1908.

Changes resulting from denudation in Dalmatia, on the Adriatic Sea, are pointed out. "That country was once one of the richest Roman provinces, and during the reign of Diocletian . . . supported a large population. When it came under the rule of the Venetian Republic the trees on its fine mountain slopes were ruthlessly sacrificed for the building of ships of the conquerers . . . when the timber was cut off the declivity was so great that
the soil was washed away, the springs and rivers dried up, so that even
the desolation of Syria does not compare with that in Dalmatia." From
careful observation in European and Asiatic countries the author con-
cludes that if the primeval forests could have remained, such erosion would have
been prevented. "There is yet time in America to prevent such barrenness
and the drying up of streams."

Anonymous.

Results of Sand and Ravine Binding Work in Russia. Ezheg. Lics. Dept.

"An account is given of sand and ravine binding work conducted in the
Voronezh, Kharkov, Poltava, Saratov, and Samara provinces of Russia

River and Region. Engin. News-Rec. 117: 897-901, illus. December 24,
1936.

"Development of the Tennessee River for navigation, water conservation,
flood control, and power involves many regional problems, including cover
cropping and forestation to check erosional silting, and development of
recreational and mineral resources."

Roosevelt Recommends a Department of Conservation. Amer. Forests
43: 74, 92. February 1937.

Save Our Soil. Collier's 97: 86. March 14, 1936.

An editorial presenting a general discussion of the demolition of fertile
lands in the United States. "Happily there is no political controversy
over the broad principle of reclaiming land now in jeopardy."

Save the Soil. Ancient Truths Are Rediscovered. Rev. of Reviews 33

The writer discusses rural land conditions and the new farm bill passed
by Congress in February 1936, from the economic, soil-improvement com-
penstation, and the farm-census standpoints. Attention is called to the
rapid restoration of shell-torn land in France and Belgium within 6 years.

Sheet Erosion Greatest Soil Destroyer. Farm and Ranch 50: 13. June
20, 1931.

Reviews an address by H. H. Bennett at the annual meeting of the
American Forestry Association at Asheville, N. C. "Mr. Bennett outlined
some of the work being done by the Department of Agriculture in the study
of erosion and methods of preventing it."

Discusses some national aspects of the soil-erosion problem. Figures on
annual losses incurred by wastage are given, with an estimate of the
amount of soil washed into the Gulf of Mexico. Dust storms and grazing
are cited as two important factors.

Soil Conservation. (Editorial.) Madras Agr. Jour. 24: 313-315. Sep-
tember 1936.

Recommends concentrated attention on the problem of soil conservation
in Madras and cites progress made so far. "This problem of soil con-
ervation will also be a fit subject for the joint action of the Engineering
and Agricultural departments to start experiments for the determination
of cheap and efficient methods of control suited to the various tracts . . ."

Editorial comment on a half century of experiments in soil conserva-
tion against plant-food losses. Acceleration of the program since 1933 is
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

pointed out, and the increased benefits for farmers under the 1936 Soil Conservation and Domestic Allotment Act are discussed.

ANONYMOUS.

A summary of the annual report for the fiscal year 1936.

"SOIL DEFENSE". (Editorial.) Farm Jour. 61: 4. March 1937. (46)

"'Conservation' is too much like 'conversation'— and a good deal of it means the same thing. But 'Soil Defense'—that is exactly what we mean, and it describes exactly what has to be done if farming is to continue in this country." The writer mentions Farmers' Bulletin 1767, dealing with washed-away soils of the Piedmont region, and says "this Bulletin does what should have been done long ago."

SOIL EROSION. Science 69: 446-447. April 26, 1929. (47)

This article sums up the report of H. H. Bennett to the Department of Agriculture on soil conditions. More than 513,000,000 tons of soil are being washed out to sea each year from the farms of the United States, and the Mississippi River system alone is responsible for 428,000,000 tons. The need for terracing, contour plowing, and wise forestry management, with scrupulous attention to small gullies is stressed.

The problems of soil erosion in Ceylon and India discussed in the papers collected and published in the Tropical Agriculturist for September awakened considerable interest among agriculturists, and "much good work in terracing, the digging of contour drains and silt pits, and in planting of hedges of leguminous plants has been undertaken." The problem of lands that are the property of the State requires very close investigation as to forest cover on watersheds, reafforestation, and other questions. "Ceylon will have to draw upon the experience of its oldest agriculturists, and endeavour to frame a policy which will tend to the preservation of its greatest assets—its soil."

SOIL EROSION. Farming in So. Africa 4: 559. February 1930. (49)

The resolutions, adopted by the Soil Erosion Conference at Pretoria, South Africa, in 1929, include encouraging farmers to build small dams as one of the best methods of controlling soil erosion.

"The removal of the surface soil either by 'dry wash', or by action of the rains, deprives the land of its richest and most fertile part, and if not arrested, will ultimately render its cultivation unremunerative . . . It cannot be too strongly insisted upon, that, as far as regards the maintenance of the soil of estates, the dominant factor in the promotion of soil erosion is the run-off from cultivated land, that is, the point at which the soil erosion question has to be attacked, and the responsibility for that rests with the estates themselves." Two lines of action are presented: Contour belts of cover plants and "the protection of the sides of the main drains which run down the slope. In many instances, these are now deep ravines owing to the constant erosion of their banks. This formation of ravines can be prevented by growing grass along the sides in the case of permanent streams, or over the whole drain, if it is usually dry. Here again, a creeping grass, such as Paspalum conjugatum, is required, rather than one which grows in tussocks."

The author discusses tonnage of soil carried out to sea. "This continuous and heavy loss of the soil on which the very food supply of the nation
depends is interpreted by H. H. Bennett as 'the most important problem that has to do with the use of our most vital resource—the land.' Terracing, contour plowing and cultivation, wise forest management, with scrupulous attention to gullies, are recommended.

ANONYMOUS.

In discussing soil erosion the writer quotes experiments and findings of Bennett and Lowdermilk. "The danger arises from the removal of the layer of top-soil, rich in phosphorus, and almost irreplaceable, caused by the careless breaking-up of the natural vegetable cover by agriculturists."

An account of the transfer of the Soil Erosion Service from the Department of the Interior to the Department of Agriculture and a résumé of the Soil Erosion Service program for 1935.

"At a meeting of the Central Board of Agriculture held in September, 1936, the following resolution was unanimously passed: 'That this Board recommends to Government the appointment of a whole-time officer to undertake soil erosion investigations and to organize propaganda on this subject.' This resolution was unanimously endorsed by the general committee of the Ceylon Planters' Association . . . Soil erosion work may be classed under four heads: (1) Collection of data relating to soil erosion in Ceylon; (2) Experimental work; (3) Study of anti-erosion methods and the publication of authoritative information on such methods; (4) Advisory and propaganda work . . ." The soil erosion committee of 1931 made the suggestion that an extra staff officer for soil erosion be appointed "whose duty it will be to organize the courses recommended and assist the Director of Agriculture and revenue officers and others who may require help."

The report on the financial and economic position of Basutoland [Africa] draws attention to the serious problem of soil erosion, which threatens the development of this territory. "Soil erosion and water conservation may be said to be the two problems of general interest in South Africa . . . Measures to check this damage, must, in the opinion of the Commission go much farther than mere reparation." The use of contour ridges and control of grazing are two of the remedies proposed for the control of soil erosion.

The report of a committee appointed in 1916 to deal with the subject of soil erosion is reconsidered. In it data were given as to soil denudation, surface drainage, and the conservation of moisture. The conclusions and recommendations of this committee are summarized, and a resolution dealing with soil erosion that was passed by the board of agriculture is given.

A discussion of soil erosion. The writer states that "this new awakening in land erosion and land conservation is a wholesome sign that we still have a greater interest in our country than simply utilizing its resources for immediate gains."

The author discusses the arguments advanced by Secretary Ickes defending his scheme to transform the Interior Department into a Department of Conservation and thereby bringing under his dominion all the plant and animal resources of the public lands. The statement is made "that forestry
has nothing to do with agriculture. This argument, of course, is meant to remove one of the fundamental objections to his plan; namely, it would rend asunder the unity of the government's farm-forest land program. The mere suggestion that the growing of trees for harvesting is a crop activity that falls within the field of agricultural land management appears to arouse the satirical ire of the Secretary."

Anonymous. (59)

Erosion surveys and financial losses from erosion are discussed. "The use of high explosives for erosion control ... has proved highly practical, economical and speedy"

Destruction by sheet washing is emphasized. Terracing and cover crops are recommended as remedial measures.

The writer contends that the individual small agriculturist should learn to combat drought and conserve moisture by studying primitive methods of water lifting and transport still in use in China and Egypt. Soil surveys which would link rainfall data to the water requirements of the plant are an essential preliminary to the formulation of water-conservation schemes. Windbreaks and research in drought-resistant plants and trees are discussed.

Adams, B. (62)

"When conservationists claim too much they weaken their case." The writer points out the harm that can be done to the cause of conservation by exaggeration.

Adams, Charles Francis. (63)

IN DEFENSE OF RESERVATION POLICY. Forester 4: 97. 1898.

In a communication to Senators and Representatives the writer says: "I understand that it is proposed to open certain forest reservations in several of the Mountain States, and restore the land included in them to the public domain. I refer to the Senate amendment to pending Sundry Civil Appropriation bill." After describing the deplorable results of forest destruction in various European countries, especially Spain and Italy, he continues: "The deforesting which has taken place throughout our mountain region, unless a remedy is speedily applied, is destined to produce results of a most disastrous character ... a bounty should in my judgment be placed upon the cultivation of trees, especially over what are known as the 'plains', while the Government could make no better use of alternate sections than planting them with trees natural to the region. So done would in the course of twenty years put an end to the hot winds and diminish the droughts."

Adamson, R. S. (64)

The author treats very briefly some of the special aspects of erosion present in the southwestern cape region. He describes the characteristics of climate and rainfall as well as vegetation of this area and concludes: "As the whole country is dependent on the mountains for its water supply it would seem obvious that a preservation of the vegetation on them is both urgent and essential."

Agricultural Officers in India. (65)

PAPERS ON SOIL DENUDATION. Indian Tea Assoc. 43, 95 pp., Illus. 1917.

In an introductory article, G. D. Hope, scientific officer, states that "this collection of papers expresses the views of experts in Indian Agriculture on the subject of wash and Its prevention, on surface drainage, and on the conservation of soil moisture, all of which are important considerations . . ."
closely bound up with the still more important subject of soil aeration and the control of rainwater and of soil moisture generally. These are also all matters on which it is impossible to lay down more than a few rules of general applicability for guidance in dealing in practice with the problem of soil erosion." Hope goes on to discuss rainfall, and methods of cultivation and drainage with regard to terraces of varied form. In a note by Kettinge on soil denudation in the Bombay Dacca, the use of stones for building bunds (field embankments) is described. He classifies bunds according to their three uses: (1) For terracing streams so as to break the force of the water; (2) for holding of water for wet crops; and (3) for preventing wash on sloping land. The wide field of soil erosion is covered. Diagrammed plans on slope drainage and other erosion-control practices are included.

Allison, R. V. (66)

Outlines research activities of the Soil Conservation Service under the following headings: The Problem; Tentative Divisions of the Work; Climatic and Physiographic Studies; Soil and Water Conservation Investigations; Watershed and Hydrologic Studies; Sedimentation and Hydraulic Studies; Economics of Soil Erosion Control.

Anstead, R. D. (68)

The writer contends that soil erosion is brought about by three main causes: Destruction of vegetation, burning of grass, and overgrazing, and that the Government should do everything to encourage and assist all owners of land to tackle their individual problems in the proper manner. Deforestation and its consequences are fully discussed, and tables are given for comparison in rainfall and run-off in well-forested and nonforested areas. The prevention of soil erosion by means of terracing, contour drains, silt pits, contour stone walls, contour hedges of leguminous or other plants, use of leguminous cover crops for decreasing the velocity of surface run-off, is described. "From the State's point of view the following have to be kept in mind: (1) the necessity of retaining forests on steep slopes; (2) the compulsory reforestation of eroded areas; (3) the control of rivers and streams; (4) stipulations in leases of all lands given out for cultivation as to drainage and control of surface wash. In France, the ownership of all rivers and streams is vested by special law with the Government and in Italy the State has always exercised this ownership as well as ownership over all springs."

Arizona University. (80)

"This bulletin is not meant in any way to be a manual of the State, but merely to present briefly, but by no means adequately, some of the facts of interest not only to visitors but even to residents." A collection of articles relating to Arizona which are: Conservation, by H. L

Aylen, D. AND Roberts, R. H. (70)

Brings up to date and replaces the earlier Rhodesia Department of Agriculture Bulletin 223, Soil Erosion. These articles deal with such erosion problems in Rhodesia as progress towards control, veld and gully erosion, protective works, contour ridges, and various methods of strip cropping. "Soil conservation is a wide term, and is not confined entirely to 'contour ridging,' but includes any and all measures aimed at protecting the soil. In its essentials it is a matter of wise use of land and good farming practice."

Atkes, Q. C. (71)

This work brings together in one volume data on the nature of erosion, causes of extensive erosion, and the various ways in which excessive rates may be controlled. Over half of the book is devoted to detailed directions on strip farming, tree planting and care, and on the design and construction of terraces, ditches, and dams. "This book is offered to meet the need for a general treatise on erosion control for the use of students in colleges and vocational agriculture departments, county agents, engineers, farmers, public officials, bankers, investors, and others who may be interested in the subject." A bibliography is appended, pages 341–352.

Bailey, G. E. (72)

Contents: The Origin and Character of Soils; Fertilizers and Chemical Properties of Soil; Soil Moisture: Its Control and Conservation; Soil Bacteria; Movement of Moisture and Feeding Zone of Roots; Cultivation—Use of Explosives. For controlling soil erosion by retention of rainfall the author says: "The surface may be sealed over by a little crust or there may be plow sole, tight clay, or hardpan deeper down which limits the soil's absorption to the immediate surface."

Baker, O. E. (73)

The writer discusses some consequences of concentration of agricultural production, and of a less commercial agriculture. Visits to a number of German farms 2 years ago are described. "The German farmer is keeping faith with the past and with the future. He is conserving both the natural and the human resources." In conclusion the writer affirms his belief "that better land utilization and a better living in American agriculture depend in large measure upon achieving a continuity of family proprietorship in farming."

Barrows, H. K. (74)

An abstract of a report to the water resources section, embracing the States of Maine, Massachusetts, Rhode Island, Connecticut, New Jersey, Delaware, and portions of Vermont, New York, and Pennsylvania.

Barrows, Leland. (75)

Describes the inception of eight soil erosion projects in various parts of the country. A map defining location of Soil Erosion Control Projects is included.

58534 — 88 — 2
BATES, C. G. (76)

The author discusses soil erosion from the geological and philosophical aspect. "In considering the erosion problem, either at its source or its destination, the fact should be clearly borne in mind that the silt load carried by water gives to floods their most sinister aspect. It is my purpose to convince you, if possible, that the heart and kernel of the stream-flow problem is in erosion, rather than in volume of water, and that if we cannot prevent erosion on the National Forests, we are doing little to justify our stewardship."

Although this article discusses erosion mainly from an agricultural point of view, it covers the fundamentals of erosional processes and the resultant loss of surface soil to cataclysmic proportions. The national character of the problem and the close connection between farm-soil conservation and river control are particularly stressed, calling for an attack by engineers, foresters, and farmers under united leadership.

BAYER, L. D. (78)
SOIL EROSION IN MISSOURI. MO. AGR. EXPT. STA. BULL. 349, 60 PP., ILLUS. 1933.

This bulletin was prepared to acquaint the people not only with the severity of erosion but also with the methods by which the farmer and the public can work out an effective erosion-control program. Erosion in the different soil areas is discussed separately. "If soil washing continues at the present rate and if the Missouri farmers and the general public do not concentrate their efforts to control it, at the end of the next 50-year period there will probably be about 22,000,000 acres of excessively eroded land that have lost over three-fourths of the original surface soil, 10,000,000 acres that have lost between one-half and three-fourths of the original soil, and about 4,000,000 acres of upland soil that will be slightly to moderately washed away."

BAYER, A. W. (79)

"It is generally agreed that the immediate cause of most soil erosion in South Africa is the removal of the vegetation covering of the soil, and that any agent which serves to destroy vegetation is a potential cause of erosion . . . Whilst this general relationship of soil erosion to vegetation has been much discussed and generally accepted, observations made in the thornveld areas (and these are the areas most subject to erosion) in Natal, suggest that this relationship has not yet been studied sufficiently intensively. Facts have come to light which indicate that a great deal of further study is required with regard to the methods to be adopted, and the type of vegetation to be encouraged, in order to minimize the rate and extent of soil erosion in these areas." Plant succession, variations in the succession, plant competition in the drier areas, effect on soil erosion, suggested methods of combating erosion in the thornveld, are considered by the author, a botanist, who states in conclusion: "Whatever opinion may be expressed with regard to these suggestions, it is clear from this study of the relationship of vegetation to soil erosion, that any attempt to combat soil erosion in either the thornveld or the grassveld by the adoption of a policy of afforestation, unless this is done under carefully controlled conditions, is likely to end in failure."

BEAR, F. E. (80)

The writer describes the loss of topsoil and fertility owing to bad management of streams and land on the old home farm in Montgomery County near Dayton, Ohio. He contends that vigilance is a necessity and discusses the construction and use of brush and concrete breakers and dams.
Contents: The Position In East Africa Today; The Factors Affecting Erosion; Types and Effects of Erosion; Soil Conservation and Anti-Erosion Measures; The Application of Soil Conservation Measures In Particular. "A survey of erosion in British East Africa shows that in many parts conditions are rapidly approaching those that led the Union Drought Commission to their conclusion that, unless methods were radically altered, desert was in sight." Check, straw, stake, wire, brush, stone, and earth dams are used for reclaiming gullies.

Continuous plowing and tillage are farm practices that unduly speed destruction of soil fertility and increase losses from wind and water erosion. "It is excessive working and continuous cropping which does not give the land a chance to recuperate that leads to ruined soil." The experiences and opinions as to tillage and crop cultivation of several farmers in Pettis and Boone Counties, Mo., Cass County, N. Dak., and in Iowa, Indiana, Illinois, and Arkansas are discussed.

Measures for combating the destruction caused by soil erosion are present. Twenty-four major watershed erosion-control demonstrations at selected eroded regions of the country are mentioned. Reference is made to soil conservation practices now being put into force in South Africa and in Italy.

With 35,000,000 acres essentially destroyed, and wreckage of farmland still proceeding at an appalling rate, the Government attacks the problem with a coordinated program of erosion control. Strip cropping, terracing, and rotation crops, are among the measures employed at the demonstration areas that have been set up. "It has been very encouraging that in most of these areas approximately 90 percent of the farmers are entering enthusiastically into the program, offering every reasonable measure of cooperation."

The Upstream Engineering Conference in Washington, D. C., September 22-23 (1936), constituted a comprehensive forum on the land-planning, engineering, and agricultural aspects of flood reduction and erosion control. The acting chief of the Forest Service suggested a three-point program for watershed demonstration projects of the Soil Conservation Service. The writer maintains: "This exchange of information and viewpoints has laid a groundwork ... for greater unity of action in dealing with the fundamental problems of both water and soil conservation. The engineer, the economist and the agriculturalist understand one another better, and appreciate the importance of working on a watershed basis rather than on isolated small areas."
The yearly cost of soil erosion to farmers and ranchers is estimated at "not less than $400,000,000, along with numerous other formidable losses, such as damage to highways and railways, the silting of reservoirs, stream channels and ditches with the products of erosion, and damage to valley lands by overwash of sand, gravel, and poor subsoil material washed out of the uplands." Better land use as contrasted to our habits of waste is discussed together with examples of erosion and demonstrations in erosion control. Strip cropping is urged for saving the soils. A brief sketch of the national soil conservation program is given.

Unrestrained soil erosion is rapidly building a new empire of worn-out land in America: land stripped of its rich surface layer down to poor subsoil, and land gullied beyond the possibility of practical reclamation... From every conceivable angle erosion is a devastating agency. It is the greatest thief of soil fertility." The writer discusses the national program of soil and water conservation. Work being done at the Red Plains Erosion Station near Guthrie, Okla., is described, and results are given.

Discusses soil erosion in Virginia and other Southern States. The writer attributes the trouble mainly to the lack of interest and slipshod control practices of the farmers. Sheet erosion is described as a most insidious menace. In suggesting control methods the work and findings of several agricultural experiment stations are cited.

"The Old World gives us vivid examples of soil erosion. There scientists digging deep into the earth have found valuable relics, buildings, even cities, long buried. Beneath 40 feet of soil these priceless treasures of Old World civilization have been found. What covered them up? Simply the products of soil erosion..." To combat this menace and curb the drain of erosion on farm values, estimated at a cost of $400,000,000 annually, the Soil Erosion Service attacks the problem with a three-way weapon—cropping, forestry, and engineering measures. The program aims to save millions of acres of land through large-scale demonstration projects.

Studies in precipitation and soil loss in Texas, Missouri, North Carolina, and northeastern Kansas are described. The relation of erosion to soil type, stratigraphic soil features and erosion, and the character of soil cover are discussed in detail. "There is abundance of evidence that the estimate of 1,500,000,000 tons of soil material annually washed out of our American fields is exceedingly low. Even so, the amount of plant food contained in this is about 120,000,000,000 pounds, on the basis of the average analyses of 380 samples of surface soil collected throughout the country."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BENNETT, H. H. (93)

The author discusses the ravages of soil erosion throughout the nation. He outlines the program of the Soil Conservation Service and its relation to the individual needs of the farmer. The functions of the South Tiger River project at Spartanburg, S. C., are described as an example of a typical project.

"Mr. Bennett, writing in the New York Times, tells of the 3 billion tons of soil that are washed out of fields and overgrazed pastures in America.—Editor. "Bedrock has been reached in countless instances; deep gullies have torn asunder millions of sloping acres. . . . Probably no other nation or race has permitted such rapid depletion of large areas of its agricultural lands." Estimates indicate that erosion steals 21 times as much plant food as the crops take from the land. Every method of soil erosion control is being experimented with, and every effective experiment will constitute a demonstration.

"The problem of soil erosion is complex, for the process is exceedingly variable in its effectiveness from place to place, on varying soil and slope, with varying vegetative cover, type of land usage, and character of precipitation." Illustrations are given of the process at work under varying conditions, taken largely from the author's own field work. Factors affecting soil erosion; variations in clay soils; erosion of silt soils in the Mississippi-Missouri Basin, and types of erosion in the central coastal plain and drier regions, are discussed. The relation of erosion to floods is touched on, and terracing and contour cultivation to check erosion are indicated.

Erosion steals the rich topsoil at the rate of an inch a year. Terracing and strip cropping are advocated to prevent this loss.

"Soil erosion as an agent of land depreciation and destruction constitutes the biggest problem confronting the physical side of land utilization in this country." Attention is given to the evils of gullied lands and sheet erosion. Estimates on losses are given for the southern brown loam belt, the northern brown loam region of the Middle West, and the plains of the Southwest. Terracing is encouraged as a remedy.

The author views the problem from a national standpoint and after citing many instances of erosional waste in various parts of the country recommends practical measures of control. The situation in the Southwest is given special attention.
BENNETT, H. H.

The writer comments on the work being done on western soil-erosion demonstrations and tells why he feels encouraged by results already accomplished. "I saw unmistakable evidence that the hundreds of land users cooperating with the Service have come to understand the significance of cultvating and overgrazing all kinds of land, as if it all, steep and level, clay and sandy, were equally adapted to continuing productive use."

The need for cooperation with other State and Federal agencies as the Soil Erosion Service enters the year 1935 is stressed.

"Two hundred years of land abuse and exploitation have brought to the United States a physical land crisis of enormous importance. Uncontrolled soil erosion is costing American farmers not less than $400,000,000 every year in abandoned acreage and the loss of fertile soil."

The author discusses the consequences of soil erosion and concludes by saying that "if only reasonable concessions are made to the demands of natural laws," the results of the Soil Conservation Service program "will be measured in terms of national welfare, including the preservation of basic soil resources, the protection of vital facilities for navigation, the reduction of floods, and the protection of reservoirs."

"No nation or race has used its agricultural lands so wastefully as the United States. Once we looked upon these lands as being limitless and inexhaustible, and while we have spent hundreds of millions of dollars for fertilizers, soil-improving crops, plant breeding, agricultural machinery, and education with the view of conserving the fertility of the land, we have done little to conserve the soil itself. We have permitted erosion to become the scourge of the land—the real crisis in land use. A properly coordinated plan such as will bring about vitally necessary correction of our mistakes calls for the retirement of certain specially vulnerable types of land from cultivation, such as the steeper, highly erosive lands of formerly timbered areas and the more sandy lands of the Great Plains and other sections where blowing rapidly strips the ground of the loose material and piles up worthless heaps of sand on good land to the leeward. Beyond this, the cultivated areas must be so handled that they will not rush off into the rivers or blow across the continent."

The frequency of floods and the causes are discussed. "A contributing cause to the greater frequency of floods, and one that weighs heavily upon American agriculture, is the unrestrained erosion of the land by abrasive rainwater." The need for terracing is stressed, and reference is made to the clause in the contracts on land loans made by the Federal Land Bank at Houston, Tex., which requires the owner to protect his fields by terracing if the soil needs protection. "It is significant and highly encouraging that, with thousands of loans outstanding, the Houston bank has found it necessary thus far to foreclose on but one or two farms."

"Within the past two years the Federal Department of Agriculture, cooperating with the States, has established seven regional experiment stations for the purpose of studying the principles underlying erosional proc-
esses and for working out practical methods of erosion control... At these stations every promising agronomic, forestal, and engineering method for minimizing the impoverishing toll are to be tried out on a field scale as quickly as possible." Man-induced erosion is discussed, and the writer considers the significance of the topsoil and the importance of Nature's stabilizers. Erosion in the Texas Black Belt, erosion surveys in Oklahoma, Missouri, Illinois, and other States, soil washing in the western ranges, the settling of reservoirs, are described and discussed.

BENNETT, H. H. (106)

"Land wastage and soil impairment by erosion constitute the most important and difficult problem confronting the farmers on millions of acres of rolling lands throughout the United States... In many counties ugly gullies and denuded slopes have largely forced farming operations from the uplands into the stream bottoms, and millions of acres of former productive bottom lands have been ruined by overwash. This type of gradual land wastage known as sheet erosion never ceases work on sloping areas... Terracing of fields and the growing of trees and grasses on idle lands and areas too steep for cultivation and upon soils that are highly susceptible to washing, as a combination of practices, represents the most needed thing in the entire field of conservation." Some of the relationships existing between soil types and erosion are discussed. The author advocates systematic research work in the identification of other types of erosion and methods of control.

(107)

An address given before the Iowa State College Farm and Home Week, February 8, 1935. Sketches the history of soil erosion in the United States and considers various aspects of the problem today. Individual wastefulness and lack of a cooperative policy are cited as the basic reasons for the ravages of accelerated erosion. The program and objectives of the Soil Erosion Service are given considerable attention. Recent work accomplished by the Service is mentioned.

(108)

BEAK REASON FOR WORN-OUT SOIL. Farm Jour. 50: 10, 46-47, Illus. April 1920.

The writer cites erosion as the real reason for worn-out soil and describes the ways in which it operates. He recommends such erosion-prevention measures as terracing and reafforestation of sloping lands.

(109)

SAVING OUR LAND HERITAGE. Wash. Univ. Forest Club Quart. 10: 16-20, Autumn 1936-37.

The writer outlines general erosion conditions in the United States and gives an account of the work of the Soil Conservation Service, its program, and objectives. He discusses particularly the work and studies carried out in the Pacific Northwest.

(110)

The annual net loss of plant food taken out of the soil by the removal of crops together with wastage caused by erosion is discussed. "Some of the plant food taken out of the soil by crops may be replaced locally by nutrients moving upward from the substrata." The necessity of soil preservation is stressed, and the operations of agencies at work are cited. Reforestation for waste and idle spaces and terracing of hillsides are advocated. "Thousands of fields south of the Potomac are still in cultivation that would have been destroyed long since but for the efficiency of the terraces in holding back the soil."
Bennett, H. H.
SOIL CONSERVATION. U. S. Soil Conserv. Serv. 21 pp. 1934. [Mimeographed.]

An address before the National Editorial Association, New Orleans, La., May 4, 1935. The broader issues of the soil erosion problem in the United States are discussed and figures on annual soil losses throughout the Nation given. The causes of erosion are dealt with, and control measures are recommended.

"Agricultural America is on the threshold of a new era. I shall undertake to tell you why this seems to be a fact; to weigh recent events and fathom their significance; to chart, if I can, the development of a new philosophy of the land, and to explain your role and mine in the transition which appears to be taking place." The activities of the Agricultural Adjustment Administration, the Civilian Conservation Corps, and the Resettlement Administration are described. "The cause of soil erosion is simple enough; the cure of erosion is as complex as human economics."

SOIL DEFENSE IN THE SOUTH. U.S. Soil Conserv. Serv. SCS-MP-8, 7 pp. 1936. [Mimeographed.]

In this address, given before the North Carolina Improvement Association at High Point, N.C., data on soil losses in the South and methods of control are given.

The process of soil erosion and its cost to the Nation, the waste of soil caused by floods, and the urgent need for a sound policy of national economy in the form of a far-reaching, soil-saving program are presented.

"The nation may as well realize now that it has a land crisis on its hands—the problem of man-accelerated soil erosion, and that every stroke of work performed in opposition to this evil adds value to our most basic resource"—the soil. Control of erosion is urged as an unavoidable necessity and the creation of the Soil Erosion Service is described. The procedure being followed in the Coon Valley (Wis.) erosion project is described as well as other soil erosion-control projects in other parts of the country.

The problem of soil erosion, examples of land wastage in various States, erosion in dry regions, the need for large and comprehensive soil and water conservation programs are discussed. The work at experiment stations established by the Government for the study of erosion and water conservation is described.

"As the result of erosion large areas of agricultural lands in the United States are declining in productivity and usefulness at a rate much greater than has generally been suspected ... As I interpret the situation, after a prolonged study of the soils of the country in their varying characteristics and in their varying relationships to agriculture, it is the most important problem that has to do with the use of our most vital resource—the land ... Erosion is a force of prodigious power." Some distressing examples in the Piedmont are described. "Land devastation by gullying is going on in many parts of the Western States, notably in the Southwest."
Sheet erosion is discussed as is also the relation of soil type to erosion, and the relation of erosion to floods. Land protection and conservation of rainfall are treated. Literature is cited.

BENNETT, H. H.

An account of the nature of soil erosion, its different forms, and the extent of the annual damage. Plans for experimentation are described and control methods recommended. In outlining the national soil erosion program the author states: "It is proposed to carry on programs of education and extension work in order to arouse land users, the Nation, States, counties and business men to the seriousness of the problem of erosion, its meaning and cost; to point out the necessity for employing practical methods of control, emphasizing the fact that erosion is a business problem which must be solved now, and not one that can be put off for future generations to take care of."

Discusses soil erosion and the need for research and corrective demonstration work.

SOIL—NATION’S MOST OUTSTANDING ASSET WILL CONTINUE TO RULE PROGRESS. Tobacco Grower 1: 1-2. June 1933.

Part 1 of a series of articles on soil erosion in the South. Outlines the findings of soil erosion surveys and describes the causes of soil losses. The writer warns that despite the improvement of seed and cultural methods and the increased use of fertilizers and soil-improving crops, our crop yields are not increasing everywhere and have fallen in many localities.

The author contends that "steep mountain slopes are ideal forest lands—to clear them for crops is nothing less than criminal trespassing upon nature." A decided change in the system of soil management is called for. Wastage in the Piedmont and other regions is described, and reforestation measures, hillside terracing, and permanent pasture lands are discussed.

STATEMENT PRESENTED . . . BEFORE SUBCOMMITTEE OF HOUSE COMMITTEE ON PUBLIC LANDS. U. S. Soil Erosion Serv., 28 pp. 1935. [Mimeographed.]

Gives a résumé of the activities of the Soil Erosion Service and an appraisal of the results of the Soil Erosion Service program. Erosion-control activities of various foreign countries are outlined, and a national program for the United States is proposed.

SUNSHINE AND SHADOW. Soil Conserv. 3: 30-33, illus. August 1937.

Encouraging and discouraging facts are given about soil and water conservation in the Pacific Northwest as observed by the writer on a trip through northwestern trans-Mississippi country.

"Millions of acres of farm land are being ruined by rain water running wild . . . Our best lands are largely in use and have been for some time." Statistics of soil loss are given. The writer urges the correction of unwise land-use practices.

TRAGIC TRUTH ABOUT EROSION. Forest Preserve Assoc. N. Y. State, 20 pp., illus. Schenectady, N. Y., 1934.

"In this pamphlet The Forest Preserve Association of New York State Inc., reproduces an article pertaining to soil conservation and correct use of the land published in the New York Times, June 17, 1934, by Hugh Hammond
Bennett... In addition some other data relating to this menacing national problem of accelerated, man-induced erosion are included...”—Foreword.

Bennett, H. H. (126)

The writer describes trying experiences with erosion on his farms in the middle Piedmont as well as the means taken for their reorganization. Construction work on terraces is described and illustrated. The need for demonstration work is stressed, and other measures to prevent erosion on steep slopes suggested.

The national menace of gulled land and “the tremendous damage being done by water on practically every tilled acre in the country” are stressed. The construction and maintenance of the proper type of terrace, with special reference to the Mangum type, and the use of earthen dams to prevent soil washing are discussed.

“Dust storms and unprecedented drought over wide areas have made the people, both those directly affected and throughout the entire nation, acutely aware of the relation of total water resources to agriculture, of types of agriculture to water supply, and of the need of dealing with the combined problem of soil and water conservation as a whole through the planned rehabilitation and control of entire river systems.” Selected data on water power from various censuses of the United States are given in tabular form. This article was written for the third World Power Conference, Washington, D. C., 1936.

Wind erosion, sheet erosion, and gullying are discussed, as well as the philosophy underlying the objective of soil conservation. The objective in substance is “merely to readjust agricultural practice to needs of the soil,” and its realization is far off, the writer contends.

“Soil wastage by erosion is the most serious problem relating to land utilization in this country... It is sheet erosion that is doing most damage to our farm lands and over-grazed pastures... Abnormal soil-washing, with the helpful assistance of man, is doing more damage to the agricultural lands of the nation than all other processes, both natural and artificial combined.” The terracing of sloping lands, reclamation of gullies, reforestation, careful and planned planting, and continued research as to erosional processes are fundamental and necessary parts of the whole problem of soil-erosion control.

AND CHAPLINE, W. R. (131)

“This circular is in two parts, the first dealing, under the heading of ‘some aspects of the wastage caused by soil erosion,’ with the problem as a whole while the second part is devoted specifically to soil erosion on western grazing lands.”—Expt. Sta. Rec. 59: 207. 1928.

BLACK, A. G. (132)

The author deals with the problem of crop shifting, and the changes in crop production which result therefrom. He also discusses the general effects upon the livestock industry. Address delivered at annual meeting American Institute of Cooperation, Urbana, Ill., June 19, 1936.
BLACKWELL, C. P.

"This erosion is taking off the organic matter and the available plant food from our surface soils... The remedy for this condition is, first of all, the stopping of erosion. This may be done by terracing, strip farming, planting to sod, or other types of erosion control..."

This paper, read at the second Southwest Soil and Water Conservation Conference, outlines the Oklahoma program and gives some estimates on the losses in the State through erosion.

BOHN, FRANK.

The author gives estimates on soil losses and resulting farm abandonment in the Midwest and Southwest where erosion has become greatly accelerated in the last 10 years. A description is also given of the work and program of the South Tyger Valley erosion project in South Carolina.

BEEDROOK, F. H. VAN.

Rain can be a great friend to the land—and a great enemy, especially in the tropics. The writer goes on to describe the way in which soil washing is combated in Java and Sumatra, particularly in Bantam, quoting various authorities.

BEEGER, JOHN T.

Soil conservation has "a very important place in orchard practice because of the desirability... of planting orchards in rolling or sloping sites" to insure adequate drainage.

BRINK, WELLOGTON.

Flashes from the Texas Front. Soil Conserv. 1: 3-8, Illus. June 1936.

The author's subject is soil erosion and conservation.

On soil erosion and conservation. "Piedmont farmers are applying the lessons of the project demonstrations..."

BISBIN, JAMES S.

A description of the livestock industry in the West in the days of the cattle boom. "The great cattle kings claim that the country is utterly unfit for cultivation, to which the farmers reply by ploughing up a strip on its eastern edge every year some ten miles wide, and raising good crops."

BYER, F. A.

States that despite the fact that soil of the Palouse section has a tendency to resist washing, erosion of hillside is becoming more evident yearly. The author considers the Palouse hills too steep for terracing and maintains that the problem must be solved by "the closest and wisest attention to the condition of the soils, and the times and methods of tillage and the seasons in which it is done."

BUCHANAN, JAMES P.

"It has been conservatively estimated that the value of the soil our country loses each year by erosion amounts to $2,000,000,000, and the..."
farmers of the nation suffer a direct primary loss of two hundred million
a year by reason of the destructive depredations of this master criminal—
erosion..." This article presents data on the extent of erosion in many
sections of the United States and discusses the problem on a national
basis. The author comments on the establishment of seven demonstration
stations on different soil types in this country.

Buchanan, James P.
"Uncontrolled surface water is the enemy of man. Controlled, it is a
priceless blessing." The great damage and loss of fertile soil to the United
States through soil erosion is stressed. The establishment of demonstration
stations on different soil types in various States of the Union is advo-
cated "to the end that this great problem might be carefully studied and
solved."

Butler, T. S.
12 pp. 1936. [Mimeographed.]
An address given at the annual Farmers' Field Day, Piedmont Experi-
ment Station, Statesville, N. C., August 13, 1936. In discussing erosion
in North Carolina and other southern sections of the Piedmont the author
compares conditions with those in Europe and draws attention to the
marked acceleration of erosion in recent years. The inception of Govern-
ment work and research is outlined and the objectives of the Soil Con-
servation Service are described. Valuable data on control methods are
given.

Coordinated Attack on Enemy Essential to Campaign. The Land, Today
The author shows that 35,000,000 acres of land have been laid waste in
the United States by unchecked soil erosion and urges full cooperation
with the Soil Erosion Service program in order to solve the problem.

Discusses abandoned farms and soil erosion. States that the program
for farm reclamation "as planned by the Soil Conservation Service has as
its motive the rebuilding and maintenance of the soil for more profitable
production in the immediate future."

The destruction of the rolling lands of the South by erosion is described
and the virgin Piedmont is contrasted with the Piedmont of today. "The
greater part of the topsoil already has been carried away, and where deep
gullies are not present they are rapidly forming." The various benefits of
a soil conservation program are pointed out.

Butler, O.
The author analyzes the proposed reorganization of the Federal Govern-
ment which raises questions vital to agriculture, forestry, and other fields
of conservation.

Caldwell, Millard F.
A portion of an informative series of questions and answers compiled
by the Department of Agriculture for the purpose of illustrating the opera-
tion of the new soil conservation program in the southern region for 1936
is included, as follows: Purposes of the program, putting the program into
operation, definitions, crop classification, establishment of bases, adminis-
tration.
CANNON, C. (150)
LOOKING DOWN ON EROSION DAMAGE: ONE FARM PROBLEM THAT'S PLAIN FROM A MILE IN THE AIR. Mo. Ruralist 73: 3, 21, August 15, 1931.

The writer took an airplane ride and saw that "the washes and gullies stretch through the farms like veins through the body, and their extent is appalling." He contends that after seeing such effects of erosion any man who owns a farm "would return home eager to plan a system of crop rotation and permanent pasture; to supervise his plowing to follow the contour of the hills and skip the draws; and to fight the gullies with every resource at his command."

CAPP, ARTHUR. (151)
TWO PROGRAMS TO AID EMERGENCY RELIEF. (Editorial.) Capper's Farmer 45: 1, July 1934.

The writer discusses two matters related to permanent agricultural relief—erosion control and pasture development. "These two more permanent programs for agricultural rehabilitation should go right along with the emergency relief program of the Federal Government, each will help the other. I earnestly recommend both to farmers everywhere."

CARTER, ROARKE. (152)

Condensed from radio broadcast in the spring of 1936. The preservation of forests for the conservation of soil and water was the subject of this broadcast. "Large trees prevent soil erosion" and "it takes just one hundred years to create one inch of soil" are two pertinent facts stated.

CARTER, T. N. (153)

"The scope of the inquiry and its subdivisions are indicated in the accompanying chart, and may be easily understood by a brief glance at the headings of the various columns. Though the paper has to do with the work of the various states in preserving the fertility of the soil, and though the International Association of Applied Chemistry is interested primarily in the chemical elements of soil fertility, yet it seems desirable to include in the scope of this inquiry certain enterprises which have to do directly with physical rather than chemical conditions." Irrigation and drainage in relation to the States and legislation are discussed. State work with regard to erosion control is considered, and certain types of conservation enthusiasts are criticized.

CHAMBERLAIN, T. C. (154)

The history and development of soil and its wastage are treated. "When our soils are gone, we, too, must go, unless we shall find some way to feed on raw rock or its equivalent ... The key to the problem lies in the control of the water which falls on each acre ..." Soil management and crop selection for conservation are discussed.

CHARLES, TUDOR. (155)

Moisture conservation in Kansas as practiced by various farmers is outlined.

CHASE, STUART. (156)

The author presents a bird's-eye view of the United States before the coming of the white man. He shifts the scene to 1936 and a land far different, due to the loss of soil, water, and mineral deposits. He discusses the causes and effects of this condition and suggests remedies in the light of published reports by recognized authorities. Selected bibliography, pages 351-352.
The author discusses soil erosion and soil-depletion types by contrasting geological erosion and erosion produced by man. "Geological erosion tends to be static; soil builds as fast or a little faster than water carries it away. Man-made erosion is dynamic and cumulative, and has no end save destruction." The technique of controlling erosion is indicated through rotation of crops, terracing, contour plowing, strip cropping, check dams, and gully planting.

"Soil conservation is a social problem; it is vain to wait upon individual action for a cure... The government has a responsibility, for the soil is the most irreplaceable asset of the people as a whole." The historical background of erosion in China and other countries is considered and contrasted with America's history of erosion and its causes. The writer contends that "means must be found to create a present interest in the conservation of soil values for the future."

"Soil conservation is a social problem; it is vain to wait upon individual action for a cure... The government has a responsibility, for the soil is the most irreplaceable asset of the people as a whole." The historical background of erosion in China and other countries is considered and contrasted with America's history of erosion and its causes. The writer contends that "means must be found to create a present interest in the conservation of soil values for the future."

"Soil conservation is a social problem; it is vain to wait upon individual action for a cure... The government has a responsibility, for the soil is the most irreplaceable asset of the people as a whole." The historical background of erosion in China and other countries is considered and contrasted with America's history of erosion and its causes. The writer contends that "means must be found to create a present interest in the conservation of soil values for the future."
CLINTON, L. A. (104)

"The insufficient water supply is not due to lack of rainfall, but to its unequal distribution . . . In New York, with a rainfall of from 34 to 40 inches, nearly one-half passes off by surface drainage and is lost so far as immediate plant growth is concerned. Not only is the water lost to the crops, but it carries with it much of the soluble plant food of the surface soil . . . This surface flow of water must be prevented . . . The means by which moisture may be conserved are: by plowing and tillage, mulches, underdrainage, lessening the influence of winds, applications of lime, salt, etc., rotation of crops to increase humus, adapting the crop to the soil."

CLYNE, A. W. (105)
HOW CAN WE STOP SOIL WASHING? METHODS THAT HAVE WORKED IN PREVENTING EROSION ON CORN BELT FARMS. Wallaces' Farmer 53: 1000, illus. August 10, 1923.

The author quotes data from the Missouri Agricultural Experiment Station: "Most of the worn out lands of the world are in their present condition because much of the surface soil has washed away, and not because they have been worn out by cropping." Sheet and gully erosion are discussed in detail.

COALE, J. S. (106)

This address was presented on the National Farm and Home Hour from station WMAL, in Washington, D. C., on June 11, 1937. "In closing may I emphasize most earnestly that our soils are our most valuable and most permanent heritage not only to our agriculture but to our entire civilization."

COOPER, C. A. (107)
TEXAS-OKLAHOMA RANGE CONSERVATION PROGRAM. Cattlemen 23: 17-20, illus February 1937.

"A special feature of the program is the payment to be made for deferred grazing, which means withholding from grazing a portion of the ranch during the period from the time vegetation starts growth in the spring until seed has matured in the fall for the purpose of permitting the natural reseeding of range land." A complete list of practices for which payments will be made, with the rates and condition of payment, is given.

COLE, C. W. (108)
ANCHORING THE GOOD EARTH. Sugar News 17: 150-151. April 1936. [Condensed from New Republic by Reader's Digest]

The author cites the case of the city of Antioch as an example of the results of soil erosion. "Arcadia has been changed to Desolation." The neglect and misuse of land, and the common-sense plans for its preservation and rehabilitation are discussed.

COLE, C. W. (109)

The writer traces the history of erosion from ancient times and deplores erosion conditions in the United States. "Vast quantities of silt, originating from eroded lands, are being deposited in a multitude of reservoirs, threatening the agricultural and power resources dependent thereon . . . To meet the menacing situation, the administration, in 1933, launched the first broadly conceived and widespread practical program ever undertaken in the United States for permanent protection of its land resources." The demonstration procedure to be followed by the Soil Conservation Service is described.

Describes the launching of eight soil-erosion projects in various parts of the country.
A study of accelerated erosion as contrasted with normal geological erosion. The author states that at present “the problem is to decelerate erosion and deposition; in fact, to reduce these processes as closely as possible to their geological norms. This is the task set before us. The profession of soil conservation is still in its infancy... Control is restricted to no one formula of treatment... agronomy, revegetation, woodland management, erosion surveys, wildlife management, and engineering are all part of the program.”

“The two main factors that influence the amount of soil lost are the slope of the land and the character of the rain.” Recommendations for conserving soils and the treatment of land through rotation and fertilization are made.

Gives a general description of the Claremont College Library collection of literature on the water problem of California which contains 1,497 items of value to students of political science, hydrology, water law, and water conservation.

This report consists of detailed recommendations for the furtherance of the soil conservation program. The cooperative relations of various Government bureaus are defined.

This bulletin proposes policies on water conservation and related subjects. The writer discusses run-off and erosion (pp. 8-9) and tells how erosion and water conservation problems in upland regions depend on each other for a solution.

During the third session of the conference James J. Hill spoke on the natural wealth of the land and its conservation, discussed the deterioration of land owing to faulty farm practices, and outlined some of the principal issues at stake in the better conservation of national resources, more especially the land. T. C. Chamberlin spoke on the subject of soil wastage and discussed soil washing and moisture conservation among other aspects of his subject. Contour cultivation, strip cropping, reservoirs, and similar devices to limit the wash of slopes were advocated. Lyman E. Cooley contributed a statement on our water resources, in which he discussed surplus waters, the Mississippi Valley, the continental interior, and the water-way system. Chase S. Osborn in discussing the conservation problem spoke of the urgent necessity for at once inaugurating a policy of wise conservation of forests, soil, coal, iron ore, water powers, and other natural wealth. Charles Van Hise spoke on conservation of soils. He referred to Hill’s paper with appreciation, amplifying his statements by speaking of soil erosion and crop rotation.

The writer reports an interview with Frank O. Lowden, who anticipates a permanent farm program within the framework of the Constitution, and
quotes Lowden as follows: "The land of any country is the basis upon which its civilization must rest"

COOK, R. L.

Erosion control is a problem for the individual farmer as well as for the Nation. Sand hills need grass; soils subject to wind or water erosion should be planted in rotation crops that will provide an efficient vegetative cover throughout the year; gullies must be checked and reclaimed.

COOK, M. L.

Erosion is slowly draining our greatest heritage—the black topsoil. The author deplores the inefficiency and lack of effectiveness of "piecemeal policies" and outlines a broader program to preserve the soil. The present work of various State and Federal agencies is discussed.

This article was printed in the Congressional Record under the title "A Challenge to Save." The author stresses the need for concerted national action to control floods and dust storms, gullied hillsides, and all other forms of erosion; and the need for getting back the "little waters, ponds, swampy places, long grass, and trees that used to make the tempo of the moving water less rapid." He goes on to say: "We cannot force conservation upon the American people. The job will be done by the willing cooperation of the people on the land, together with the cooperation of people in towns and cities who have been made to see that their welfare is tied up with that of the country people, or it will not be done at all . . . I look to youth to carry on the work we older people have tried to set going."

COPELAND, J. T.

An explication of the four general forms of soil erosion—sheet washing, fingerling, gullies, gulches—is presented. Results of different soil treatments in Missouri are given. "The ultimate aim is to prevent the erosion menace and simultaneously to contribute a means of flood control."

COX, H. R.

This article measures erosion damage in the United States. The various types of erosion are described, and preventive measures are outlined.

COYLE, D. C.
Waste, the Fight to Save America. 96 pp. Indianapolis, Bobbs-Merrill Co. [1936.]

Dramatizes the economic and social waste which characterizes present-day America and popularizes technical engineering problems in chapters on mud, dust, water, land, and power. The author attempts to arouse Americans to see facts, so that no one may remain indifferent to such problems as soil erosion, flood control, and conservation of natural resources.

CRANE, J. L., AND OLCCOTT, G. W.

Chapter V of this report describes the nature of soil erosion in Iowa and states that the main factor in erosion control is the restoration and preservation of vegetative cover. Erosion of lake sides and banks is considered.
Edmund Ruffin is described as "the greatest agriculturist in a rural civilization." A Virginia gentleman farmer, he was 19 years old when he "took over the responsibilities of a planter on weary lands." Observers had noted that tobacco growing for immediate high yields meant soil exploitation and ultimate abandonment of once-fertile fields. The rotation of crops failed, as clover and other legumes would not grow on poor lands, and "travellers and natives alike in this period (1815-1830) agree on the impression that an angel of desolation had cursed the land." Ruffin's lands responded to a treatment of marl spread over them and "a new era in the agricultural history of the region had dawned." His conception of soil fertility as a dynamic and not a static condition gives him a modern standing. "Edmund Ruffin has good claim to be called the father of soil chemistry in America." His monthly agricultural paper, the Farmers' Register, encouraged practical farmers to write articles. The use of marl, the preservation and use of barnyard manure, and the growing of clover all proved his knowledge, and he developed a well-planned system of drainage. His was the most advanced rotation of crops to be adopted: corn, wheat, clover, wheat, and pasture, and later a six-field system—corn, with peas broadcast and plowed under, opened a series which included wheat, clover mowed, clover grazed and plowed under, wheat, and pasture. His lands become more and more fertile.

Crickmay, Geoffrey W. (186)

SOIL EROSION AND LAND PLANNING IN GEORGIA. Forestry-Geol. Rev. 5: 7-8, illus. September 1935.

"In Georgia, unrestricted soil erosion is rapidly changing arable fields into barren gullies and fertile land into sub-marginal land. Such soil wastage was directly responsible for economic collapse in Central America (Mayan culture), Asia Minor, and China." The author discusses the main types of erosion, climate, rainfall, and the transporting power of running water with respect to the soils of Georgia. Work on Federal demonstration areas is discussed.

Croucher, H. H. (187)

Attempts to counteract the soil-washing problem by coffee planters of Jamaica include mulching, planting overlook beans, and digging trenches. The author suggests precautionary measures, among them terracing and strip cropping.

Currie, J. H. (188)

The writer reviews some of the basic thoughts behind this plan and then outlines some of the details applicable to various agricultural sections.

The $3,000,000 water-conservation project of Santa Clara Valley Water Conservation District is almost complete. Underground water tables have risen from 10 to over 30 feet this season.

Curtis, Hugh. (190)

Describes the activities of the Nation's youth camps and clubs, organized in various midwestern sections in the interest of successful rural living. Interest shown by boys and girls in soil erosion control methods and wildlife conservation is stressed.
CUTLER, J. S.
OHIO VALLEY LAUNCHES EXTENSION PROGRAM. Soil Conserv. 3: 34, 50. August 1937.

This is a discussion of soil conservation work already done and future plans by representatives of the Soil Conservation Service from Kentucky, Ohio, Indiana, Michigan, and Washington, D. C., at a conference held in the spring of 1937 at Dayton, Ohio.

DACHNOWSKI-STOKES, A. P.

"This publication presents the results of investigations carried out in California, Oregon, Washington, and parts of Idaho in the interests of regional approach in the utilization of peat land and the conservation of water supplies." The relation of the study to soil erosion is discussed in the summary.

DACY, GEORGE H.

"Twenty-one times more plant food is wasted in the soil carried away in rain-wash than is used in growing our sum total of crops.... Erosion is a devastating chiseler which works tirelessly, altering the topography of our agricultural terrain." The author describes the largest man-made gully in this country, near Lumpkin, Ga., begun by a small rivulet cut by the drip from a barn roof. "Strip farming is a vegetative system of erosion control which applies in one form or another to all kinds of soil, to all degrees of slope, to all branches of agriculture and to all types of climate where there is enough rainfall to make plants grow." Bags of soil and seed placed at strategic points to obstruct run-off in controlling small gullies, and large gullies planted to willows, locusts, and honeysuckle have proved successful.

DALING, B.

"The Mississippi delta is the graveyard of thousands of runaway farms. Here is the resting place of countless tons of precious topsoil." Dynamite to blast gully banks is used in many States by C. C. C. camps to control erosion. Details of the procedure are given.

DARLING, J. N.
DESERT MAKERS. Country Gent. 105: 5-7, illus. October 1933.

The author criticizes various conservation measures and the lack of cooperation in conservation as a national principle. He points out the damage done to the country in general by ill-conceived water-control projects, lack of river protection, and bad drainage projects. The damage to wildlife is stressed. "A national program for conservation of America's natural resources is essential."

Davenport, W.

The writer discusses the future of land and water conservation in the United States. It needed the depression to turn the legislative mind to conservation, and the writer reviews the whole question from 1812 to the present administration. Erosion, the enemy of the land, destruction of wildlife on farms, and the need for the return of all nonarable lands to what nature intended them for, are discussed.
DAVIS, C. C. (198)

Discusses British methods of soil conservation such as the efforts of farmers to plow up grassland and put it into cultivated crops, and also summarizes the British farm-relief program.

DAVIS, R. O. E. (199)

Table of contents: The Natural Process of Erosion; Action in Forest; Action on Cleared Land; Relation to Lumbering; Relation to Mining; Relation to Power Development and Navigation; Relation to Agriculture; Utilization of Rainfall; Natural Recovery from Erosion; Reclamation; and Methods of Prevention.

Types of soil, lumbering operations, climatic conditions, and the various factors influencing erosion are discussed. Figures are quoted on soil waste through the rivers of these regions. "Reclamation is of two classes: lands reclaimed for cultivation and those for forests. The same methods that are used in prevention must be used in reclamation."

DIAK, C. E. A. (201)

"Erosion is the removal of soil material by air or water in motion. I shall deal only with erosion caused by water." The cause of erosion, the slope or topography of the land, the texture and structure of the soil, the vegetative covering, the character of the rainfall, the results of erosion, and methods of prevention and reclamation are treated.

DICKSON, R. E. (203)

EXPERIMENTAL WORK ON SOIL EROSION AND WATER CONTROL IN TEXAS. Okla. Sta. Cir. 79 : 15-17. 1931.

Discusses the work at the Spur station and its application to the western portion of the State.

"DING."

An examination of the administration's "extravagant expenditure toward the accomplishment of a national conservation program" is made. The author concludes that "in the realm of the New Deal the word conservation is a typographical error. The s and v have been transposed." Soil Conservation is regarded as No. 1 among the many needs of the North American Continent.

[DIXEY, F., CLEMENTS, J. B., AND HORNBY, A. J. W.] (205)

Dobby, E. H. G. (206)

With the geographical background as an approach the author discusses the present rural social system and situation in Spain. Some serious problems which have accumulated through the centuries without directed effort are: Immense acreage holdings in some sections with the great majority of the people in possession of but small impoverished lands or none at all; a deplorable irregularity of land tenure; relative drought over a high percentage of Spain; seasonal crop demand, which calls for migrant labor; uneconomic management of marginal land, and reckless deforestation. "The remedies... can be efficacious only when a soundly constructed scheme to embrace the whole perspective of Spanish agrarian difficulties is unremittingly pursued over a considerable period of years."

Dodd, D. R. (207)

Causes of soil erosion and means of control are discussed. Methods of terracing, rotations, strip cropping, gully control on erop and pasture land, tree planting, cover crops, and special treatment for badly eroded land are covered at length. Types and extent of soil erosion together with salient facts about erosion are discussed.

Durtott, E. (208)

The evils of sheet erosion are greater even than those of donga or gully erosion according to this writer. The dangers of overgrazing and the necessity for good pasture management are stressed.

DuPuis, R. L. (209)

This article indicates that recent disasters have emphasized the danger of soil erosion to the Nation's farmland and tells how "the conservation program is seeking 'partnership with nature'!"

Duncun, Richard M. (210)

The speaker stated that he wished to give a picture of the soil erosion situation as he saw it: "... just what has been happening to our agricultural lands as a result of erosion and just how little we have realized its destructive force." He described conditions in his own State of Missouri, and suggested remedies, among them crop rotation, proper planting, terracing of fields to shorten slopes, stopping washes in cultivated fields, and fertilization. Farmers should "form cooperative organizations for the development of conservation projects; to acquire, on a cooperative basis, machinery necessary to do the work and to have the benefit of the knowledge of a trained expert on the subject, the latter, of course, without cost to them."

Eastman, E. E., and Glass, J. S. (212)

"The nature of soil erosion, its causes and effect with respect to conditions in Iowa are discussed, and suggestions made relative to the control and prevention of erosion, with particular regard for methods successfully employed in different parts of the State... The estimated cost of installing the various control methods outlined is presented in each case."—Expt. Sta. Rec. 40: 717. 1919.

"This technical communication aims at presenting in a concise form modern knowledge of the extent of soil erosion damage, its underlying causes and methods of prevention . . . The question of prevention is dealt with in general terms. Local circumstances must inevitably guide technicians and agriculturists in their choice of specific remedies, especially in the selection of crops and rotation. Two points of view have been prominent in the mind of the compiler; firstly, that of the scientific worker who may have soil erosional investigations in hand at his own station, and secondly, that of the propagandist officer who is striving to awaken the agricultural conscience in the matter. With these ends in view, data are quoted and methods reviewed in some detail which it is hoped will provide a reasonable conspectus of present conditions." The scope of the program of soil erosion investigations in the United States is given in a summary.

"The writer challenges a declaration, credited by the press to Ray Lyman Wilbur, president of Stanford University, to the effect that the future safety of California depends largely on the removal of sheep from its mountain areas. It is stated among other considerations that vegetative covering not only fails to hold back snow, providing for a water supply in the summer months, but actually causes it to melt sooner than if it lay on bare ground. He asserts that sheep are not harmful to mountain areas, as many ranges where sheep have been grazing continuously for 50 years are now in better condition than they were several years ago. He also states that many farmers raise sheep, not for profit " . . . but solely for increasing the fertility of the soil, which means more vegetation."

"The author states that conservation of soil and flood prevention are the objective of 29 erosion camps functioning in the above States under the E. C. W. He advocates gully control by tree, vine, and grass planting to be followed by construction of permanent dams. Protection of streams and bottom lands with brush dams and black locust seedlings is discussed.

"Erosion is annually depleting our greatest resource, the soil, and at so rapid a pace that already it has ruined an immense amount of formerly productive land and rendered it unfit for cultivation." The writer concludes: "With the educated and enlightened people that comprise the United States there is no excuse to further allow our most valuable asset, the soil, to get away from us."

"Describes the nature of erosion in the Piedmont and the control measures of the Soil Erosion Service."

"Soil erosion is discussed, pp. 140-149, 178-190, 219-222. Phases of the subject treated are the nature and factors contributing to erosion, topography, soils, drainage, gullying, and terracing."

"The Soil Conservation Service has given the task of determining the causes of soil erosion and developing means whereby it may be retarded or controlled. The work is composed of two distinct phases: first, research
investigations, and second, the revision of farming operations in various sections where erosion is most serious.” Results of studies at the State College Experiment Station are given.

Fisher, Robert. THE CCC IN SOIL CONSERVATION. Soil Conserv. 1: 1-4, illus. January 1936. General survey of accomplishment by C. C. C. in cooperation with the Soil Conservation Service. “Because a real service is being performed that not only is helpful to those directly engaged in it but offers opportunities not previously available to millions of our citizens, I am firmly convinced that the CCC has fully justified the faith reposed in it and that it is returning a value in full proportion to its financial cost.”

Ferguson, E. TEARING DOWN THE WEST. Yale Rev. (n. s.) 25: 331-343. December 1935. The history and spoliation of New Mexico through the introduction of stock by the Spaniards is reviewed. “Erosion in process may be seen anywhere. A hundred years ago, Mexico was beginning to realize that overgrazing was a problem on the Rio Grande.” The work of conservancy engineers is outlined.

Fick, J. C. HUMUS AND SOIL EROSION. Farming in So. Africa 6: 260. October 1931. In this article the author describes how some of the best surface soils are washed away by storm water, and how clay soils are being converted into erodible sandy soils. He emphasizes the value of humus in preventing wind and water erosion because it binds the soil and increases its water-holding capacity.

WHEN THE SOIL CRUST IS WASHED AWAY. Farming in So. Africa 11: 6. January 1936. Discusses erosion from the point of view of the veld farmer. States that “It is a mistaken idea that the former fertility of the soil may be restored by the application of fertilizers, for although these do supply the missing plant-foods, they are unable to provide the finer and, incidentally, the most important soil constituents—the clay and humus particles—and this is the very portion which washes away first and most readily, causing a deterioration in the soil structure . . . The results of experiments conducted in America in this connection are highly instructive. All the results were obtained from soil of the same type, on the same slope and with a consistently uniform gradient. Part of the soil had previously been used for lands and here the upper crust was completely washed away, so that the soil used for seed-beds in the experiment was the original sub-soil. This soil was compared with adjoining virgin soil which still retained its upper crust, and it was found that the former yielded only 500 lb. of wheat per morgen, as against 3,200 lb. per morgen, or six times as much, on the latter.”

Fisher, M. L. THE WASHED LANDS OF INDIANA: A PRELIMINARY STUDY. Ind. Agr. Expt. Sta. Cir. 90, 24 pp., illus. 1918. “The nature and causes of soil erosion in the State are discussed and various methods for its prevention and for reclaiming washed areas are briefly described. The principal preventive measures are said to comprise strip farming, mulching the brow of steep slopes, skip plowing diverting the run off, and keeping the land in permanent vegetation. While the recovery of badly eroded land includes filling in the gullies with straw, cornstalks, weeds, brush, treetops, logs, and trees; the seeding of alfalfa or other hay and pasture plants, or the growing of wheat or corn; and the liming and preparing the seeded for grasses, particularly redtop and Kentucky blue grass on denuded surfaces.”—Expt. Sta. Rec. 41: 130. 1919.
Outlines soil conservation operations in Missouri with the following objectives in view: (1) maintenance of soil fertility; (2) avoidance of the effects of droughts and insects; (3) orderly use of crops grown; (4) provision for maximum carrying capacity for livestock; and (5) a decrease in flood damage. "If we look a bit closer into the ravages of erosion, we find more than gullies and loss of soil." The author outlines various measures for soil erosion control in which the Government, State, and farmers could cooperate.

"The problem of erosion in the southwest had its beginning coincident with our Anglo-Saxon occupation of this region. Marked vegetative changes have occurred on the vast ranges used for grazing." Arroyo floods are the cause of most of the erosion. Irrigation projects have destroyed the natural balance of streams and vegetation. The writer urges that the duties of the Forest Service be expanded, that authority and funds be given to it "for the control of erosion on the public lands which form the watersheds of our principal rivers." He contends that "a permanent civilization in these river valleys of the southwest must be founded upon control of the desert, just as methodically as we control the torrential rivers."

A retrospective account of accelerated soil erosion precedes a description of the policy of the Soil Erosion Service and its program. The author states that cooperation with farmers is being sought, practical programs are under way, and the greatest care is being exercised in making recommendations.

The writer discusses the benefits of Boulder Dam project in erosion control and flood control but questions the advisability of adding several million acres of irrigated desert land to agricultural production under present conditions and governmental policies.

Describes "unique agriculture" in the Rhine Valley. "At points the river gorge rises 1,000 feet above the river, with a slope of 45 degrees, or steeper. Through the centuries, the Germans have gradually transformed the river gorge into a garden. The face of the cliff, on either side, has been chiseled into a series of narrow ledges, or terraces. Soil has been brought up from below... and laid on these shelves about a foot deep. Two inches of shale have been spread over the surface to favor the absorption of rain and to prevent erosion. Grape vines have been planted, three or four feet apart... They stretch upward from the river brink to the top of the cliff, tier on tier, being held by brick or stone walls, cunningly laid to provide drainage without erosion."

The author points out the loss of nitrogen from the soil caused by heavy rains and urges crop rotations for erosion control.

The writers discuss the economic pressure on deforested and eroded lands of Cooke County, Tenn. "One reasonable solution of the problem is the
removal of these people to good farming land, to industrial communities, or to areas on which they can better grow food requirements and at the same time obtain part time employment in forestry, industry or other activities. . . The continued misuse of these nonagricultural mountainsides only serves to aggravate the uncontrolled run-off of water and the silting up of stream channels and more fertile lands below." Reforestation for erosion control is advocated.

FEZER, ELIZABETH. (233)

The writer refers to the public domain as the forgotten no man's land, a vast and valuable property which has been allowed to deteriorate year after year. President Theodore Roosevelt, in 1903, appointed a special commission for the preservation of the public domain. After 2 years of investigation and careful research the commission reported that the great bulk of the vacant public lands were extremely valuable for grazing. The report concluded: "Prompt and effective action must be taken, however, if the value of very much of the remaining public domain is not to be totally lost." The results of overgrazing are discussed, and the writer points out that it can be proved beyond doubt that some smaller floods are directly traceable to erosive action on watersheds that have been denuded of their forage by overgrazing.

FULLER, E. EDGAR. (234)

Tells how denudation along the banks of the upper Gila River has resulted in eroded conditions that have caused the abandonment of many farms and siltation that is menacing the Coolidge Dam.

FULTZ, M. G. (235)

Soil erosion in its varied manifestations is reviewed and advice given for treatment. Crop rotations, humus, pasture crops, contour planting, terracing, and ditch construction are recommended.

GAPEEN, C. E. (236)
EROSSION CONTROL A NATIONAL FIGHT. Prog. Farmer (Ky.-Tenn. ed) 51: 8, 56, Illus. February 1936.

Gapen sketches the beginning of soil erosion in the United States and its accelerated development in recent years. Early Federal research is outlined and a history of the Government's attempt toward control until the inception of the Soil Conservation Service is given. The work of the Service in the South is discussed.

The author states that millions of acres have been damaged in the South by gullying and wind erosion, and sheets of water flowing down across the cultivated slopes have carried away the rich topsoil and points out the benefits of building Mangum terraces for the conservation of soil and water. A map showing eroded areas is included.

GAUSSSEN, HENRI. (238)

A study of the eastern French Pyrenees terrain, presenting a geologic history, with a description of the land as affected by human occupation. The author says that "the vegetation of today as it would have been but for man's intervention, includes: 1. an essentially forest vegetation disposed in altitudinal zones according to the floristic resources of the region; 2. relics of the glacial epoch preserved along the watercourse and about springs; and in the peat bogs; 3. xerothermic survivors preserved in dry microclimates. With the exception of the alpine zone, treeless by definition, the saline lands and perhaps some sandy patches, and rocks too precipitous or too dry, the country must have been completely forested."
STUDIES conducted at the Blackland Experiment Station revealed that plots planted to Bermuda grass lost no soil or water after the grass became well established; that strip cropping, together with contoured rows decreased run-off and erosion and tended to check the formation of gullies. Species of vegetation are discussed. "To be satisfactory for such purposes a plant should be long-lived, make a dense growth, possess a fibrous root system, be able to withstand severe and prolonged drouths, and grow well on infertile, badly eroded land."

The causes of soil washing, control of washing, and temporary and permanent measures in gully control are discussed.

The situation and history, area, and elevation of the demonstration farm are given as well as detailed analyses of average samples of soil and subsoil. Data on rainfall are given in tables. Terraced land is compared with unturreaced land as to crop production.

A discussion of soil erosion and soil conservation practices in the Southern States. The history of erosion is outlined briefly, and the early efforts of southern farmers to control it are described.

The denudation of tropical agricultural lands by soil erosion is discussed. The universal use of cover crops, further research work, education, and propaganda by lectures and school gardens are stressed as essential to a successful program of soil erosion control.

"The author presents typical erosion problems that have claimed attention and the methods employed to solve them. Although cases mentioned apply to drainage problems, these methods, it is believed, could be applied along highways in side ditches wherever undue erosion occurs similar to that described." Not examined.

The new Soil Conservation Act is reviewed (pp. 9-10) and examples are given to clarify its terms. The two major objectives of the Act which are of direct interest to farmers are: (1) Preservation and improvement of soil fertility; (2) reestablishment and maintenance of farm income on a parity with the incomes of other groups of people.

"During recent years the necessity of controlling soil erosion in the U. S. S. R. has become constantly greater. Soil erosion surveys, the results of which are briefly given in this article, have been included in systematic research work for the first time. . . . This survey showed that the chief factors in erosion are the relief, the rainfall, and the methods of cultivating the hill slopes. . . ."
GUSTAFSON, A. F.

Contents: Soil Erosion; Results of Soil Erosion; Influence of Precipitation and Latitude on Soil Erosion; Influence of Slope and Soil on Erosion; Effects of Crops and Tillage on Erosion; Rotation Crops; Contour Tilling and Strip Cropping; Terraces; Control of Gullies, of Wind Erosion, and of Wave Erosion; and Control of Floods.

DUMPING SOIL INTO THE SEA. Farm and Fireside 35: 7, 9, illus. June 5, 1915.

The author states that Middle West farms lose 11 tons of earth a second through soil washing. He recommends cover crops to stop soil washing, filling ditches with straw for catching and holding soil run-off, planting black locust, and plowing around slopes.

HASSE, F. W.

The results of an erosion survey of one supervisory district of Monterey County, Calif. "afford little basis for correlating erosion with soil, slope, or cover conditions, except that with timber or brush cover, erosion was inappreciable. On more than half of the farms surveyed, erosion was noted, serious erosion on one-fifth of them. On one-fourth, some sort of control was practiced by the owner. On one-seventh, land use had been reduced because of erosion. Ill-advised farm management is responsible for much of the erosion observed . . . The control measures included building of approximately 200 dams and other structures, largely of willow; planting willow and sea-fg; laying drain pipe; and digging diversion ditches." Accompanying figures show the Harris type dam in place and a brush stairway in a narrow, steep gully.

HALL, A. R.

The author gives a more or less chronological history of agricultural practices, soil erosion and its recognition by Virginia farmers, and their attempts to prevent erosion during colonial and early national times. Literature citations pages 27-31.

HAMILTON, A. P. P.

The author tells how mountains and forests act as agents for the supply and distribution of water. A brief discussion of the geology of the Siwalik range (foothills of the Himalayas) follows, dealing specifically with erosion in the Siwaliks of the Hoshiarpur district in the Punjab.

HATCH, C. A.

Speaking from personal observation and actual experience, the writer urges the need for concerted reclamation. He asserts that "there has long
been a misconception and a misunderstanding of reclamation, its purposes, its ends, and its accomplishments.” He points out the benefits of wholesale conservation of waters for the creation of irrigated areas, to which large numbers of citizens could return to the soil and farm. The reclamation program “is national in scope, character and effect.” Address delivered before Rivers and Harbors Congress, Washington, D. C, April 27, 1936.

HAVILAND, P. H. (255)
This article presents considerable data on soil erosion. Beginning with a general description of the various types of erosion in Rhodesia and some recommendations for control, the author gives instructions for building storm drains and ridge terraces. Diagrams and tabular data are included. Gully control is also considered.

HENDRICKSON, B. H. (256)
A summary of the results of a cooperative study of soil erosion by the United States Bureaus of Agricultural Engineering and Chemistry and Soils at Experiment Substation No. 2, Tyler, Tex. Phases of the subject treated are: Field crops, native vegetation, winter cover crops, upland pasture mixture, experimental rotation, and strip cropping.

HENDRICKSON, B. H., AND BAIRD, R. W. (257)
This report, prepared in cooperation with agricultural experiment stations of Texas, Arkansas, and Louisiana, reviews the results of soils and crop studies, cropping types, organic and fertilizer treatments, strip cropping, strip cropping combined with terracing, contour tillage, erosion of different soil types, types of terraces, and check dams. Data are presented on erosion and run-off losses from controlled plots.

HILL, C. R. EAD. (259)
Briefly discusses corn cropping at the Bethany station. A table shows the relationship between low yields and total production.

HILL, E. B., AND TAYLOR, H. B. (260)
Information was obtained relative to soil conservation needs and practices on 78 farms in Wheatland and Sheridan Townships, Mecosta County, Mich., in 1936. “According to the 78 farmers visited in this study, 91 per cent of the land on their farms had not shown any signs of erosion. In most instances 'sheet erosion' is not noticed by the average farmer and not until gullies begin to appear does he consider his soil as being subject to erosion.”
by deforestation and other bad land practices. Terracing on hillsides exposed to occasional torrential rainfall is one solution and has been in practice in southern Europe and southern England since the Iron Age. Reclamation processes are shown by diagrams.

Hoffman, M. H.

"In presenting this paper we wish to state that no attempt has been made to gather minute data on slope, rainfall and drainage area. Our work in the prevention of soil erosion has been from the standpoint of an extension specialist who is anxious to fill existing ditches and keep others from forming... Nine out of every ten ditches in Iowa are caused by overfalls working back up through the land. In studying the problem it is well to consider the geological history of the state."

Holland, T. H.

A recommendation of the estates products committee of the Board of Agriculture was "that further experiments should be carried out by the Department of Agriculture to determine in Ceylon, the amount of erosion which is actually taking place in the principle planting districts." The scheme evolved and put in force is described.

Hope, G. D.

The conditions under which soil erosion takes place in the different tea districts of northeast India are described in detail. Terracing on sloping land, as seen in Java and Sumatra, and contour planting are recommended as measures for the prevention of serious erosion. Illustrations are given of the construction of terraces, and of a system of catch trenches to be used where the land is not steep enough to terrace.

Hopkins, E. S.

An outline of the soil conservation program developed in the Provinces of Manitoba, Saskatchewan, and Alberta, with a discussion of the general nature of the soil conservation program in the United States. Cooperative soil conservation projects at Bath, N. Y., Amarillo, Tex., and Colorado Springs, Colo., are considered.

Horney, A. J. W.

"The local practice of native farmers in preparing forested areas or brush land for cropping by cutting and burning the natural cover is regarded as one of the most serious causes of the increased rate of erosion, both because of the extensive deforestation directly involved and because the short period (about 2 years) of productivity of land thus treated has resulted in the clearing and use of hill lands of which the slope is so sharp as to add still more to the erosion tendency. Part 1 of the bulletin discusses this and other causes of excessive erosion, and certain of its effects, under the heads of comparative effects of denudation and abnormal soil erosion in other countries, past and present state of Nyasaland—outstanding changes during the historical period, factors influencing the degree of erosion in Nyasaland, methods of native farmers in Nyasaland, alleviation of conditions due to erosion, and changes in climate with denudation. Part 2, on special measures and remedies, briefly considers the local practicability and effectiveness of such preventive means as storm-water drains, ridges on the contour, strip-cropping, ridge terraces,
bench terraces, cover crops, minor drainage systems, silt pits, use of stone walls and revetting, and dams at the headwaters of streams and in gullies."—Expt. Sta. Rec. 71: 603. 1934.

Hornby, A. J. W. (268)
The author discusses erosion of different types of soil in Nyasaland, stressing sheet-erosion damage. Control measures such as drains, silt pits, terraces, contour stone walls, contour hedges, cover crops, and green manuring are recommended.

Hornby, H. E. (269)
In discussing soil erosion in Tanganyika Territory, the author maintains that the condition is due to the disturbance by man or his domestic animals of the vegetative cover which alone can prevent the shifting of soil by rain or wind, and that in countries with a long dry season overstocking is a dominant cause.

Houser, Zelma L. (270)
The menace of soil erosion, which includes gullying, loss of topsoil, and soil washing caused by rainfall, is described and discussed. The need for reafforestation, vegetative covering of all kinds, check dams, strip cropping, field terracing, and contour plowing is pointed out, and the work being done by the C. C. C. in the control of erosion is lauded. The writer draws a comparison between the United States and foreign countries, as Japan, the Union of Soviet Socialist Republics, Germany, and Argentina. "Other countries are making superhuman efforts to protect their resources. Let us refrain from going down the road which China travelled 2,000 years ago."

Howard, A. (271)
The author states that no effort has been made to treat the subject exhaustively. The whole of the cultivated area of India affected by the monsoon is subject to the loss of fine soil by rain wash. Terracing has been used successfully. The writer contends that "the enforcement of a regulation to terrace immediately all lands from which the forest canopy has been removed" would be beneficial in erosion control. "In the alluvium, the greatest source of loss of soil moisture ... is undoubtedly the hard surface crust which forms after rain or after the application of irrigation water." The lever harrow is mentioned as the most efficient instrument so far found for breaking up surface crusts.

The writer attributes the continuous erosion of the soil in India chiefly to the uneven distribution of rainfall. "The general slope of the ground is another factor which influences the rate of erosion ... The third factor on which the amount of erosion by rain-wash depends is the nature of the soil." Examples of erosion in various districts of India are discussed, and the writer urges "the enforcement of a regulation to terrace immediately all lands from which the forest canopy had been removed. I have heard that such a regulation is in force in Java."

This article on soil erosion in India deals with the Pusa system of surface drainage, the development of drainage in Bihar, drainage maps and surface plans, the relation of waterlogging to soil erosion, methods of preventing erosion and waterlogging, and the utilization of embankments.
HOWARD, I. M. (274)
MAKING RAINDROPS BEHAVE CONVERTS TO THE TEN COMMANDMENTS OF SOIL
SAVING TELL HOW THEY CONQUERED SHEET AND GULLY EROSION. Successful
Farming 35: 10–11, 38, 46, illus. May 1937.

"On the Plum Creek Soil Conservation Service demonstration Erosion
Control Project, with headquarters at Albion, Nebr, where work was
started in the early spring of 1934, many farmers are in their third year,
practicing cropping systems recommended for soil and moisture conserva-
tion. Strip cropping, contour farming, crop rotation, terracing, gully
control—these and other soil and moisture-saving practices are producing
results that are slowly revolutionizing farming methods." Various Ne-
braska farmers show how they were benefited by the inception of the
project.

H owe, F. B., and Adams, H. R. (275)
ilus. April 1936.

Various types of man-made erosion resulting from farm cropping are
discussed. Principles of erosion control through crop rotations, strip crop-
ing, cover crops, reforestation, and correction of existing gullies are
among the points considered. Land utilization in relation to erosion con-
rol is summarized. A reconnaissance erosion survey map of the State
of New York is included.

H ott, K. K. (276)
M ANY ECONOMIC PROBLEMS INVOLVED IN PROPOSED CHANGES IN PUBLIC LAND
POLICY; FUTURE OF LAND RECLAMATION WORK IS AN IMPORTANT PROBLEM—
CONTROL OF EROSION INVOLVED IN THE AMOUNT OF GRAZING PERMITTED.

The author discusses President Hoover's proposal to cede the unreserved
surface of the public domain to State control and regards Federal control
as a main issue.

H ott, W. G. (277)
EROSION AND WATERSHED PROTECTION. Civ. Engin. 4: 81–84, illus. February
1934.

The watersheds of the country are divided into four general types ac-
cording to their erosion characteristics. Changing conditions are outlined,
and remedial measures being taken to provide stability are described in
this article. "Assistance in the solution of the [erosion] problem can be
rendered by the plant and forest ecologist, the soil technologist, the holo-
 gist, the geologist, and the engineer."

H utchinson, C. B. (278)
1933–34, 151 pp.

A discussion of the soil-erosion problem in California and results of
research toward its solution are given, pages 16–18.

Hutton, J. G. (279)
17: 174–175. 1936.

Outlines activities of members of the committee, the work of the Soil
Conservation Service, and suggestions by members for future work.

H yde, Arthur M. (280)
August 1932.]

An address delivered before the American Forestry Association, Balti-
more, Md. Some national aspects of the soil-erosion problem are consid-
ered. "The severity of erosion . . . varies with the region. On the Pied-
mont plateau, some 51,000,000 acres in extent, about 2,600,000 acres once
in cultivation have been rendered agriculturally useless by gullying . . .
In the Appalachian mountain area, which totals about 78,000,000 acres,
between ten and fifteen million acres have been seriously eroded . . ."
Figures on erosion are given for the southern brown-loam region, the rich
black belt of Texas, Alabama, and Mississippi, and the north-central section
of Wisconsin and Minnesota. The causes of erosion are outlined and a list of "additional consequences" is given. The author advocates a sound national policy of land utilization as a control measure and stresses the importance of the individual cooperation of the farmer.

HYDE, ARTHUR M. (281)
The first article discusses some of the causes of soil erosion, recommends several control measures and outlines the soil-erosion program for 1930. In the second article the annual losses from soil erosion and the new soil-erosion program are discussed. Erosion conditions in the Corn Belt are considered briefly. Control methods are described. The author warns that only a sound national policy of land utilization of which erosion control is a vital part will afford a satisfactory solution to the problem.

ICKES, HAROLD L. (282)
[Mimeographed.]
An address before the seventieth annual midwinter meeting, Chicago Dental Society, February 26, 1934. The Secretary states that erosion is rapidly building an empire of worn-out land in the United States, and attributes the cause mainly to forest denudation and indiscriminate removal of vegetation. Overgrazing, especially in the West and Southwest is also cited as a causal factor. The development of natural resources is recommended as a basic control measure, and the objectives of two new Government bureaus in conservation, the Public Works Administration and the Soil Erosion Service, are outlined.

The Mississippi Valley committee and its plan are considered in this article, which is but a "glimpse of what such a committee might, and it is hoped, will accomplish ... It is not a blueprint but a chalk sketch that is submitted here." One Mississippi Valley farm described has been ruined for lack of adequate water. The writer tells how the committee will function, and outlines its plan for conserving water and soil, reforestation, flood control, agriculture, navigation, and power.

The objectives of the Soil Erosion Service are given, followed by a general discussion of the soil-erosion problem. Data on the accomplishments of the Service up to June 30, 1934, are presented in tabular form.

IMPERIAL BUREAU OF SOIL SCIENCE. (285)
The South African Drought Investigation Commission is quoted as reporting that "the true cause of erosion was the reduction of the vegetative cover of the soil, brought about by deforestation, overgrazing, and burning." A quantitative study of the problem is made with regard to rainfall, slope of land, nature of the soil, the vegetation and agricultural system, and overstocking. Experiments were carried out in the Malay States, China, the United States, and Ceylon. Preventive measures are presented and discussed such as terracing and drainage, and examples given from Java, Ceylon, and India.

INTERNATIONAL CONGRESS OF SOIL SCIENCE. (286)
Volume 2 includes a paper entitled "Soil Erosion and Its Control in the United States", by W. C. Lowdermilk, pp. 181-194. The author reviews, in
a broad way, man-induced erosion and its control in the United States. The history of erosion, erosion conditions by classes, and the program of the Soil Conservation Service are outlined. Volume 3 includes a paper entitled "Some Aspects of Soil Erosion Control in the U. S. A.", by Helmut Kohlke and J. S. Cutter, pp. 177-180. In it factors influencing the degree of erosion and methods of erosion control are discussed.

IOWA STATE BOARD OF CONSERVATION.

IOWA STATE PLANNING BOARD.

In this report soil erosion and surface pollution are considered, pages 66-67; silt removal, pages 78-79; bank erosion, pages 79-80; and soil conservation and reforestation, pages 92-93.

ISRAELSON, O. W.

"The major objective of planning for water conservation in Utah is to develop and maintain complete physical control and efficient beneficial use of all of the State's water resources."

JACKS, G. V.

"Men have dreamed of a posterity dominated by helicopters, hygienic clothing and beautiful cities of skyscrapers, but present indications are rather that the next, and perhaps the first really scientific civilization will be based on more prosaic things such as contour terraces, afforestation, dams and above all, the maintenance and improvement of grass. Throughout the world steps are at last being taken to meet the erosion menace."

JACKSON, D. H.

A review of the generally recognized facts and conclusions drawn from discussions involving the question of soil erosion and its relation to floods.

JENKINS, HAL.

A brief description is given of the Soil Conservation Service program in Ohio which includes a tree nursery directed from Zanesville to supply Federal operations in a five-State region. "The equivalent of 26 farms 100 acres in size having six inches of topsoil passed down the Muskingum River at Zanesville in eight days—a permanent loss of 2,000,000 tons."

In discussing definite, practical methods of soil control the author says that the methods vary. "They are extremely simple ... erosion control and proper land utilization can be achieved without depreciation of income."
JENNINGS, A. C. (294)
This article on soil erosion in Rhodesia, discusses conditions in Mashonaland. The washing of cultivated lands and precautionary measures are described.

Soil erosion in Rhodesia is described, and such control measures as storm-water drains, natural watercourses, bench terraces, contour belts of vegetation, and ridge terraces are suggested.

JOACHIM, A. W. R. (296)
The writer comments on an experiment begun in 1925 on the prevention of soil erosion by the use of indigo in Ceylon. The results of the experiment are shown in tables and a summary.

JONES, B. W. (297)
The author describes the old Hamer family and estate in Mississippi showing photographs of the devastation of once fertile lands now known as the "valley of lost hope." Reconstruction of gullies through the use of black locust trees and honeysuckle vines and the various types of dams built by the C. C. C. are discussed.

JONES, EWING. (298)
Outlines the history of soil erosion in Ohio and reviews the Federal soil defense campaign in that State from 1929 to the present time. "More than 77,000 acres of agricultural land in Ohio alone have been directly influenced by methods of erosion control ..." Strip cropping, liming, fertilizing, and rotation are recommended; personal experiences of farmers are cited. A list of farmers who have had their cropping programs replanned for soil conservation is included.

"The following report [the findings of a survey by drainage investigations, Office of Experiment Stations, United States Department of Agriculture] describes briefly the conditions found, discusses the drainage problems encountered, and presents the plan of drainage considered most practicable. It is believed that this information will be decidedly helpful to engineers, drainage district officials, residents, and owners of property in many localities where overflowed lands are to be reclaimed."

JONES, L. G. (300)
"It is common knowledge that a Nation survives no longer than its fertile acres." The author refers to the professor of soil of the Agricultural and Mechanical College of Texas who contends that soil conservation is "a personal problem, a social problem, and a National problem."

JOTTER, E. V. (301)
"Serious soil losses are now recognized as occurring on 75% of the farms of the country and the problems of control are national in scope ... The deadly effects of sheet erosion are not fully recognized and understood ... A necessary solution ... in controlling erosion losses, is to
teach land owners how to apply corrective measures under systems of wise land use." The place of foresters in the soil conservation program is stressed.

JOUBERT, M. J. (302)

The author describes how existing soil erosion may be prevented from assuming dangerous proportions in the future. Seven points to be observed in the fight against soil erosion are set out in a final summary.

KANSAS AGRICULTURAL EXPERIMENT STATION. (303)

"The problem of soil conservation has continued to receive careful consideration by the Agricultural Experiment Station during the past biennium. No problem is of greater fundamental importance." Data on these investigations are given in this report.

KANSAS STATE PLANNING BOARD. (304)

[Mimeographed.]

The necessity of coordination is stressed in this program dealing with land-use and water problems. Administration, credit, and taxation policies are outlined. "Demonstration work in soil conservation practices has recently been undertaken on a large scale by the Soil Conservation Service of the Department of Agriculture." It is recommended that these demonstration projects be continued, but a greater measure of decentralization should be achieved.

KENTUCKY AGRICULTURAL EXPERIMENT STATION. (305)

Two activities relating to soil conservation are reported, pages 10-11. (1) From a number of farmers in the highly eroded Eden shale area of central Kentucky, information was obtained relative to length of rotation necessary to control erosion on the different types of soil; and cultural and engineering practices to control erosion on steep slopes. (2) In a study of Logan County made in cooperation with the Soil Conservation Service, the following is reported: "An analysis of the amount of erosion on 88 representative farms was made. The 15 farms showing the least erosion were compared with the 15 showing the most. A net loss of about one-third of the top soil had taken place in the former group, and about three-fourths in the latter. The least eroded averaged 50 acres more per farm than the most eroded. The least eroded farms averaged larger yields of crops; corn averaged 28 bushels per acre, wheat 3 bushels, and tobacco 349 pounds per acre more than on the badly eroded farms. Operators of the 15 least eroded farms earned labor incomes averaging $536 more per farm that the 15 operators of the most eroded farms."

KING, F. H. (306)

Introductory comment: "The tilling of the earth is the bottom condition of civilization. If we are to assemble all the forces and agencies that make for the final conquest of the planet, we must assuredly know how it is that all the peoples in all places have met the problem of producing their sustenance out of the soil . . . This book on agriculture should have good effect in establishing understanding between the West and the East . . ."

Utilization of wasteland, reforestation, garden terracing, fertilizing with canal mud, conservation of fertility, shallow cultivation, irrigation of rice, agricultural experiment stations, and farm machinery are a few of the many subjects covered.
KINO, J. A.

The author attempts to "give a panoramic view of what reclamation has already done for this nation, and of what still remains for us to do." He goes on to list four principal forms of land-reclamation problems in chronological order and discusses the various stages of land clearing during the last 100 years.

KIRKWOOD, W. P.

Statistics are presented which show annual damage by erosion in the United States. Soil conservation projects are listed. Terracing and strip cropping, as well as contour farming and gully control are described and illustrated. The work of the C. C. C. is mentioned, and the writer concludes by stating that erosion as a major menace to American agriculture is on its way out.

KNAPP, G. S.

Discusses, from the standpoint of climate and geology, the water resources of the State and the problems involved in their utilization and control. Considerable data are given on run-off on the Kaw, Neosho, Verdigris, and Marais des Cygnes Rivers.

KNAPPEN, THEODORE M.

The destruction of topsoil during the last 150 years is described "virtually all the rest of the country's 600,000,000 acres of tillable land is in a process of slow devastation by wind or water." The American Bankers Association is quoted: "This is a problem not only for the farmers, but for every patriotic and far-seeing citizen of this richly endowed land." The progress of the work of the Soil Erosion Service is described.

KOTOK, E. L.

The author discusses the necessity of maintaining a soil cover to check erosion, aside from its effect on water conservation. "On badly eroded land the forests will have the dual job of devising means to check erosion and starting a new forest." Reference is made to experimental determinations on the influence of soil cover upon run-off and erosion.

"Vast areas of forests, through fire and destructive logging, and an empire of range land in the public domain, subjected to the abuses of unregulated grazing, have had a continuing history of accelerated erosion. . . The first step towards a solution of the problem is to place these lands under control and management, and to check the abuses at their source. Be they fire, destructive logging, or overgrazing. Then must follow a laborious process of reestablishing the best possible mantle of natural vegetation . . ." The proper management of watersheds in connection with engineering is stressed.

KOULICHKOV, S. N., and MUNNS, J.

"Professor E. E. Kern, well known Russian authority on erosion control, deals in this book with the very serious problem of gullies, especially in the steppes region. He mentions a great number of solutions to the erosion problem, including the damming of gullies, terracing, and forest planting." Discusses chapter 2 which deals with afforestation in the plain of the southern part of the Union of Soviet Socialist Republics.
KUON, H. (314)
THE SIGNIFICANCE OF SOIL EROSION INVESTIGATION FOR GENERAL SOIL SCIENCE. Soil Research 5(3): 229-237. 1937. [Title in German, English, and French. Text in German. Summary in both German and English.]

Summary: "The present paper gives a brief review of the points of view from which quantitative investigations on soil erosion may have significance for general soil science. Such investigations are of interest chiefly in connection with problems relating to soil genesis, geochemistry, soil cartography, and soil assessment."

Literature cited pages 236-237.

L., H. M. (315)

Erosion in tropical regions and common practices for its control are discussed. "Much experience has been gained in the process of checking erosion and reclaiming ravine lands bordering the rivers of northern India." Frequent reference is made to an account by R. L. Pendleton of the effects of erosion in the Philippines.

"Land cannot be exploited with impunity and development should pay due regard to the conservation of that basis of permanent agricultural prosperity—the soil." It is suggested that sugarcane growers may profit from a study of erosion control.

LACEY, J. J. (317)
TWO BILLION DOLLAR ANNUAL LOSS. Prairie Farmer 106: 1, 22, illus. February 3, 1934.

"More fertility is washed away each year than we return to the soil in the form of fertilizers in 10 years ... Many of our farms have lost the entire seven inches of top soil. It takes nature 400 years to form an inch of top soil ..." Brush dams, wirebasket dams, brush and straw plowed in new gullies, steep hillsides planted to bluegrass, alfalfa, or trees, and terrace building are among control measures advocated.

LAKIN, H. D. (318)

"Michigan is taking a long step forward in the conservation of its basic natural resource, the soil. Recognized among leading states in agricultural development, it is not surprising to find within its borders a project designed to conserve the soil and control erosion."

LA MONT, T. E. (319)

The advantages of reforesting land classes I and II are discussed. "At the Arnot Soil Conservation Experiment Station, in Schuyler County, extensive snow records show that more than a foot of snow remained in the woods after the peak of the disastrous floods in the spring of 1936, while the open fields were largely bare."

LEAVITT, S. (320)

An exposition of the agricultural, industrial, and social-losses that result from erosion and floods. Causes and their correction from a national viewpoint are discussed. The function and importance of engineering works is admitted, but the necessity of supplementing such works by "Nature's own methods of protection through a forest or other natural vegetative cover" is emphasized. Legislation for a more comprehensive national program of research is proposed.
Work of the National Youth Administration and the Soil Conservation Service in Texas is described. “The work will halt the increasing loss of crop-producing soil . . . All our young men and women must understand that conserving the soil and water supply of the land is most important to the future welfare of their country.”

Describes the nature of frost erosion and suggests some methods of control.

Briefly discusses the extent of soil erosion in the Middle West. The causes of erosion are analyzed and described. Sheep’s fescue is suggested as a valuable soil-binding grass.

Sheet erosion and gullying have caused the abandonment of large plantations and cultivated areas. “A twenty-year cycle from forest to ‘bad lands’ presents a challenge to those interested in farm and forestry problems in the South. Is it worth trying to farm lands of this type? Would terracing be justified and on such lands would it be financially practicable? . . . These are questions the forester and the agricultural economist must answer.” Various areas are described and illustrated.

A paper read at the second Southwest Soil and Water Conservation Conference. Gives a description of a study of erosion and erosion control in the lower Mississippi Valley by the Southern Forest Experiment Station of the United States Forest Service. A table on the percent of cleared land surface actively eroding for seven counties, and a bibliography on various phases of soil and water conservation in Mississippi are included.

“Of various factors concerned in soil erosion and which are presumed to account for differences in the severity of erosion in different sections of the State are listed (1) differences in temperature, (2) variations in depth of the loess soil, (3) changes in underlying strata, (4) frequency of fires, and (5) past farm practices. Each of these is discussed in relation to the problem.”—Expt. Sta. Rec. 64: 17. 1931.

The writer contrasts our southwestern mountains, badly gutted by erosion, with the Sierra Madre Range across the line in Mexico, which still retains the virgin stability of its soils. The author believes that “the Sierra Madre offers us the chance to describe and define in actual ecological measurements, the lineaments and physiology of an unspoiled mountain landscape.”

“Coon Valley [Wis.] is one of the thousand farm communities which, through the abuse of its originally rich soil, has created the Mississippi flood problem, the navigation problem, the overproduction problem, and the
problem of its own future continuity.” Describes the work, in the Coon Valley erosion project, including the repair of eroding gullies, reforestation, wildlife preservation, and other constructive conservation measures.

LEOPOLD, ALDO.

Soil-erosion control is better than trying to develop new land, especially by irrigation in the Southwest. Preservation is cheaper than cure. Various measures for erosion control within the farmers’ means, are cited, among them inexpensive dams for the prevention of soil washing and gullying. Public control of land, reformation of the conditions of land tenure, and Government inspection of land to insure soil- and water-conservation measures are advocated.

LEPPAN, H. D.

The author discusses the relation of the soil-plant-animal cycle to soil erosion and suggests that farming with fewer animals but of better quality would restore the balance which has been upset in the past. Chapter headings are: South African pastures; The Husbandry of Animals in South Africa; and The Cultivation of South African Crops.

LINDENBERGER, E. F.

WASHING DOWN HILLS TO MAKE NEW LAND. Sci. and Invent. 19: 293, illus. August 1931.

The owner of 1,000 acres of orange and grapefruit groves on the western slope of San Bernardino Mountains, developed the method of leveling land to reclaim otherwise worthless land. The hillsides were gashed with great gullies, but he developed a system for filling canyons and building up the soil. This system is described and illustrated.

LIPMAN, J. G.

“The conquest of the wilderness and the building of homes represent one page of our national record. The opposite page tells another story; one of land exploitation, soil wastage, agricultural decadence in many places and of people wandering back and forth.” Problems of land conservation, plans and programs of land use, and the protection of the soil and its resources are discussed by the author, who concludes: “Our strength lies in the soil; our hope, in the land; our salvation in the upward climb toward the higher peaks of economic and social justice.”

“We are thinking of soil conservation as a promising approach to dealing with various economic and social questions. If soil conservation fits into the present-day pattern of national programs and policies let us have it by all means. But there is something bigger, something more vital and compelling in soil conservation—it is a sacred duty, a part of the human tides that shall flow hither and yonder.”

LIVINGSTON, L. F.

The writer describes methods of blasting stumps as used in the C. C. C. “In general, it can be said that green stumps require 3 times more explosives than partly rotted ones . . . Less dynamite is required when the soil is moist.”

LODGE, J. E.

The Soil Erosion Service program is summarized and analyzed. Various experiments for prevention of soil erosion are cited. Strip cropping, terrace building, and gully treatment are emphasized for soil conservation.

The despoliation of the Rocky Mountain Ayer Ranch by flood waters is traced to timber slaughter and overgrazing, together with crop booms that pushed plowed land up to the timber line. Contour furrows, broad-base terraces, willow planting, and restoration of trees and grass are among the measures employed in reclaiming the land.

LOWDEN, F. O.

The disturbing progress of soil depletion is discussed briefly. "For the future we shall have to depend, as older nations do, not upon new lands to be opened up but upon the maintenance of fertility upon the lands already under cultivation."

LOWDERMILK, W. C.

The writer traces the course of man-made soil erosion from pioneer days to present times. "Accelerated erosion has combined with an acceleration of superficial run-off from bared slopes to accentuate flood peaks and to augment the cutting power of the stream flow. Still more significant is the transformation of fertile soils into troublesome silt and sediments. Particularly significant and important is the rapid rate of silting which is going on in reservoirs located on streams within critically eroding areas of the country. This applies to the East as well as to the West." Gully and sheet erosion in various areas is illustrated, and in his summary, the writer outlines a project for considering the processes of erosion in each region so that a program of development may be forecast "whereby not only will sustained productivity of soils be assured, but erratic flood flows will be minimized or reduced and beneficial power and utilization of the water of the country preserved in the highest degree."

"Not until recent years, beginning with George Marsh, has an inquiry been made as to the part that mismanagement of soil has played in the decline or the destruction of a civilization, and the inter-relation between civilization and erosion. As the civilizations increased in population the crop demands upon the surrounding lands became greater." The author stresses the need of the United States to stop the present destructive exploitation of natural resources and to launch a coordinated land-planning program for conservation. The physical crisis and principles of safe land use and types and processes of erosion are pointed out. Four basic principles of land usage are presented.

EROSION CONTROL IN JAPAN. Assoc. Chinese and Amer. Engin. 8: 3-13, illus. March 1927.

Examples of serious erosion have demonstrated to the Japanese the dangers of denuded slopes. A description is given of the damage done by a typhoon in 1911 in the region about Mount Asama, an active volcano. The forest act of 1897 was put into effect, and forest engineers were directed to check and control the erosion which had made such headway. After 10 years of work the headwaters of the Kirizumi River had been reclothed with vegetation and erosion processes brought under control. Contour terraces and various types of check dams were established. "The maintenance of watersheds in a mantle of forest vegetation has proved to be the..."
most economical policy in the control of flood waters, and necessary to
permanency of food production in the valleys. Dikes are built in the allu-
vial plains to protect adjoining fields from inundation and submergence
with sands." Hydraulic power is dependent upon a mantle of vegetation,
and forest laws in Japan provide for the setting aside of protection forests
for the purpose of preventing soil denudation and sand shifting, protection
against floods, wind, and tide, prevention of avalanches and rolling stones,
insuring a constant source of water supply, and affording shelters for fish,
etc. "Erosion control is considered a necessity by the Japanese people
regardless of its cost. . . . It must be stopped or controlled."

LOWDERMILK, W. C. (342)
EROSION IN THE ORIENT AS RELATED TO SOIL CONSERVATION IN AMERICA. Jour.
In a comparative study of erosion processes in China, Chosen, Japan, and
the United States, the author discusses the accelerated erosion of soils by
agricultural occupation of the land. In the Orient experience teaches that
"accelerated erosional processes are like a malignant disease, and that it
is imperative that erosional processes should be held to their geologic
norms by constructive soil management to save enormous losses in land
values and production, and costs of erosion-control works."

FOREST AND AGRICULTURAL INFLUENCES IN STREAMFLOW AND EROSION CONTROL.
SUMMARY REVIEW OF LITERATURE UP TO 1930. 37 pp. 1936. [Mimeo-
graphed.]
"The purpose of this summary review of literature is to set forth briefly
the status of the conclusions of investigators who have studied the problem
and of the experimental information on the subject as is found in European
and American literature. . . ."

IMPRESSIONS OF THE THIRD INTERNATIONAL SOIL SCIENCE CONGRESS. Soil
As an official delegate of the United States to the International Congress
of Soil Science, Lowdermilk describes the general purposes of the Congress
and comments on studies of soil-plant relationships, and soil-erosion in-
vestigations. "It is impossible to notice within the limits of these impres-
sions all important contributions made to pedology at the Congress. . . .
The proceedings may be consulted with profit to specialists in the various
fields of soil science."

[Mimeographed.]
In discussing the ravages of soil erosion in various parts of the world,
the author attributes the causes to removal of vegetation and forest de-
nudation, overgrazing, and the general lack of coordinated control. Ero-
sion in the United States is described as having greater acceleration than
in other countries. An article with the same title appears in Pacific
Affairs 8: 409-419. 1935.

The author gives an historic account of natural influences which have
changed the course of certain rivers in China and also relates the tendency
of Chinese agriculture to cause soil erosion. He limits his observations
and erosion-control recommendations to the Hwai watershed, an area of
52,000 square miles.

SOIL EROSION AND ITS CONTROL IN THE U. S. U. S. Soil Conserv. SCS-MP-3,
12 pp., illus. November 1, 1935. [Mimeographed.]
Discusses conditions on the American continent during early colonial days
and makes comparisons with the present condition of the land after three
centuries of agricultural exploitation. Control measures being taken by the
Government are reviewed.
LOWDERMILK, W. C.

"It is my purpose in this paper to examine in a broad way the problem of soil erosion or man-induced erosion and its control in the United States. The subject falls naturally into three parts: (1) A review of the conditions of the American continent when the English colonists cleared their first cornfields; (2) the present condition of the land after three centuries of agricultural exploitation; and (3), measures that are being taken to meet the menace and challenge of soil erosion to the people of the United States." Tables are presented to show comparison of erosion and run-off from 12 widely separated important soil types, and a summary of erosion conditions by classes in the United States.

"Research by the Soil Conservation Service in erosion and its control is authorized by the Soil Conservation Act (Public, No. 46, 74th Cong.), and by the Secretary of Agriculture's memorandum of March 27, 1935 . . . the work of the division has been broken down into five major phases to facilitate direction and supervision and to secure the best results from the special training and capacities of the research staff. These phases are the following: 1. Climatic and physiographic studies; 2. Erosion control investigations; 3. Sedimentation and hydraulic investigations; 4. Watershed and hydrologic studies; 5. Economics of erosion and its control, cooperating with Bureau of Agricultural Economics."

and SMITH, J. R.

This article deals with erosion in Shansi, China. A study of the destructive processes at work in the region of the headwaters of the Fen River was made. The waste of timber, soil washing on denuded slopes, deforestation, and other soil-destructive measures are described, with many illustrations. The world problem of checking field erosion is discussed. Comparisons are made of terracing operations in China with those of Europe and the United States. The authors contend that a whole new type of agriculture is needed—"one that can live on hills and let the hills live," in China as well as in the United States.

LOWE, E. N.

The author quotes Professor Shaler on denuded forests: "An hour's torrential rain may wash off to the sea more than would pass off in a thousand years in the slow process of erosion which the natural state of the earth permits." Application is made to conditions in Mississippi. "The erosion of these uplands has resulted not only in enormous losses of valuable agricultural soils, but also in concomitant streamfilling throughout those areas . . . In the more broken areas forests or other protective growth will be necessary, and in the less broken parts seeding the soil with Bermuda grass and other forage plants may be used effectively." The remedy for chasms is seeding of the bottoms in black locust and honeysuckle, the author contends.

Soil erosion has disfigured much of the surface of the State of Mississippi. "This loss of the soil is only the first step in a seriously dangerous process . . . The heavy rains that fall frequently in our climate soon furrow the slopes; if the slopes are steep the furrows quickly become gullies . . . If the soil be sandy . . . the destruction is all the more rapid." The areas in the State where erosion is most active are outlined, and the resulting damage
discussed. "Nature has furnished us several remedies which with a little exercise of man's intelligence and energy may become operative." Old field pine and black locust for reafforestation with other trees and grasses for soil building and holding are described. Brush and log dams for the control of soil washing are advocated.

LYE, S. P. (353)
A general discussion of soil erosion from New England to North Carolina. Describes the work of State extension services in the regions affected and outlines various control methods.

M., C. (354)
Describes soil conservation and land-management methods as practiced on the farm of Elmo Franklin of McLean County, Ill., since 1851. Describes in particular a fine bluegrass permanent pasture: "Bluegrass almost knee deep grows right up to the trunks of the many huge picturesque maple, oak and hickory trees."

MCCALL, A. G. (355)
An address delivered at the Kansas Agricultural Convention in 1930. The author discusses the ravages of soil erosion in the United States and particularly stresses the problem in the West and the Southwest. The past work of various Federal bureaus, working on a cooperative basis, is described, and a general outline of a provisional soil-erosion program is given.

MCDERMID, JEFF. (357)
MOTHER DIRT. Better Crops and Plant Food 20: 3-5, 44-46, illus. March 1936.
A plea for efficiency in agricultural practices to save the soil. "Erosion is wrong, wasteful, hateful, ugly, and a dirty discredit to us."

MCgee, W. J. (358)
"The waterways of the United States are annually gathering from the lands and pouring into the seas an aggregate of at least one billion tons of earth-matter ... The effects of this enormous transportation are various—and all of them evil. Of the material transported ... fully 90% is ... mud and silt with earth salt, humus, acids, and other matter held in solution." Terracing and contour cultivation are advocated to remedy and check these losses, especially in the California Valley.

MAGLEISH, A.] (359)
This article is in three parts: The Frontier; The Broken Sod; Men Against Dust: The author regards the grasslands as the key to life on the 2,000,000,000 acres of this continent and reasons that dust storms are warnings that man has abused his planet past its powers of resistance and that government, science, and the common citizen must now unite to save it.
MACLEOD, W. C. (360)
Data as to the conservation practices of primitive nonagricultural peoples of the world, but more especially of American Indians, are given.

MCMILLEN, W. (361)
A description of Providence Cave, Ga., and its rapid creation through erosion. "Soil erosion is the thief that steals away the source of all farm wealth." The erosion processes that took place on farms in Missouri, Ohio, and Virginia are described. Various measures for prevention and reclamation are discussed.

McPHERES, W. H. (362)
"In a contribution from the Oklahoma College an analysis is given of the research features involved in a study of soil erosion. It is concluded that the phases of soil erosion requiring research treatment are the value of humus in soil in retarding soil erosion, the proper grading of terraces for different soils and land slopes, the comparative efficiencies of variable and constant terrace grades, the fall between terraces for different slopes, the amount of soil removed per unit for rainfall on various soil types and land slopes, and the value of terracing on the conservation of moisture."—Expt. Sta. Rec. 52: 386. 1925.

MADDox, R. S. (363)
Stresses the importance of reforestation in erosion control, describes the nature and origin of gullies, and gives practical data on the reclamation of eroded lands. The planting of black locust, Bermuda grass, and honeysuckle vines are especially recommended.

"On the debit side of our nation's account are being written down in nature's book huge losses not only from our forests, but also from our tilled land." Particular attention is given the subject of reforestation of gulches and gorges. "It is practically if not wholly impossible for such large gulches to be held in check by forests at their heads. If some of the trees growing in these gulches were used in making temporary dams, then some permanent growth could be set out on the dirt caught by them in order to constitute a permanent dam. Black locust, Bermuda grass, and honeysuckle vines are recommended for this purpose.

RECLAMATION OF WASTE LANDS. Tenn. Div. Forestry Cir. 10, 10 pp., illus. October 1926.
Controlling erosion by covering a part of the gullied lands and eroded, rocky, shallow soils with locust is strongly impressed. Instructions for building brush dams, plowing off banks, cultivating, and planting are given.

MAITS, C. B., JR. (366)
As the horse disappeared, the manure supply so necessary to the New Jersey truck farms failed, and erosion began. Now New Jersey farmers "must use erosion control measures to keep their soil on their farms ... instead of letting it wash into already clogged streams." There are three Soil Conservation Service demonstration areas in New Jersey where farmers are shown the various methods for erosion control, of which terracing is the most important.
This article was written in a small town in South Dakota where it had not rained for 11 months. The drought and its results are described, and the historical background of the Dakotas is outlined. "During the ten years that followed the war, wheat farmers in the humid belt sensibly reduced their acreage by 31 per cent. Farmers in the arid Northwest increased their acreage by 73 per cent. They put the tractor into lands that were never good for anything but grazing ... and planted their wheat." They also drained the region so thoroughly that tons of water annually were removed from land that had barely enough water to support plant growth.

"The object of the present volume is: to indicate the character and, approximately, the extent of the changes produced by human action in the physical conditions of the globe we inhabit; to point out the dangers of imprudence and the necessity of caution in all operations which, on a large scale, interfere with the spontaneous arrangements of the organic or the inorganic world; to suggest the possibility and the importance of the restoration of disturbed harmonies and the material improvement of waste and exhausted regions; ..." The influence of forests, floods, reclamation of lands, sands, and sand dunes are all treated in detail. The concluding chapter is Great Projects of Physical Change Accomplished or Proposed by Man.

This circular briefly outlines the causes of soil erosion in the Uganda Protectorate and recommends as control measures (1) The use of lime which is said to have the effect of making a soil granular, cementing the smaller particles together, thus making soil washing less easy, (2) contour plowing, (3) contour drains, (4) cover crops, (5) hedge crops along contours, and (6), most important of all, terracing.

"Significant figures showing the actual depth of soil by erosion are given by W. M. F. Miller in his Report to the Ninth Annual Meeting of the American Soil Survey Association, 1929, being data collected after ten years of experiment at the Missouri (U. S. A.) Experiment Station ... The remarkable feature in the above results is the effectiveness of rotation and of continuous sod as a preventative to erosion."

Droughts and floods probably cannot be prevented, but their severity can be mitigated by conservation and reforestation programs. Individual and community efforts to promote conservation and reforestation should be encouraged. "The Panhandle Water Conservation Association was recently organized, with every precinct in virtually every county in that section represented." Its aims are to promote conservation programs to prevent floods in small areas and thus mitigate the severity of floods on larger areas.
agriculture." All types of erosion and the resultant rate of deterioration of agricultural lands are discussed. Studies made at the Missouri, North Carolina, and Texas Agricultural Experiment Stations are described and data given as to erosion losses in plant nutrients and soil. The relation of climate and of systems of farming to erosion losses are dealt with by the author, who concludes: "It is the duty of the Federal and State agencies dealing with agriculture to give special consideration to the erosion losses that are taking place and to encourage the general adoption of practical measures of control."

MILLER, M. F.

A paper read at the second Southwest Soil and Water Conservation Conference. Discusses various phases of the soil-erosion problem in Missouri and describes the work of the experiment station at Columbia, Mo. Contains three tables of soil erosion data furnished by the station.

The author describes the work of the Missouri Agricultural Experiment Station with regard to measuring erosion losses since 1917. Erosion and soil age, wind influence, as well as water influence, rotational crops, and loss of plant nutrients through soil erosion are all discussed. The author concludes that "most of this loss is due to mismanagement. The farmer has it within his power to control the situation if he will."

MINNESOTA CONSERVATION COMMISSION.

On pages 48-49, results of the Lake Forest Experiment Station investigations of soil erosion in Wisconsin and Minnesota are given. "The control of soil erosion, in its public implications, is not unlike the control of forest fires. It is as fully destructive of soil and water resources, fish, and other aquatic life, as fire is destructive of timber and game." The need of a State organization, giving systematic attention to this problem is stressed.

MINNICH, F. C.

WASHINGTON'S FAVORITE VOCATION. OHIO'S FIRST PRESIDENT WAS ALSO AMERICA'S "FIRST FARMER." Ohio Farmer 179: 95, illus. February 13, 1937.

George Washington is referred to as a pioneer soil conservationist. Washington, in his last message to Congress, suggested the establishment of a department of agriculture to collect and disseminate information. Experimenting with fertilizers, and from ideas gained abroad, he began a system of crop rotation and soil improvement. His methods of procedure are given.

MITCHELL, JONATHAN.

Discusses the "soil-conserving" payment and the "soil-maintenance" payment of the Soil Conservation and Domestic Allotment Act with special reference to idle acres and intensive farming on the part of low-cost producers. Under the Soil Conservation Service program farmers "are doing voluntarily—without the hope of any reward other than the improvement of their land—all that the S. C. A. D. A. would bribe them to do at the rate of $1 an acre . . . Because it is so largely concerned with restricting production, it is a poor device for soil conservation."

MORGAN, A. E.

This is the sixth in a series of articles on various aspects of the next 4 years of American life. The author discusses navigation, flood control, and power, various types of power policy, social and economic planning, and what planning could do. It is pointed out that "while the government is spending millions of dollars to prevent soil erosion, the small-scale mountain farmers of this region, hard-pressed for sources of livelihood, are clearing steep mountain sides for three or four corn crops before the soil is washed away and the land destroyed . . . At present the TVA law does not provide a legislative basis for meeting this problem."

The author tells how soil washing in the West has "dug in" and entrenched itself, particularly on the public domain. The filling of reservoirs with silt and the continual process of gully formation with their disastrous consequences are discussed. He contends that "to get lasting results we must attack the trouble at its source." The use of small and larger dams and the planting of suitable shrubs and trees in stream beds and smaller gullies are advocated.

Figures on acres subject to serious erosion are quoted. "If this destruction of soils is as rapid in the future as it has been in the past, large areas will be abandoned and depopulated in Illinois." Prevention of sheet washing through cover crops, terraces, and hillside ditches, together with concrete dams for filling gullies are recommended.

"Based on the results of detailed soil surveys made in 62 counties of Illinois, it is stated that 15.2 percent of the land is of such a character as to be subject to serious damage from surface washing, or run-off... The measures deemed best for the prevention of sheet washing include (1) growing cover crops, (2) increasing the organic matter content, (3) employing proper tillage methods, (4) tiling, and (5) constructing terraces and embankments. Means for dealing with gullies embrace reforestation and damming with straw and sod held in place by stakes or by concrete."—Expt. Sta. Rec. 39: 322. 1918.

Points out that there is money in conservation, especially water conservation. Suggests formation of farm ponds by damming watercourses for raising fish and muskrats for revenue.

The author recounts the amusing story of the legendary giant Paul Bunyan who now lives on the Milky Way observing the work accomplished by the C. C. C. Data on soil conservation are given along with conditions in general at C. C. C. camps.

Erosion-control practices in the West Tarkio River demonstration area in Atchison County, Mo., are described. An account is given of a rainstorm of unusual intensity on April 21, 1937. Discusses terraces, gully dams, and run-off.

Briefly traces important governmental services and activities recently initiated which have brought about a changing picture in agriculture. Comments on the inception of the Soil Conservation Service, also the grazing administration which "was established in order to provide better control over the public domain, and to establish sound grazing practices which would help conserve the domain."
Nahmer, A.

Insufficient rainfall for successful agriculture in the vast regions of the West is discussed together with irrigation measures employed by the Romans, Egyptians, Medes, and Persians. A suggestion is made to consider the methods of Prussia, which in some parts is covered with an arid gravel, and which is being reclaimed and converted into fertile fields through the cultivation of lupine and vetch. "There is probably no plant whose fruits men harvest that requires so little preparation of the soil as the Lupine... In about eight days the young plants appear above the surface and grow rapidly, especially when there is no rainfall." Detailed advice on cultivation is given.

National Conservation Commission.

President Theodore Roosevelt, in a special message transmitting this report, said: "It is one of the most fundamentally important documents ever laid before the American people. It contains the first inventory of its natural resources ever made by any nation. In condensed form it presents a statement of our available capital and material resources, which are the means of progress, and calls attention to the essential conditions upon which the perpetuity, safety, and welfare of this nation now rest and must always continue to rest. It deserves... the widest possible distribution among the people." Among the articles in volume 2 are Denudation, by R. B. Dole and H. Stabler, includes a summary presenting in tabular form denudation estimates for the primary drainage basins and for the whole United States; and floods, by M. O. Leighton. Other papers on irrigation and forestry are in this volume. In volume 3 are Conservation of the Fertility of the Soil, by H. W. Wiley, and Relations of Birds and Mammals to the National Resources, by C. Hart Merriam.

National Conservation Congress.

The proceedings of the first congress contains papers on the utilization of the Nation's natural resources, soil erosion, and related subjects among which are The Relations Among the Resources, by W. J. McGee, pp. 96-102; and The Civic Aspect of Conservation, by H. A. Barker, pp. 103-107.

Among the papers in the proceedings of the second congress are: Conservation in Country Life, by L. H. Bailey, pp. 203-213; and Forests and Stream-flow, by W. S. Harvey, pp. 428-429. These two papers have to do with the utilization of America's natural resources, soil conservation, and related subjects.

Among the addresses and papers presented at the third congress on the utilization of natural resources, soil conservation, and related subjects are: Resolutions of the Third National Conservation Congress, p. XV; and Live Stock Farming and Soil Fertility, by F. B. Mumford, pp. 231-234.

National Industrial Conference Board.

"It is estimated that every year 1 1/2 billion tons of soil material are removed by erosion and with it about 60 million tons of plant food. Though these figures... cannot presume to be exact, they indicate the trend."

National Resources Board.

Inventory of the Water Resources of the North Pacific Drainage Area. 117 pp., illus. [Seattle, Wash.] June 1935. [Multigraphed.]

National Resources Committee and Water Resources Committee.

Outlines the cooperative programs of Government agencies under the Departments of Agriculture, Commerce, Interior, State, Treasury, and War, and independent agencies in water conservation. The relation of water conservation to soil erosion is considered.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

NATIONAL RESOURCES COMMITTEE, SUBCOMMITTEE ON TECHNOLOGY.
(393)

NEBRASKA STATE BOARD OF AGRICULTURE.
ANNUAL REPORTS ... 1933, 1934, 1936-37.
(394)

NEL, L. R.

Predicts passage of laws in all States looking toward the wisest possible use of the land. Mentions Wisconsin's zoning law which withdraws from agricultural use some of the poor land, also several other practices which have tended to encourage soil building and conservation. "Starting 10 or 12 years ago the Federal Land Bank at Houston, Tex., inaugurated the practice of requiring an efficient system of terracing on lands when loans were granted."

NELSON, A. L.

"The natural factors which erode arable land in this region are continued high winds, and, to a less degree, down-pouring rains, generally of short duration. The destruction of vegetation, the small amount of organic matter in the soil, the loose nature of the soil, especially if sandy, and the semi-arid conditions are other factors that contribute to the erosion problem. . . . Factors that aid in the control of soil blowing are shallow tillage of a nature that produces clods and leaves the organic matter at the surface, ridging the soil at right angles to the prevailing winds, strip farming, the growing of sod crops, and providing shelterbelts or windbreaks."

NELSON, PETER.

On pages 13-15 an attempt is made to reduce replies received from experiment station directors and regional directors of the Soil Conservation Service into a general perspective of available knowledge of the soil conservation problem. "Indications are that physical conservation, that is, prevention of erosion by means of mechanical structures or by means of certain types of plant cover, can be achieved generally. The economies of conservation, on the other hand, is an almost unexplored field."

NICHOLS, ALICE.

An account of the operations and projected programs of the Soil Conservation Service in New Jersey.
The progress of studies in soil erosion at the Alabama Agricultural Experiment Station are noted.

NIVEN, L. A.

Tells how the Department of Agriculture, in cooperation with the Tennessee Valley Authority and the land-grant colleges, is combating erosion in the South. The general program is outlined. Article also discusses erosion studies at the Bethany station in Missouri and the Guthrie station in Oklahoma.

NORMAN, C. A.

The causes or erosion and methods of prevention, including Mangum terraces and cover crops, are discussed. Costs of terracing are given.

NORRIS, R. V.

SOIL EROSION. Tea Quart. 9: 133-144. December 1936.

Principles of erosion control in Ceylon and recommendations for future progress are given, emphasis being laid on the importance of soil cover "as the first line of defense against erosion." Refers briefly to drains, hedging, terracing, and similar works. An address given at Badulla, November 7, 1936.

NUNN, ALEXANDER.

The author gives figures on soil losses throughout the United States and discusses control research at Soil Conservation Service projects in Alabama and Georgia. He states that terracing alone is insufficient and must be augmented by strip cropping. Vetch and kudzu are highly recommended for protective cover.

OHIO AGRICULTURAL EXPERIMENT STATION.

OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE.

A SOIL RESOURCES PROGRAM FOR OKLAHOMA. Okla. Agr. Col. Ext. Cir. 335, 7 pp., illus. 1936.

"An Oklahoma soil resources program must be carried forward by Oklahoma farm people and cooperating agencies." An appraisal of the State's soil resources follows, and suggestions for improvements are listed.

OKLAHOMA STATE SOIL CONSERVATION CONFERENCE.

PROCEEDINGS OF THE STATE SOIL CONSERVATION CONFERENCE, OKLAHOMA CITY, NOVEMBER 1, 1929. 61 pp. 1929.

Papers read at this conference were the following: Two Acres For One, by Clarence Roberts; Soil Depreciation by Erosion, by H. H. Bennett; The Biggest of Oklahoma's Three Big Problems, by Chas. N. Gould; The Basic Wealth of Oklahoma, by W. T. Holloway; The Importance of Soil Fertility to Human Happiness, by H. G. Bennett; The Banks Interest in Erosion Control, by M. H. Gossge; Interests of The Landowner and Tenant in Erosion Control, by P. A. Norris; Oklahoma's Indian Land Problem, by W. W. Hastings; The Pittsburg County Plan, by E. H. Houston; Moisture Conservation by Terracing, by H. H. Finnell; Airplane Visions of Erosion, by C. A. Border; Practical Farm Relief, by C. P. Blackwell; Formulating
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

OLSON, CARL R. (407)
FREEPORT SOIL CONSERVATION PROJECT OBSERVATIONS. Stephenson County Farm Monthly 18: 9,illus. September 1936.

OLSON, LOIS. (408)

"In planning for research and establishing erosion-control work, South Africa has recognized the similarity between environment in that country and in sections of the Great Plains of the United States, and has utilized the results of our experience."

OOSTHUIZEN, E. A. (409)

It is pointed out that the South African "campaign against soil erosion is . . . dependent upon the efficacy of the measures taken for controlling flood-waters to which such works are exposed." The purpose is "to demonstrate in a popular way how the maximum discharge of a catchment area may be determined approximately in a practical manner."

PACK, A. N. (410)

Proposes the centralization of Federal bureaus having to do with conservation to obviate the lack of coordination among the present bureaus. A Department of Conservation is suggested, having control over the Forest Service, Bureau of Biological Survey, National Park Service, Bureau of Fisheries, Division of Grazing, Soil Conservation Service, Bureau of Reclamation, etc.

PAINTER, D. T. (411)
SAVE SOUTHWEST VIRGINIA SOIL. South. Planter 97: 7, 36-37, illus. April 1936.

The author discusses soil conservation and land-use methods as practiced during the past year in nine southwest Virginia counties that lie wholly or partly within the Tennessee River watershed. He includes flood prevention, the soil and pasture problems, and programs of the Extension Division and the Division of Forestry of the T. V. A. in erosion control on submarginal land.

PALESTINE DEPARTMENT OF AGRICULTURE AND FORESTS. (412)
ANNUAL REPORT . . . MARCH 1935. 200 pp. 1936.

In the section, Soil Erosion and Water Run-Off, pages 108-109, the statement is made "that the advent of normal rainy seasons would be inevitably followed by a recrudescence of grave damage due to flooding and soil erosion, and this has unhappily proved to be the case during the last rainy season. The losses of fertile top soil from the hills and fields in many parts of the plains must be enormous, while the wastage of water which might be conserved by widespread afforestation in the hills is incalculable in a country whose gravest disadvantage is the paucity and uncertainty of the rainfall and the general shortage of water during a prolonged and entirely rainless summer."

PALMER, E. L. (413)

On pages 16-21 the subject of soil and water is treated. The wisest use of waterways and the general problem of water utilization are reviewed.

PARK, MALCOLM. (414)

Includes questionnaire, sent to about 1,200 estates in Ceylon to find out what progress had been made with soil conservation measures since the
publication of the report of the soil erosion committee. A tabulation of results also is included. It is noted that increasing attention is being given to soil-conserving measures, especially the introduction of cover crops.

PARKIN, A. E., AND WHITAKER, J. R., EDITORS. (415)
OUR NATURAL RESOURCES AND THEIR CONSERVATION. 650 pp., illus. New York, J. Wiley & Sons, Inc. 1936.

"This volume is a symposium, written by scientists each of whom for many years has worked and thought in the field of which he writes." Some of the headings are as follows: Soil Erosion and Its Prevention; The Problem of Our Grasslands; Our Forests, Past and Present; Water Power and Its Conservation; and Conservation of Wildlife. Reference maps, agricultural data, and selected bibliography are included in an appendix.

PARKINSON, LOUIS. (416)
LAND CONSERVATION. Amer. Farm Youth 2: 10, 16, 19. October 1936.

The loss of fertile lands through all types of erosion both here and abroad is discussed and a solution for soil erosion offered.

PAUL, J. H. (417)
WHAT CONSERVATION AND REFORESTATION WOULD MEAN TO THE WEST. 20 pp. Salt Lake City, Deseret Book Co. 1933.

The author has condensed the subject of public interest and disinterest in reforestation and stresses the need of cooperation. Why Nations Decline, and Science Warns the World are subheadings of points discussed. The building of dams and the planting of trees and shrubs are advocated.

PENDLETON, R. L. (418)

The writer says that the serious erosion on the islands of Luzon, Negros, and Cebu is aggravated by methods of cultivation suitable only for nearly flat lands which are not susceptible to erosion. He suggests various methods of contour or near-contour cultivation on sloping fields, with forest crops and permanent cover for control of erosion. "It is evident from the numerous photographs accompanying this paper that soil erosion in the Philippines is serious, and that much of our land is deteriorating in value, due to the loss of the most fertile portion of the soil."

PENZHORN, K. E. W. (419)

Factors in soil erosion such as nature of rainfall, soil type, site, slope of land, and erosion-preventive measures are discussed.

PESCHON, H. S. (420)

Tells how two residents of a small American town became aware of the menace of soil erosion and aroused their farmer neighbors from their indifference to a full realization of the problem. How erosion was checked in this typical midwestern valley is told.

COIL, E. J., AND BEALL, R. T. (421)

"If the land perish, how shall man survive?" With this foreword the authors discuss the problems of erosion control, rural rehabilitation, and rural electrification. The authors base their statements on scientific data furnished by various Federal, State, and private agencies and suggest the desirability of a comprehensive program of conservation of land and water. The natural circulation of waters and the role of vegetative cover are considered. On pages 29-36 the serious loss through accelerated erosion is described and discussed. In part III the authors suggest the lines of action to be followed in the reestablishment of Nature's arrangements for the circulation of waters, and make recommendations of improved farm
practices, including rotation of crops, check dams in gullies and on streams, ponds, and reservoirs, with especial reference to the individual farm and small communities.

Peterson, Edner T. (422)

"The purpose of this article is to furnish a few facts to show that these various forms of natural misfortune [wind and water erosion, drought and floods] are very much bound together in a common problem—that if the close relationship is not understood, the problem cannot be solved—that the solution of the problem depends largely upon what man does, rather than upon the caprice of nature." The basic consideration is water. "Water, when kept where it falls, does not accumulate in large moving columns, fails to erode sloping soil, combats drought, feeds a tree and vegetable mat which prevents wind erosion, and preserves wild animal life." Terracing, reforestation, damming of dry watercourses, and restoration of grass sod are advocated among other measures for erosion control.

Peterson, W. (423)
The possibilities of rehabilitating the public domain through forest protection on watersheds, and restriction and proper distribution of animals on overstocked ranges are discussed. "Erosion is the problem associated with the hazards of floods and slitting of streams and reservoirs. The intensity of erosion is a factor of soil type, gradient, rainfall, elevation and vegetative cover." The need for more experiment stations is stressed.

Claye, G. D., Jennings, D. S., Thomas, M. D., and Harris, K. (424)
A discussion of location and area, transportation, community development, schools, and industries, with a history of the county.

Plédally, A. (425)
Deforestation in France has caused much soil erosion. The author tells of erosion-control methods put into practice in southern Algeria, and describes the use of dynamite in constructing terraces and trenches and advocates these measures for the conservation of moisture in France as well as in her colonies.

Pinchot, Gifford. (426)
"The following discussion of the conservation problem is not a systematic treatment upon the subject. While not arranged chronologically, yet the articles here grouped may serve to show the rapid, virile evolution of the campaign for conservation of the nation's resources." Chapter headings include: Better Times on the Farm; Principles of Conservation; Waterways; The Moral Issue; Public Spirit; The New Patriotism; and The Present Battle.

Opposes reorganization of the Executive Departments. "The Conservation policy includes not only forests, waters, lands, and minerals It includes also the conservation of human resources, and other human interests."

Pitcairn, A. (427)
Types of erosion, conditions which are allied to or conducive to erosion in Cyprus, historical data, present extent of and measures recommended for erosion control.
In giving evidence on irrigation practices in Gwalior, central India, the writer maintained that ravines in which the land was previously uncultivable and useless had been made productive and valuable by the introduction of silt. He considered that by extending the system of minor irrigation, material improvement would be made in the matter of checking denudation. The advantages of tanks for water conservation and distribution were stressed. The use of embankments for checking flow water is discussed.

The erosion-control program of the Soil Erosion Service projects is outlined showing how attempts are being made to eliminate bankrupt farming on bankrupt land.

In a letter the writer points to the washing of lands particularly in the South. "Conditions in the South favor a rapid rate of water erosion, especially in the upland regions." He advocates reforestation, terracing, and better cultural methods.

Soil erosion control as a basic reconstruction problem is discussed, pp. 12-13. It is stated that heavy rainfalls, coupled with the nature of the topography, have made soil erosion a very important factor in the agriculture of the island. The importance of research work to check erosion is emphasized.

"Puerto Rico is predominantly agricultural. For decades erosion under tropical rains has gone unchecked. Absentee ownership has driven those formerly dependent upon the soil to the already congested urban areas which are lacking in proper and adequate housing facilities. Consequently, it is of the utmost importance to encourage the return to the rural areas of the farmers and farm workers by restoring the farm lands to them." A sum of $994,140 has been allocated for the reforestation and forestation project.

Discusses the value of land, the origin of soil, and the process of erosion. Practical information is given on the prevention of soil wash by means of grass plantings and terracing.

"Steep north slopes are characteristic of the Palouse country and much of the Walla Walla area. Snow bank erosion has played an important role in their formation, especially since man has removed the natural grass covering. Measures to control this type of erosion have been practiced with varying degrees of success by the Soil Conservation Service on its demonstration areas. Plantings of grass and legumes have been shown to help hold the snow and to tend to prevent run-off and loss of snow water. Trees . . . serve to hold snow and reduce erosion correspondingly."
RAIKES, C. F. G.

"In a report published in the 'Commercial Intelligence Journal', of Ottawa, it is stated that the anti-erosion plans launched [in South Africa] in 1933 have yielded excellent results. One important method adopted is the construction of catchment basins for water. These have more than paid for themselves in tiding livestock over dry periods and serving as a source of water supply for small irrigation schemes, particularly in enabling small acreages of alfalfa to be grown as supplementary feed for livestock."

RATCLIFFE, F. N.

Some of the topics discussed are: Principal Vegetative Types; Causes and Progress of Drift; Water Erosion; Pastoral Policy and Land Administration; Erosion Problems in Other Countries; The Possibilities of Recovery. "The investigation on which this report is based was limited to the arid pastoral areas of South Australia which receive an average annual rainfall of less than 10 inches and are devoted almost exclusively to sheep... The serious drift which follows the erosion of light sandy soils is described; and it is suggested that drift sand may not be as far-travelling as is generally assumed to be the case." Appendix I.—The Rabbit in the Arid Pastoral Country, pages 72-82.

RIDDICK, H. E.

Illustrations are given of what erosion does to the land and how it may be stopped. Injury to citrus orchards by sheet erosion and gullying is stressed, and the benefits to be derived from terracing for protection of the soil and conservation of moisture are stated.

Man-made or accelerated erosion is discussed. In 32 of the 58 counties in California erosion is a real menace to the soil. Wind and sheet erosion and the control work of the United States Soil Erosion Service of California are described.

RINNEE, F. G.

The relative importance of each factor influencing present erosion conditions is the basis of the author's study. "The survey has brought to light the seriousness of erosion on a valuable watershed and a knowledge of the factors which, under the conditions peculiar to the watershed, have been chiefly responsible for the erosion... The results point to the immediate necessity of restoring the plant cover to a density of at least 30 percent, reducing the excessive rodent population, and initiating improvements in range and livestock management which will relieve conditions on areas particularly susceptible to erosion." See also Science 84: 62-63, July 17, 1936.

RICHARDSON, T. C.

SCOTCH THE DRAGON OF EROSION. Farm and Ranch 52: 1, illus. December 15, 1933.

This article summarizes the annual losses caused by soil erosion in the United States and discusses the problem in the Southwest. Terracing in Texas is described.

RINGLAND, A. C.

A description of the program of public works instituted by Mussolini in 1928, with special reference to the project being carried out in Calabria at Sibari on the Ionian Sea. Other projects include work of reforestation in Umbria and Udine, and the development of power and irrigation works in..."
Sardinia, which are described and illustrated. Typifies Italy’s national plan for the conservation, reclamation, and utilization of the country’s soil and water resources.

RINGLAND, A. C. (443)
NOTES ON SOIL EROSION AND REFORESTATION IN ITALY: SUGGESTIONS FOR AMERICAN APPLICATION. U. S. Forest Serv. 12 pp., illus. 1934. [Mimeographed.]

This paper gives a general description and costs of the terrace system of the Italian national land plan, known as “Bonifica Integrale,” together with details of technique in the field for the stabilization and restoration of soils on steep slopes. The “Gradonl” system used “is nothing more than a small level terrace which varies in width from 2 feet to 4 feet—generally the latter width. It must be absolutely horizontal.” Reforestation of Mount Subasio with juniper, hackberry, oaks, black locust, cypress, cedar, beech, maple, and black Austrian pine is discussed.

RITZLE, ROBERT (444)

Emphasizes the need for a definite conservation program in order to avoid the present lack of coordination between Government departments. Instances are given of anticonservation activities through deforestation of hillsides and the banks of streams.

ROBBINS, L. H. (445)
THE GOOD EARTH; A REDISCOVERY. N. Y. Times Mag., illus. February 23, 1936.

“Soul has become, all of a sudden, the talk of the nation . . . Soil has not always been here, and there is no certainty that it will stay. The erosion that gave it can take it away.” The processes of soil making from earliest ages are outlined, for “since Adam’s time the soil has fed, clad, shod, and sheltered mankind, city or country; and to this day cities owe their existence primarily to the traffic in its harvest.” A picture is drawn of the rapid destruction and denudation of the country during the past 150 years. “A forward look, in the light of present public discussion, shows a new era for the soil on which the nation has its being . . .” Reafforestation of watersheds, retirement of worn-out lands to be held in reserve, reseeding of former grasslands, and other conservation measures are discussed as part of the national program for self-protection from the active menace of erosion.

ROCKE, W. A. (446)

The conditions in some parts of Algeria are somewhat similar to those in northern Mexico and sections of the southwestern United States. The translation of an article on erosion and homesteading in Algeria is given. Soil conservation methods, flood control, and reforestation as projected by the Algerian Forest Commission are described, and comparisons with other countries made.

ROE, H. B. (447)

“Agriculture in the Palouse region of the Pacific Northwest presents some radical differences from that in most parts of the country . . . One peculiar phase of the regional erosion problem is presented here—that of snow drifting and associated forms of erosion.” Investigations by the Pacific Northwest Soil Erosion Experiment Station Farm are described, and the importance of vegetative cover in this area is stressed.

ROE, H. B. (448)

“Practical information is presented on the subject. It has been found that sheet erosion is the most harmful type, and that the important contributing causes of erosion are certain current farming practices. The uti-
mate method of sheet erosion control is that of terracing practically all cropped slopes subject to erosion, coupled with cover cropping and contour cultivation. The best type of terrace for general use is considered to be the standard graded Mangum terrace. Crop rows may be run diagonally across the terraces, but contour planting and cultivation approximately parallel to the terraces are an effective aid in controlling sheet erosion and are recommended.”—Expt. Sta. Rec. 70: 252. 1934.

Roe, H. B. (449)

“A proper land-use program . . . requires that an effective supplemental irrigation code be worked out, promulgated and put into practice . . . The proper solution of the moisture-control problem involves the cooperative effort of physiologic, pathologic, agronomic, horticultural, sylvicultural, farm management, soil, and engineering science and practice.” The author stresses the need for research, education, and application of the principles of soil erosion and moisture control and urges the closer cooperation of the various agricultural experiment stations with the United States Soil Erosion Service.

The President comments on the report of the Great Plains Committee, entitled “The Future of the Great Plains.” In summarizing the problems of drought he concludes: “Whatever program is adopted must be cooperative and will require complementary lines of action by the Federal Government, State governments and all the citizens of the region individually.”

The writer considers the cattle-raising regions with respect to the serious loss of soil and water. The necessity for the stopping of gullies is stressed. Overgrazing of pasture land is blamed for the formation of gullies and other erosion evils. Research into erosion-control measures is advocated to save the veld.

This symposium consists of papers by W. S. Rosecrans, C. Roy Brownmiller, and Vernon Freeman; also one on the engineering phases of water conservation, by F. E. Trask. The discussion was led by J. N. Thille and G. H. Cecil.

“This bulletin deals with erosion of the soil by wind and water and with the measures recommended and employed by the Soil Conservation Service for the control of erosion on the farms and ranges of the Pacific Northwest. It treats particularly of wheatlands and grazing lands. Soil Conservation is inseparable from water conservation. Therefore, certain sections of the bulletin deal specifically with the conservation of water for the production of crops on nonirrigated lands and the conservation of water for irrigation purposes and flood prevention. Another section deals with the control of drifting sand dunes along the coastal beaches of Oregon and Washington.”

(454)
“This bulletin deals with erosion of the soil and measures of defense which have proved successful in controlling erosion in that part of the Piedmont country lying in the five States of Virginia, the Carolinas,
Georgia, and Alabama. The region is the rolling foothill country of the Appalachian Range, and extends east and south to the fall line which separates the Piedmont from the broad, gently sloping Atlantic and Gulf Coastal Plains.

Discussion of progress report of the committee of the Irrigation division on the conservation of water which was published in December 1935 proceedings. Report is divided into 14 subjects, most of which are discussed in the order presented. Some of them are: Evaporation; Economic Use of Irrigation Water; Soil Erosion; Burning of Native Vegetation; Transportation of Debris; Water Spreading and Flood Channels; Check Dams; Investigations in Water Conservation and Control. A table shows evaporation records at Baldwin Park Station, Calif., (elevation, approximately 400 feet).

"The purpose of this article is to give a general idea of the tremendous possibilities of swamp drainage." The writer states that there were at that time in this country about 75,000,000 acres of fertile land which could be drained and turned into farms. Reference is made to a bill by Senator Williams of Mississippi which would give the Government the right to build drainage projects.

"Natural productiveness of most of the soil in America's Corn Belt is on the decline. This publication treats of erosion as a contributing cause. Erosion-control practices, now employed on the extensive project areas of the Soil Conservation Service, are discussed. The region includes a part of the vast central valley in the upper reaches of the Mississippi River and considerable land lying adjacent to its main tributaries, the Missouri and the Ohio."

"Accelerated erosion and plant destruction usually go hand in hand. In any problem of regeneration of the plant cover on eroded areas, the physiology and nutritional requirements of the plant community must not be overlooked." Experiments in run-off and leaching by the Missouri Agricultural Experiment Station are described. The author advocates further studies of forest influence with a view to adopting better agricultural practices.

"The peoples of tropical Africa are primarily agriculturists. They can be divided into two main categories—namely, the pastoral people, who own cattle, and the agricultural people who do not." Sampson explains how both of these types of farming are responsible for erosion. Methods of cultivation, designed to check erosion, are discussed.

The author considers soils generally and recommends methods of maintaining surface soil through terracing, contour hedging, catchment pits, and contour planting. "Cover cropping in itself is a very efficient way of preventing loss of surface soil and at the same time adding humus."
SCHMITT, Roy L. (461)

An address delivered at the Kansas Agricultural Convention in 1930. Some aspects of sheet erosion are discussed and an estimate of annual losses to the United States is given. Remedial methods are discussed.

SCHOPPELMAYER, Victor. (462)

Present-day Texas is sketched. “Come to the Blackland Prairie Belt, where soil is blue-black, and three to ten feet deep. Too good for canny Texans to risk losing through erosion.”

SEARS, P. B. (463)

The author brings out the fact that farming methods have neglected soil conservation as a source of wealth. He also discusses the human side of erosion control as opposed to technical aspects of the problem.

“The continental United States contains about two billion acres of land, about one-half of which can be called farm land. Of this farm land, today about one-fifth either has been impaired if not destroyed by erosion, or is in its way toward that condition . . . And these figures take no account of the manifest, serious damage to western range lands from over-grazing, followed by erosion.” The author believes that the ecologist has a definite place in the reorganization of land use.

— (465)

This study of soil conservation presents a picture of soil erosion in the Southwest. The causes and results of wind erosion are treated at great length. Overgrazing and rodent control are also considered. Protective practices and policies, particularly those of a cooperative and governmental origin, are recommended.

The writer deprecates the destruction of living sod on the looser soil types of the semiarid high plains and warns that proper land management must be practiced to prevent recurrent floods and dust storms.

The author points out the vast destruction of highways by soil erosion and contends that the remedy is largely an ecological problem.

SHALER, N. S. (468)

In a chapter entitled “The Maintenance of the Soil” (p. 120) the author says: “The true aim, therefore, of a conservative agriculture, such as is to maintain the soil in shape to be useful to man for an indefinitely long future, is to bring about and keep the balance between the processes of rock decay and erosion in fitting adjustment.” Soil erosion and resultant destruction and the need for reforestation are discussed.

SHERMAN, E. A. (469)

“Briefly, concisely, and with illuminating clarity, the author here portrays a national enemy whose insidious invasion of our soil looms as the most sinister pillager of American agriculture . . . Congressman Ketcham has introduced in Congress a bill calling upon the Federal Government and the States to make common war upon this enemy—soil erosion. The author analyzes Mr. Ketcham’s remedial proposal with the same forceful
brevity and clarity that he brings to bear upon the problem as a whole.”—
Editor. This bill, the author states, means “a long term plan . . . a new
kind of pioneering. It means building an agriculture that will not dis-
appear in a single generation but will endure and prosper as long as rain
falls and water runs.”

SHERMAN, E. A.
SAVING OUR SOIL. Nation 136: 401-403. April 12, 1933.

“Soil erosion is the Dr. Jekyll and Mr. Hyde of natural forces. That
is why the losses resulting from it have created so little public concern.
As Dr. Jekyll it has laid down the fertile soils of the earth. As Mr. Hyde
it is the father of floods and a ruthless insidious thief of soil fertility
. . . When nature is undisturbed, the action of erosion is uniformly
benign. Only as man disturbs the soil are its Mr. Hyde characteristics
revealed . . . The writer believes that the time has now come for the
nation to make a serious, businesslike effort to stop further losses from
soil erosion . . . Applied on a national scale, a campaign to stop unnec-
necessary and destructive soil erosion would be the most far-reaching and con-
structive work, with the exception of the original task of pioneer land
settlement and clearing, ever undertaken by the American people.”

SM, T. R.
SOIL EROSION AND CONSERVATION. I-IV. So. African Jour. Indus. 2: 715-
724, 867-881, 962-968, 1034-1042. 1919.

“This report, based on extensive operations in South Africa, deals with
the different factors causing soil erosion and methods of prevention and

SMALL, J. K.
VEGETATION AND EROSION ON THE EVERGLADE KEYS. Sci. Monthly 30: 33-49,

The Everglade keys were once entirely covered with hammock (a dense
growth of mostly broad-leaved trees and shrubs) in the opinion of the
writer. “The more direct evidence in support of this theory is the type of
surface erosion of the rock all over the Everglade Keys . . . In the
undisturbed hammocks . . . is a rock floor covered with loose humus.
The carbonic acid and the humus colloids from this decaying vegetable
matter . . . plus rain and capillary moisture and general humidity, have
gradually eaten away the softer portion of the limestone.” Forms of
erosion occurring in this area are discussed.

SMITH, G. O.
is USE OF NATURAL RESOURCES WASTE? Nation’s Business 21: 33-35, 108-
110, Illus. April 1937.

“A sincere effort to determine how much of the constant appeal for
conservation is based on facts and how much is based merely on emotion,
with special attention to the current fear of ‘land-waste’.”

SMITH, J. R.
October 1928.

“No people . . . now or in the past has destroyed its soil so rapidly as
we of the United States are now destroying ours.” A picture is drawn of
the disappearance of cultivated land and soil in contrast to the land as
it was in the time of the Indian and the pioneer. The writer contends
that an agriculture for the hills is needed in the United States and draws
attention to the two processes of propagating and breeding trees. He
advocates the cultivation of hickory and other trees to check soil wash on
hillsides and as a source of food for man and beast. He quotes the officials
of the United States Agricultural Experiment Station at Hawaii as to the
agaroboa forests which yield large crops of beans and thinks that this
Hawaiian bean tree is a major crop tree presenting a type of agriculture
having great potentialities.

MEN AND RESOURCES; A STUDY OF NORTH AMERICA AND ITS PLACE IN WORLD

Emphasizes the intelligent use of resources in contrast with the wasteful
practices of the frontiers-men. Frequent use is made of illustrations of
soil-conserving practices, and attention is given to soil loss by wind and water erosion.

SMITH, J. R. (476)

"The American farmer is an indiscriminate plower of land; he brought the habit from Europe, where it was all right . . . This indiscriminate plowing habit is the mother of gully-washing in America." Rainfall is different in America and often causes damage by soil-washing. Hillsides should not be cleared of their original forest or grass covering, but made profitable as orchards or mulberry tree plantations. Pigs feed on the fruit and sell profitably, as a Louisiana farmer proved. Terraced hillsides as in Italy and Sicily produce vast quantities of fruit. The writer asserts that patriotism growing out of national consciousness is going to insist that there be no needless waste of national resources, the greatest of which is soil washing. Research and experimentation in fruit growing are advocated.

"The author in discussing erosion of sloping soils, and factors aggravating or retarding this, draws attention to the possibilities offered by the so-called plowless utilization of land, not only for checking erosion, but also for increasing the crop area. This plan includes as main factors (1) forestry by means of crop trees to control erosion and provide forage and food, (2) moisture and fertility control by means of careful terracing."—Expt. Sta. Rec. 31: 317. 1914.

"Forest-field-plow-desert—that is the cycle of the hills under most plow agriculture—a cycle not limited to China . . . we Americans, though new upon our land, are destroying soil by field wash faster than any people that ever lived . . . A field that is washed away is gone for ages . . . Can anything be done about it? Yes, something can be done. Therefore, this book is written to persons of imagination who love trees and love their country and to those who are interested in the problem of saving natural resources—the basis for civilization."

References to soil erosion in America, pages 296-301.

SNYDER, J. M., AND BARTEL, F. O. (479)

"A description is given of the work being conducted at the Statesville Soil Erosion Farm in cooperation with the U. S. D. A. Bureau of Agricultural Engineering."—Expt. Sta. Rec. 68: 538. 1933.

SOIL SCIENCE SOCIETY OF AMERICA. (480)

[Processed.]

South Africa Parliament, Senate.

The committee found that the condition of the soil and vegetation covering South Africa does not appreciably affect the total amount of the rainfall, though it probably affects its local character and distribution. "... the occupiers of the land, from the earliest times to the present day, have gradually destroyed the vegetation... which formed the natural protection of the soil. This denudation of the soil has been carried on by various means including the burning of veld, the cutting down of trees... the making of road tracks or paths, and the grazing of stock... The combined effect of these various agencies has been calamitous in the extreme... The erosion of the soil, as described, has been the immediate or direct cause, and is according to the evidence, the real explanation of the dessication or drying-up of certain areas in the Union. Wherever erosion operates, the rain-water, owing to the exposure and hardening of the earth's surface, combined with the immensely increased run-off, fails more or less to penetrate into the soil; moreover, even the underground water is, owing to the formation of so many sluits [gullies], being drained off in considerable quantities by seepage and otherwise. Remedial measures are outlined. In the minutes of evidence the opinions and practical experiences of engineers, farmers, and forestry officials on erosion and its control are given.

Papers presented at the first conference are as follows: The need for a Southwest Program of Soil and Water Conservation, by T. O. Walton; An Extemporaneous Address on the Erosion Problem, by A. G. McCall; Cost of Soil Erosion, by H. H. Bennett; A Discussion on Terracing and Flood Control, by B. F. Williams; The Viewpoint of the Press, by Frank P. Briggs; The Banker, by M. H. Gossett; The Implement Manufacturers' Viewpoint, by Cal E. Kerr; On Erosion in New Mexico, by G. R. Quesenberry; Some Oklahoma Views, by G. E. Martin; Outline of Program of Work on Soil and Moisture Conservation for Oklahoma, by C. P. Blackwell; The Texas Program for Soil and Water Conservation by A. B. Cannor; Kansas Soil and Water Conservation Program, by R. I. Throckmorton; The Louisiana Program, by C. T. Dowell; and Research Work Having to Do With Problems of the Conservation of Soil and Soil Moisture in the Utilization of Water, by Albert S. Curry.

The proceedings of the Second conference were published as Okla. Agr. Expt. Sta. Cir. 79. The main headings are as follows: Objects of the Meeting, by O. B. Martin; Research Program of Soil Erosion in Oklahoma, by C. P. Blackwell; The Oklahoma Soil Erosion Survey, by N. E. Winters; The Soil Conservation Research Program for the Southwest, by A. G. McCall; Experimental Work on Soil Erosion and Water Control in Texas, by R. E. Dickson; Experimental Work in Texas, by Robert A. Norton; Experimental Work in Kansas, by F. L. Dailey; Experimental Work at Hays, Kansas, by Raymond R. Drake; Soil Erosion in Western Mississippi, by G. H. Lentz; There Can Be Too Little Erosion, by M. F. Miller; Study of Run-off From Terraced Fields, by W. T. Hankloway (Governor of Oklahoma); Soil Erosion Work, by Samuel W. Phillips; Results of Experiments on Erosion Control on the Guthrie Soil Erosion Experimental Farm, by R. E. Ramser; Engineering Experimental Program of the Southwest, by L. A. Jones; Handling Run-off from Terraced Fields, by L. E. Hazen; Report on Protecting Road and Hillside Ditches with Concrete Baffles, by W. H. McPheters; Soil Erosion, by H. H. Bennett; The Texas Extension Program in Soil Conservation and Results, by O. B. Martin and M. R. Bentley; Extension Program in Bowie County, Texas, by W. R.
Holsey; The Missouri Extension Program in Soil Conservation and Results, by M. F. Miller; The Kansas Extension Program in Soil Conservation and Results, by F. L. Duley; The Louisiana Extension Program in Soil Conservation and Results, by W. B. Mercer; Arkansas Extension Program in Soil Conservation and Results, by E. E. Scholl; Extension Work in Payne County, Okla., by Lloyd Godley; A Type of Education that Functions on the Farm, by E. B. Nelms; How Can the Press Assist in the Soil and Moisture Conservation Program, by F. Briggs; and What the Federal Land Bank of Houston is Doing, by A. K. Short. Brief summaries, by R. H. Rusk and Victor H. Schoffmayer are also given. Proceedings for third conference were not published.

Table of contents, papers of the fourth conference: Control of Soil Erosion by Terracing on the U. S. Experiment Farms, by C. E. Ramser; Some Definite Information Regarding the Cost of Terraces, by H. S. Riesbol and R. W. Baird; How to Evaluate Terraced Land, by A. K. Short; The Effect of Contour Farming on Soil and Water Control, by John S. Glass; Erosion Control Work Done By the Aetna Life Insurance Company, by G. M. Reed; What To Do in Addition to Terracing; The Formation of a Soil and Water Conservation Program For the Southwest, by F. L. Duley and R. P. Bartholomew; Resolutions Adopted by the Southwest Soil and Water Conservation Conference; Officers of Southwest Soil and Water Conservation Conference, 1933-34; and What Methods other than Terracing Should Be Used to Conserve Soil and Water, by H. V. Gelb.

The main headings in the report of proceedings of the fifth conference are as follows: The Essential Character of Water Conservation and Erosion Control, by R. V. Allison; Recent Engineering Results of the Federal Erosion Stations of the Southwest, by C. E. Ramser; Effect of Organic Matter in the Control of Soil Erosion, by H. J. Harper; Recent Developments of Strip Cropping and Water-Furrowing for Erosion Control, by B. H. Hendrickson; New Type Terraces and New Terracing Machines, by John S. Glass; What Field of Investigations Should Be Entered Into in Order to Develop All Practical Measures of Soil Erosion Control, by C. P. Blackwell; Soil Erosion and Land Utilization for Kansas, by F. L. Duley; Soil Erosion and Land Utilization for Oklahoma, by N. E. Winters; Soil Erosion and Land Utilization for Missouri and Iowa, by R. E. Uhland; Soil Erosion and Land Utilization for Louisiana, by A. H. Meyer; A Uniform Program of Erosion Control for the Southwest.

The main headings of the report of proceedings of the sixth conference are: A Brief Summary of Recent Results of Agronomic Experiments at the Red Plains Soil Erosion Experiment Station, Guthrie, Oklahoma, by H. G. Lewis; A Brief Summary of Engineering Experiments at the Red Plains Soil Erosion Experiment Station, Guthrie, Oklahoma, by H. S. Reisbol; Recent Results of Agronomic Experiments in Soil and Water Conservation at the Soil Erosion Experiment Station, Tyler, Texas, by R. W. Baird; A Summary of the Recent Results of Agronomic Experiments in Soil and Water Conservation at the Blackland Soil Erosion Experiment Station, Temple, Texas, by E. B. Deeter; A Summary of the Recent Results of Engineering Experiments in Soil and Water Conservation at the Blackland Soil Erosion Experiment Station, Temple, Texas, by P. L. Hopkins; Summary of Agronomic Observations and Results on Soil Conservation Projects of the Southwest, by N. E. Winters; Summary of Results of Engineering Experiments on Soil Conservation Projects of the Southwest, by H. O. Hill; Program of the Soil Conservation Service, by H. H. Bennett; Results of Grass Investigation in Connection with Soil Conservation in the Southwest, by B. F. Kiltz; Wind Erosion Control and Its Effects on a Planned Agriculture, by H. H. Finnell; The Relation of Pond and Lake Building to Water Conservation and Flood Prevention, by W. H. McPheters; Pasture Development in Texas, by V. W. Woodman; and The Use of Elevating Graders in Terrace Construction, by Earl A. Cole.

Papers read at the seventh meeting are: Progress of Soil Conservation Work in Region 4, by Louis P. Merrill; The Progress Made in Wind Erosion Control In the Southern High Plains Region, by H. H. Finnell; The Outstanding Experimental Results In Erosion Control at Temple, Tex., by E. B. Deeter; Watershed and Hydrologic Studies, by C. E. Ramser; Progress in the Central Plains Area—Region No. 7, by N. E. Winters; America's Erosion Problems, by H. H. Bennett; Soil and Water Conservation Investigations,
by G. W. Musgrave; Recommendations for Research Relating to the Control of Wind Erosion, by H. V. Gelb; Soil and Water Conservation on Land Utilization Projects in Oklahoma and Texas, by Glen Briggs; A Study of Gully Formation and Control in Oklahoma, by Horace J. Harper; The Cost of Terracing with Power Equipment, by Deane G. Carter; The Importance of Vegetative Growth on Erosion Control, by A. E. Aldrons; and Grass and Legume Studies in Connection with Pasture Improvement and Erosion Control at the Red Plains Soil Conservation Experiment Station, by H. M. Elwell.

SOUTER, R. E. (483)
Contour drains, as used in the United States are advocated and discussed, with instructions and measurements for their construction. A home-made level is described.

SPENCER, G. K. (484)
Man, the Great Desert Maker—Areas Arid from Irrigation. Baltimore Sun Mag., illus. January 10, 1937.
"Evidence that ancient Indian farmers started some of the seven great western deserts by ignorant forms of agriculture which brought alkali to the soil and killed off plant life, has been found by soils men studying modern problems ... Alkali—both white and black—leached to the surface by intensive irrigation as long ago as 400 A. D., and perhaps as far back as 1,000 B. C., is believed to have killed off struggling vegetation, leaving the way open for the formation of dunes which could not be controlled. The danger of the alkali problem is discussed, and the experimental work at the California Agricultural Experiment Station described.

SPILLERS, A. R. (485)
The effect of land use on erosion is pointed out, and charts are presented showing proportion of each slope class in each land-use area, and prevalence of marked erosion in each land-use area as affected by slope. The conclusion is that "about 16 percent of the entire area of the Norris Dam watershed shows marked erosion. The proportion of eroded land on cleared areas is 3 1/2 times as great as it is upon the forest land. The degree of slope has a notable effect on both the extent and severity of erosion on cleared land; under forest cover the effect of slope is almost negligible."
The author recommends forest cover as the best and most permanent erosion-control agency upon slopes and states that "artificial erosion work should continue where erosion has already advanced to a serious stage."

SPILLMAN, W. J. (486)
Restoration and maintenance of productive soil are considered as the most important phase of the conservation problem. "We must cease abusing the soil. The renting of land on short leases for the purpose of growing grain for market is one of the surest means of reducing the productive power of the soil." The solution of the problem is believed to lie in more domestic animals on the farm with greater use of leguminous crops and in encouraging farmers to utilize soil-conserving resources at their command.

SPLECHTNER, F. (487)
Not examined.

SPRING, S. N. (488)
Describes a half century of conservation which began when the legislature of New York State passed an act creating a forest commission and two forest preserves. "The act marked the real beginning of state forestry in the United States ..."
STALLINGS, J. H.
The second in a series of articles on the progress of the soil-erosion projects. It describes the work at the two units of the North Carolina soil-erosion project, namely, the Deep River area, consisting of approximately 140,000 acres and the Brown Creek area of about 60,000 acres.

STAMP, L. D.

STAPLEDON, R. G.
The author considers agriculture in relation not only to its own prosperity, but to scenery and recreational facilities. He wants, in place of the Forestry Commission, a rough-land utilization commission for England, to deal not only with forestry but also with the reclamation of hill pastures and the recreational aspect of the hills. He also stresses the importance of a soil and vegetation survey as a safeguard against the misappropriation of good farming land.

"Two-thirds of Great Britain is wasted in hill grazing and rough pastureland—unproductive agriculturally and largely inaccessible. In two articles based on his remarkable book 'The Land Now and To-Morrow', Professor Stapledon outlines a means of correcting this serious wastage in the national economy. In two sentences, his plan is (1) to double the agricultural population by reclaiming grass, especially hill land; (2) to make these empty spaces available for the health and recreation of the town population. In the following article he speaks with authority as Director of the Welsh Plant Breeding Station, which has worked a revolution in grassland farming."—Ed. Note.

STEWART, G., AND FORSLING, C. L.
"Since 1915, the research branch of the U. S. Forest Service has maintained at the Great Basin Branch Experiment Station, on the Ephraim Canyon watershed of the Manti Forest in central Utah, a detailed study of the relation of vegetative cover and grazing to surface run-off and erosion." Grazing records and summer and winter precipitation are shown by tables, as are also the experiments on eroded and noneroded soils.

STEWART, GUY R.
After an outline of the geography of the Netherlands Indies, the author discusses such topics as: Topography Unusual; Agricultural Systems Harm-
ful; "Landang" Cultivation; Plantation Havoc; Erosion Prevention Measures; and Experimental Work.

STEWART, P. H.

The transitional zone of Nebraska with its rainfall and other variations presents special and peculiar problems of soil washing, which are treated from three viewpoints: (1) The organic-matter phase, i.e., loss of virgin organic soil qualities necessary for proper tilth, water absorption, and nitrate production; (2) soil-moisture conditions limiting crop production; and (3) gully formation with consequent damage to machinery, land, and land values. An outline is given of Nebraska's erosion-control program, which includes use of legume crops and other methods "such as installing brush and soil-saving dams, terracing, and carrying out definite rotation practices."

AND WOOD, I. D.

The erosion of Nebraska soils and methods of preventing it are discussed.

STOCKDALE, F. A.

"For a considerable time it has been obvious to workers in the Wet Tropics that soil erosion was one of the most serious problems which required solution." Erosion in Jamaica, Ceylon, and the Dutch East Indies and such measures of control as terracing, contour planting, and cover crops are discussed, also loss of soil through tropical or monsoon rains and experiments in soil conservation by rubber and tea growers. Accompanied by literature citations.

In the earlier article the writer says that the first serious attention given to the problem of soil erosion in Ceylon "was in 1904 when a commission was appointed to enquire into and report on the question of soil denudation in the Kelani Valley, and other districts..." Experiments at Peradeniya Experiment Station to test the amount of soil erosion that took place under different systems of cultivation are described. Excerpts from various reports on irrigation and the state of rivers, and on the alienation of the catchment areas of the principal rivers in Ceylon are given. The director of agriculture's final report is given in full. He concludes by saying, "The whole question is bound up in a progressive forest policy."

In the later article the author summarizes efforts made in the British Empire during the past 5 years to deal with the erosion problem. In Ceylon efforts have been made to arouse interest in amount of soil lost since 1873. Determined effort to arouse public and "planting" interest began in 1923. In Tanganyika terracing experiments and antierosion methods have been started, and contour planting is spreading where ridge cultivations have been started. In Nyassaland various measures against soil erosion have been adopted in the cultivations on undulating lands, and for tobacco and cotton lands the establishment of Mangum terraces is becoming general where plowing is practiced. This system is also commonly adopted in Southern Rhodesia. In Basutoland soil erosion is being combated by a number of large shallow reservoirs in which flood waters from the hillsides can be collected. In the Union of South Africa antierosion work consists mainly in making dry stone walls and grass-covered banks along the contours. Overstocking is becoming general in many parts of East Africa and South Africa, and a state of devastation may soon have to be faced in certain areas. In Java it is provided that "forest lands can only be opened in economic crops if adequate contour drains are established and terraces made before planting begins."
STUART, R. Y. (501)
The author gives a brief summary of soil-erosion conditions and investigations made by experiment stations, pages 51-52. "Much of the tremendous burden of silt carried by the Mississippi River comes from forest lands or lands which should never have been placed under the plow." Data on flood conditions in the Mississippi Basin are given.

SUNDERLIN, H. H. (502)
The author deals with the problem of erosion and defines two types. (1) Surface erosion and (2) gullying. For the first he advocates the use of terraces and the plowing under of organic matter to render the soil more porous and receptive to water, and for the second brush and woven-wire dams.

SWAIN, G. P. (503)
CONSERVATION OF WATER BY STORAGE. 384 pp., illus. New Haven, Yale University Press. 1915.
The first chapter is devoted to conservation in general; chapters 2-5 deal with the relation of the conservation of water to the conservation of other resources and discuss the water-power question with reference to Federal control of waters; chapter 6 deals with the technical aspects of water-power development; chapter 7 deals with floods and their prevention. Soil erosion and its prevention by vegetative cover are treated on pages 265-270.

TAFT, WILLIAM HOWARD. (504)
President Taft spoke with particular reference to the continued production of food in this country sufficient to feed the growing population, better systems of farming and more intense and careful and industrious cultivation, the movement of population from farm to city, the costs of farm production, the losses of soil caused by erosion, and farm organization. Contour farming, rotation crops, and forest protection were mentioned among the best methods of stopping erosion. He stated that it was proposed to organize a force of 3,000 men, one to every county in the United States, to conduct experiments for the edification of farmers, to be paid by the county, State, and Federal Government. The President said in conclusion that he found the agricultural future hopeful and that "we may look forward to the middle of this century, when 200,000,000 of people will swear fealty to the starry flag as a time when America will still continue to feed her millions and feed them well out of her own soil." The acreage of the United States was given as about 1,900,000,000 acres. "About 1,600,000,000 acres is land which is unutilizable. It is reasonably certain that substantially all the virgin soil of a character to produce crops has been taken up... The first great step that has to be taken in reformed agriculture is the conservation of the soil. Under our present system the loss to the farms in this country by the erosion of the soil is hardly to be calculated." Crop rotation, deep cultivation, contour plowing, and afforestation are among the measures recommended for soil conservation.

"Conservation as, an economic and political term has come to mean the preservation of our natural resources for economical use, so as to secure the greatest good to the greatest number." Agricultural lands, minerals, forests, coal, oil and gas, and phosphate lands were the subjects treated.
TAYLOR, E. M. (506)

AGRICULTURAL VALUE OF NILE SILT HELD FALLACIOUS, SUMMER FALLOW, NOT SILT DEPOSIT, MAINTAINS SOIL FERTILITY, SO NEED NOT CLOG CANALS TO GET SILT TO LAND. Engin. News-Rec. 102: 993-995. June 20, 1929.

Briefly outlines the history of irrigation in Egypt to show that two main changes have taken place: (1) The land is now irrigated instead of inundated and so does not receive the annual deposit of silt from the Nile and (2) the summer fallow has been eliminated from the agricultural system and summer cropping substituted. Shows that the elimination of summer fallow rather than the reduction of silt is the cause of the decline in soil fertility.

TENNESSEE VALLEY AUTHORITY, (507)

This report consists of four parts—schedules, policies, electric power, and constructional operations. Soil erosion and conservation are dealt with in part 2.

"This booklet attempts to picture what is happening to the country's farm lands in one important region, the Tennessee Valley, and how agricultural forces of the land-grant colleges and universities of the seven Valley States, the United States Department of Agriculture and the Tennessee Valley Authority are encouraging the conservation of soil and the restoration of its fertility."

THOMPSON, J. G. (509)

"The present study is an attempt to describe the development of the wheat industry in Wisconsin, and to arrive at a conclusion as to the cause or causes of its meteoric rise and decline. ... The one great cause assigned almost universally for the series of crop failures was that of so-called soil exhaustion due to continued and successive cropping to wheat. The present theory as to soil exhaustion strengthens our inclination to believe in the correctness of this opinion" (p. 20).

THROCKMORTON, R. I. (510)

An address delivered at the Kansas Agricultural Convention in 1930. Terracing alone is not deemed sufficient to cope with the problem of soil erosion in Kansas. The combined use of sod crops, terraces, crop rotation, etc., is recommended.

"Erosion of Kansas soils and methods of prevention are discussed, including the terrace method and the earth dam method."—Exp. Sta. Rec. 38: 422. 1918.

TIPTON, A. S. (512)

Describes various irrigation projects and shows how water conservation has been an important factor in the preservation of the soil and in its productivity.

The primitive farming procedure in China is sketched by the author who says "virtually every square inch of ground space that is available is utilized in farming." Dust storms in north China are described as beneficial because valuable loess is blown from the Gobi Desert several hundred miles inland. Terracing and contour farming are also discussed.

TORSANCE, W.

TSCUDY, L. C, and FRANCIS, C. J.

Embodies the results of studies on small-dam construction, flood irrigation, graded terraces, water-conservation terraces, contour furrows, and pasture terraces. The instructions are deemed necessary for a more complete erosion-control program to be used on the Soil Conservation Service project areas and the Soil Conservation Service-Erosion Conservation Work camps.

TUGWELL, R. G.

The author discusses the work of various Government agricultural agencies, pages 105-123. He reviews the soil erosion problem, its cost to the country, and the cooperative control measures necessary to its solution, pages 171-177.

"Through the Surplus Relief Corporation there has been lately appropriated a fund of $25,000,000 for the selective retirement of marginal land, not piecemeal, patch by patch, but by whole farms, tracts and areas. This is our first definite step in the new direction of long-time land adjustments throughout the country... For reasons wholly practical, our present trend in acreage adjustments is from cultivated crops to meadows, lawns and pastures, and the steps we are taking to prevent erosion will tend to clear our running waters and our lakes." The opening of new frontiers outside the city should give access to the soil to all citizens so that they may live in peace and security in their own homes in the country if they so desire.

TURNER, A. W.

An affirmation of the fact that about one-seventh of the land in Iowa, Nebraska, Missouri, Illinois, and Indiana is affected by erosion. Soil management is necessary in the form of contour plowing, brush dams for gully washing, as well as earth and concrete dams. A construction method for brush and tile dams which proved successful in Iowa is described and illustrated.

ULHANL, R. E.

"The material contained in this handbook has been prepared for the use of personnel on Soil Conservation Service demonstration areas and outlying Emergency Conservation Work erosion-control camps in Missouri and Iowa. An attempt has been made to bring together in this publication the latest information available for the planning and execution of a coordinated erosion-control program."
UHLAND, R. E.

This report covers in detail the following subjects: (1) Description of region, soils, climate, agriculture, character and extent of erosion, problems in soil conservation, and proper land use for the region; (2) research (containing a summary of run-off and erosion-control data compiled at the Bethany, Clarinda, and La Crosse stations); (3) operations in agronomy, erosion-control practices, nurseries, and special surveys; (4) cooperative relations, which lists various Federal and State agencies engaged in soil conservation and its related subjects; and (5) a detailed summary in tabular form of soil-conservation work and research completed to July 1, 1936, in the States of Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The subjects of soil-erosion control, drift sands, pasture research and veld management, and protection of catchment areas are discussed, pages 498–501. Three schemes, involving government and state cooperation, are outlined under "Soil-Erosion Control."

In a discussion of the nature of much-needed farm policies, various factors necessary to a furtherance of soil conservation on a national basis are outlined. The scope of existing laws under the Soil Conservation and Domestic Allotment Act are enumerated, and a general discussion on soil conservation is given.

A discussion in two parts. Part I entitled "Soil Losses and Their Causes," considers the seriousness of soil erosion and proves that farmers can not handle the problem unaided. Part II, entitled "Is the Government Justified in Helping Farmers Save the Soil," deals with the history of erosion and discusses the scope of future soil conservation programs.

Shows the extent of soil erosion damage in the United States and stresses the need of Nation-wide control and research. The significance of the problem to the individual farmer is indicated and the soil conservation program outlined.

"The present pamphlet is an effort to meet a long-felt need for a clear exposition of the more important economic aspects of the soil-conservation problem and their relations to other elements of national agricultural and industrial policy."

Points out the benefits brought to farm lands through the A. A. A. program. Among other topics discussed are farm security through a knowledge of better farming, methods of preventing soil erosion, and of conserving water.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

UNITED STATES AGRICULTURAL ADJUSTMENT ADMINISTRATION.

Presents a résumé of the soil-erosion problem in the United States and what it means to the individual farmer. Control policies are discussed.

UNITED STATES BUREAU OF AGRICULTURAL ENGINEERING.

PRINCIPLES OF SOIL EROSION CONTROL. U. S. Bur. Agr. Engin. 5 pp., illus. 1933. [Mimeographed.]

Indicates briefly the causes of water erosion and discusses terracing practices as a control measure. Cover crops and crop rotations are also recommended.

UNITED STATES BUREAU OF CHEMISTRY AND SOILS.

Emphasizes the value of thick-growing vegetation in erosion control and shows that the results of investigations conducted by the Bureau's 10 erosion stations indicate that certain soil types are more susceptible to washing than are others. Corn cropping is cited as a most destructive factor in soil washing.

The 1931 report mentions addition of three experiment stations located in Washington, North Carolina, and Iowa. The work at five previously established stations is summed up. Among the results are data based on quantitative measurements of soil and water losses; the effectiveness of graded terraces; construction of low-cost dams for gullies by the use of old fertilizer sacks filled with soil and bluegrass roots; the use of forest litter and leafmold. The results of a reconnaissance erosion survey of the Brazos River, Tex., discloses that floods there "probably can never be adequately controlled until a far-reaching effective system of soil and water conservation is put into operation over the drainage basin." Extensive field work by the Bureau has demonstrated that the topsoil of most farmlands is not so deep as generally has been supposed. A new conception of land values is being brought to the attention of farmers as the result of experiments.

"Since the formulation of a definite plan for a national program of research on basic principles of soil-erosion processes and on methods of erosion control... much has been accomplished in (1) arousing farmers and agricultural specialists of the Nation to a realization of the cost of this form of continuous land depreciation and (2) in starting practical methods of slowing down the wastage in regions where previously practically nothing was being done" (1932 Rept.). Accomplishments resulting from the application of these practical methods is given in the 1932 report.

UNITED STATES COMMITTEE ON THE CONSERVATION AND ADMINISTRATION OF THE PUBLIC DOMAIN.

REPORT... JANUARY 1931. Transmitted to the President of the United States in pursuance of the act of April 10, 1930. 85 pp., illus. 1931.

Includes the general and special recommendations of the committee and discussion of the following topics: The present vacant, unreserved, unappropriated public lands, the homestead laws, grazing, reclamation, national forests, public parks and monuments, clear listing of nonmineral grants to the States, flood control, conservation, erosion, restrictions on State land grants and their result, stock driveways, agricultural and range experiment stations, migratory-bird refuges, and Federal-aid roads.

UNITED STATES CONGRESS, HOUSE COMMITTEE ON AGRICULTURE.

TO CONSERVE RUN-OFF OR FLOOD WATERS. CONSIDERATION OF WILD-LIFE CONSERVATION. Hearing... 71st Cong., 3d sess., [H. R. 10657] 57 pp. February 6 and 13, 1931 (Serial Y).

A statement by S. H. McCrory on soil erosion appears on page 55.
On pages 818-929 the Soil Conservation Service hearings are given verbatim. Various phases of the Service and its program are discussed. Erosion control in foreign countries is also considered. Considerable data are given on erosion research at the various agricultural experiment stations.

In a statement by Dr. Knight, soil erosion research is shown to be of very great importance. The water-conservation phase of the program is stressed. "The control of soil and water losses still centers largely in the erosion experiment stations located in 10 of the most seriously affected type areas of the country... Fundamental research on the problem of soil erosion continues as the function of the Department of Agriculture and is being actively and aggressively carried on."

"This classified list of projects includes 7,019 State experiment station projects and 188 insular station projects active during the fiscal year 1930. Of the total number of State experiment station projects, 410 were supported by the Adams fund and 1221 by the Purnell fund." A list of soil-erosion stations is given, page 35.

This article, compiled from bulletins issued by the experiment stations of Alabama, Mississippi, South Carolina, Tennessee, and Wisconsin deals with the prevention of soil washing, soil drifting, increasing the water-holding power of the soil, the preservation of wooded belts in north and south strips, and the planting of windbreaks.

The following subjects are covered, pp. 18-25: Methods of Erosion Control; Soil Losses in 1936; Soil Conservation Associations; Land Use and Flood Control; and Land Policy. "The demonstration projects accomplish three distinct purposes: They test various methods of erosion control, provide demonstrations of the appropriate methods, and actually prevent erosion on the particular lands involved."

"Tests at the erosion experiment farms on terracing, supplemented by contour plowing and the use of soil-saving and soil-building crops, as the most effective means of controlling soil erosion on cultivated land, and data from the farm housing survey conducted in cooperation with the agricultural colleges and experiment stations in 46 states are briefly noted."—Expt. Sta. Rec. 72: 700. 1935.

"The nature and extent of water erosion of agricultural lands are popularly discussed, and the action of organic matter, humus, and lime in the soil in reducing washing is explained. The means described for preventing washing and for reclaiming gullied lands are deep plowing to increase absorptive power of soils, underdrainage, hillslope ditches, terracing, reforestation, and covering with grasses or similar vegetation."—Expt. Sta. Rec. 6: 515. 1894-95.

Participation of the Department of Agriculture in emergency conservation work is taken up, pages 39-45. The following is quoted from this section: "In addition to forest protection and development there was the growing need of soil-erosion and flood control, which the Department's representatives had long recognized as scourges to the Nation. Emergency Conservation Work gave the Department the unusual opportunity to attack this problem by the assigning of 123 CCC camps to erosion and flood control in 18 states."

United States Federal Emergency Administration of Public Works, Mississippi Valley Committee.

This report on flood control, navigation, power and water supply, irrigation, forestry, conservation, and related subjects gives an outline of soil-erosion conditions in the Mississippi Basin, volume 1, pages 70-76; discusses the nature of erosion, the difficulty of solution when the problem of individual land ownership is brought into consideration, public activities control, basic principles of policy, and a national program. Precipitation and run-off, ground water, and the origin, nature, and consequences of erosion are described, volume 1, pages 107-130. The upper Mississippi Basin is considered in relation to the problems of erosion, local floods, drainage restoration and reconstruction, forests, and game refuges, volume 2, pages 131-222.

United States Forest Service.

"The Civilian Conservation Corps has 97 erosion-control camps on national-forest lands and 104 erosion-control and 20 flood-control camps on State and private lands. The main purpose of this work is to restore forest or other cover where its depletion has been the cause of accelerated erosion or excessive run-off and to supplement this plant cover by check dams or other engineering works to retard water flow and to aid in holding soil..." The work of several forest experiment stations in the field of erosion control is outlined.

“In 1934 and again in 1936 drought conditions in the Great Plains area of the United States became so severe that it was necessary for the Federal Government to take emergency steps... The experience of the two tragic years made it evident that the drought had merely accentuated a situation which had been long developing... These factors led to the creation of the Great Plains Drought Committee, which rendered a preliminary report last August; and to the appointment by the President of the Great Plains Committee, whose further studies are summarized and recommendations submitted in the present report.” Among the topics discussed are the following: Use and Misuse of Land and Waters; Overstocking of Range Lands; Soil Wastage and Water Loss; A Program of Readjustment and Development, Including Lines of Federal and State Action. Supplements include memoranda on legal problems of soil erosion and grazing control; appendices include soil and water conservation in the Great Plains; a standard State soil conservation districts law; and a summary of the Texas legislation on soil-erosion control.

On pages 14–16 land use and conservation are discussed and specific examples given of recent work of experiment stations as follows: Kansas—“Recommendations for conserving soil moisture and maintaining a more diversified and stable type of agriculture in regions of 15 to 25 inches of rainfall... an increase of organic matter in the soils, and maintenance of grass or other plant cover, especially use of perennial grasses and legumes to prevent wind erosion.” Oklahoma—“Attention is called particularly to the efficiency of alfalfa planted on the contours in reducing the run-off and loss of soil from cotton fields even with a rainfall of 1.56 inches in a single day.” Agricultural Engineering, pages 140–143. The section on page 140 dealing with snow-cover irrigation-water resources shows that flood prevention and control and the conservation of snow run-off for irrigation purposes are now becoming specialized features of snow surveying. Outstanding accomplishments of the Nevada and Utah stations are reported.

This report on principles, policies, conditions, and problems of the use and control of water in the Mississippi drainage area discusses erosion-control policies pages 61–63, outlining erosion conditions in the area, and proposing a coordinated control program involving Federal, State, and private cooperation. There is also a description of the nature of soil erosion, rainfall, vegetative cover, and siltation, pages 119–123. Control methods are briefly outlined.

“The purpose of this booklet is to describe what one governmental agency, the Resettlement Administration, is doing to preserve the riches of America's land for the America that is to come.” The ravages of soil washing, wind erosion, and floods are described, and the program of the Resettlement Administration in soil conservation is discussed.

“If the United States is to remain a productive agricultural Nation we must 'anchor' our soil and protect it against the ravages of rain and wind. Already we have lost untold billions of tons from millions of acres. The task that lies before us is to check the further advance of erosion and carefully conserve the abundant supply of fertile soil that remains. The
The 1935 report presents data on the soil-erosion problem in 1935. Considerable data are given on the progress of the various soil-erosion projects throughout the country. The nature and procedure regarding cooperative agreements for demonstrational and experimental work in erosion control...
is explained. Erosion-control methods are discussed generally. The 1936 report covers Soil Conservation Service activities during 1936.

UNITED STATES SOIL CONSERVATION SERVICE.

Table of contents: Procedure on Demonstration Projects; Origin of Control Measures Used; The Training of Personnel; Summary of Financial Status; Appraisal of Results Obtained Through the Program of the Soil Erosion Service Under the Department of the Interior; Tabular Summary of work Completed by the Soil Conservation Service Under the Department of Agriculture; Plan for 1936-37; Erosion Control Projects; Erosion Experiment Stations; The Long-range Program of the Soil Conservation Service; Benefits To Be Obtained From an Adequate Program of Erosion Control.

"In the following pages an attempt is made to give an outline of the fundamental problems involved in undertaking and carrying out a program of soil conservation in the Southwest." Table of contents: The Erosion Problem; The Southwest Region; Soil Conservation Service; Water Erosion; Wind Erosion; Climatic Conditions; Soils; Vegetation; Man-Induced Erosion; Floods; Silt; Dust Storms; Interrelation of Watershed Use; Re-vegetation; Range Management; Forest Management; Farm Management; Wildlife Control; Water Conservation; Flood Control; and Plans and Surveys.

Outlines problems involved in undertaking and carrying out a soil conservation program in the Southwest. Contents: The Erosion Problem; The Southwest Region; Soil Conservation Service; Water Erosion; Wind Erosion; Climatic Conditions; Soils; Vegetation; Man-Induced Erosion; Floods; Silt; Dust Storms; Interrelation of Watershed Use; Re-vegetation; Range Management; Forest Management; Farm Management; Wildlife Control; Water Conservation; Flood Control; and Plans and Surveys.

"It is the purpose of this booklet to analyze and explain the forces of erosion and to describe and depict the conservation farming practices which the Service is using in its demonstration areas in the northern Great Plains region."

This article discusses the encroachment of soil erosion in the region lying between the Rockies and the Cascades. Overgrazing and forest denudation are cited as the main contributing factors. The Soil Conservation Service program for the region is described.

Describes erosional devastation and suggested preventive measures.

This pamphlet shows the causes and extent of damage due to destructive erosion, and what is being done to conserve soil and water.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

United States Soil Erosion Service.

This pamphlet describes the inception of the first large soil-erosion-control projects in the United States and outlines their objectives.

Fight Against Erosion, Greatest Enemy of the Soil. Soil Erosion Serv. 8 pp. [1934.]

Describes the different types of soil erosion and recommends practical methods of control.

This handbook is intended especially for the use of landowners residing in Forsyth, Guilford, and Randolph Counties, N. C. It describes the soils, gully control, terracing practices and construction, and contour cultivation on the Deep River and Reedy Fork projects.

Defines the soil-erosion problem for the United States as a whole and proposes a working plan for erosion prevention, reduction of run-off, prevention of silting in channels and reservoirs, and protection of valley lands from overwash of infertile erosional debris.

University of Pretoria.

Presents the results of experiments on run-off and erosion, fertilization, cultivation of various grasses, grazing, and plant studies.

Upstream Engineering Conference.

The conference was held in Washington, D. C., September 22-23, 1936. A summary of fundamental principles and their application in the conservation and utilization of waters and soils throughout headwater areas, published by the United States Soil Conservation Service and Forest Service, with the cooperation of the Rural Electrification Administration. Contents: Basic Principles of Water Behavior, by Thorndike Savill; Surface Run-Off Control, by Robert E. Horton; Giving Areal Significance to Hydrologic Research on Small Areas, by Merrill Bernard; Influence of Vegetation on Land-Water Relationships, by Isaiah Bowman; Management and Use of Forest and Range Lands, by Earle H. Clapp; Management and Use of Agricultural Lands, Including Farm Woods and Pastures, by H. H. Bennett; Control and Use of Small Streams, by George D. Clyde; Special Aspects of Application; Conserving Wildlife; Physical and Functional Relationships, by Morris L. Cooke; The Comprehensive Engineering Point of View, by Sherman M. Woodward; Big Waters and Little Waters, by Edward M. Markham; Control and Use of Little Waters in France, by Albert Magnell; Building Toward a Permanent Agriculture, by Jacob G. Lipman; On Behalf of a Continent, by Maury Maverick; and The Human Value in Upstream Engineering, by Charles H. Whitaker. The report is concluded with the following appendices: The President's Letter of Instructions; The Committee's Letter of Submission; General Committees and Cooperating Agencies of the Upstream Engineering Conference; The Supplementary Young Men's Conference; Bibliographies and Technical Journals for Professional Readers; and Selected Bibliography for Non-Professional Readers.

Van Cleave, H. J.

"He views the results in terms of conquest of the wilderness and boasts of the advance of his civilization, but many of the things that he has
done may be branded as flagrant destruction of an unintelligent meddling with the affairs of nature.” The disappearance of wildlife with the accompanying changes in vegetation and deforestation are discussed. “Meddling, even that growing art of the best of intentions, must be replaced by intelligent understanding and actions before conservation may become a reality.”

VAN HISE, CHAS. RICHARD. (571)
Consists of 20 lectures given at the University of Wisconsin. It gives the history of the conservation movement and covers the subjects of minerals, waters, forests, soils, and soil erosion in the United States. The relation of the subject to the people at large is also discussed. “An expert in each of the four fields, namely the minerals, the waters, the forests, the lands, have undertaken the revision of that portion of the book. A section on the conservation of wild life has been added that did not appear in the original edition” (1936 edition).

Vermont Agricultural Experiment Station. (572)
“It is a settled policy at this station yearly to ‘feature’ some special topic in its main annual fertilizer bulletin.” Discusses in detail causes and remedies of soil deterioration and methods of renovation. Eight causes of deterioration are cited, and three prime remedies suggested (1) crop rotations, (2) use of farm manures, and (3) green manuring.

Viljoen, P. R. (573)
Discusses the need for combating soil erosion on a national scale. Financial assistance by the State toward preventing erosion is also reviewed.

Visher, S. S. (574)
Cartographic analysis of erosional contrasts and factors that have contributed to their cause. Ten small maps depict percentages by counties of various types of erosion and gullying.

REDUCTION OF SOIL EROSION ON INDIANA HILLSIDES DECLARED AN URGENT PROBLEM. ABUNDANT RAINFALL IN COOLER MONTHS AND TYPE OF CROPS CREATES RELATIVELY RAPID WASHING AWAY OF FERTILE FIELDS. Outdoor Ind. 4: 20-21, illus. May 1937.
“Legislation to encourage the growing of woods or grass on hillsides is highly desirable. At the last session a bill was introduced by the Conservation Department providing benefit payments for the use of hillsides so as to conserve their precious soil. Hillsides devoted to forests would receive benefit payments equal to from three-fourths, to four-fifths of the taxes levied against the land. Hillsides devoted to grass would receive benefit payments of half the taxes. This bill got caught in the legislative jam, but a similar bill will be introduced early in the next session.” Includes map of Indiana showing the various percentages of areas having considerable sheet erosion and gullying.

VON TREBRA, R. L. (575)
“This is the first of a series of articles describing the various [soil erosion] projects and their problems. In this article by Regional Director R. L. von Trebra, an optimistic note for the future is sounded.”—Ed. Note.

Vorse, M. H. (576)
“Our land is not ‘the one immutable, unchangeable, permanent resource that we have loved to think it.’ It can be destroyed and dissipated like coal, gas, and petroleum.” The results of erosion in China, Africa, and
Asia are compared with the growing results of erosion in the United States. An account is given of Soil Erosion Service work on a farm in South Carolina that saved and restored it to fertility.

WAD, Y. D., AND TAMBE, G. C. (578)

"Black cotton soil like others of similar physical and chemical nature is highly erodible." The authors quote H. H. Bennett. This paper deals with soil erosion in central India. The various forms and stages of erosion are described, also results obtained from experiments at the research station at Indore. The existing data on factors that influence erosion, useful suggestions for soil erosion control based on these data are presented.

WALLACE, H. A. (579)

Presents the 11 salient points of the new soil conservation program, with summaries of the main features of the immediate program for 1936, e. g., soil-depleting bases to be established on farms to provide a definite standard of improvement measurement; soil-building payments for 1936 seedings of soil-building crops on cropland; soil-conserving payments at a specified rate for the shifting of acreage from soil-depleting to soil-conserving crops; the establishment of 5 regional administrative divisions in the United States; a general classification of crops into soil-depleting, soil-conserving, and soil-building crops, the division of payments in the southern division between landlords, share tenants, and share croppers; and the organization of the soil conservation program in States and counties through State committees, county associations, county and community committees, and the Extension Service of the land-grant college.

Excerpts from a speech. Discusses the provision of the Soil Conservation and Domestic Allotment Act requiring that administration of the agricultural conservation program be transferred to the States by January 1, 1938.

THE NEW SOIL CONSERVATION PROGRAM. Amer. Fert. 84: 9, 26. April 4, 1936.

Tells how the program will affect the individual farmer who enters into a contract with the Soil Conservation Service.

Discusses the Soil Conservation and Domestic Allotment Act and outlines its objectives and stresses the importance of individual farmer cooperation.

Discusses soil conservation under the following headings (pp. 59-62): Physical Aspects of the Present Crisis; Types of Erosion; An Erosion Survey; and Practical Control Measures.

Presents a survey of departmental research. "Research in erosion control requires the synthesis of a number of divisions of science, since erosion is a complex phenomenon ... Two major types of investigations, exploratory and experimental, are included in the necessary research ... In this brief outline I have attempted only to point out some of the factors involved in soil conservation research—chiefly those factors about which
too little is now known... In the Agricultural Adjustment program, major emphasis is laid on Soil Conservation and better use of land."

WALLACE, H. A.
RURAL POVERTY. 16 pp. 1937. [Mimeographed.]
An address before the third general assembly of the Council of State Governments, Washington, D. C. January 28, 1937. Among the policies directed toward the improvement of the lot of the impoverished American farmer the importance of soil conservation and erosion control are stressed.

In the section on soil-depleting practices, pp. 64-65, recommendations are made for reforestation, substitution of permanent pastures and forage for intensive crops, and systems of rotation introduced to check erosion and restore fertility. Crop-benefit payments are considered.
In the section on soil erosion, pp. 100-101, erosion control practices and methods, and comments on the work of the erosion experiment farms and C. C. C. guility-control operations are described.

Land-use problems and their relation to soil erosion are discussed. Various types of erosion are described. The reconnaissance survey conducted by the Soil Erosion Service in 1934 is summarized. "Practical measures in the control program fall generally into three main categories: (1) Adaptations of thick-growing vegetation to practical farm operations; (2) use of engineering structures, such as terraces and dams; and (3) the retirement of excessively eroded land from cultivation..." The procedure on demonstration areas is outlined.

Gives a brief account of the scope and progress of investigations in soil erosion control at 10 regional stations.

WALSER, PAUL H.
DEMONSTRATING EROSION CONTROL ON BIG SCALE. Farm and Ranch 53: 3 illus. September 1, 1934.
This article describes erosion-control demonstrations on Duck Creek in Smith County, Tex., and outlines future work.

WALTHER, ERIC.
The author describes the making of Golden Gate Park, San Francisco, Calif., over a desert of sand dunes. He relates the difficulties incidental to such an effort in reclaiming wastelands and turning them into one of the foremost beauty spots in the country.

WARD, HAROLD.
A summary of the annual loss to the Nation through soil erosion. Describes the Soil Conservation Service program.

WARFIELD, S. W.
The writer contends that "cotton takes as little from the soil as any crop we grow." The slipshod, shallow way in which cotton used to be cultivated and the straight rows, no matter how steep the hill, left the soil an easy prey to washing rains which left bare rocks and barren subsoll. The Mississippi River became so filled with mud about 1850 that sea-going vessels could not enter. A survey showed the volume of sedimentary matter deposited in the river each year—the topsoil of Tennessee farms. Deep plowing, contour plowing, and rotation crops with as much grass and clover as possible are advocated for erosion control.
WASHINGTON AGRICULTURAL EXPERIMENT STATION. (593)
"The objects of the work are primarily (1) to minimize erosion, and (2) to secure a more complete conservation of moisture." Papers included are: Terracing Studies, by P. C. McGrew; Tillage Experiments, by W. A. Rockie and P. C. McGrew; Controlled Erosion Vegetation Plots, by W. A. Rockie; Erosion Survey, Colfax, Wash., by W. A. Rockie and P. C. McGrew; Wind Erosion Studies, by W. A. Rockie and P. C. McGrew; Soil Moisture Investigations, and an Erosion Survey of the Northwest, by W. A. Rockie.

WATSON, G. C.] (596)
Serious erosion in South Africa, Australia, Palestine, and Canada is described. States that "now there are many remedies for the evils of erosion. The most simple and effective include preservation of the soil's natural cover of trees and herbs; by wise and provident methods of agriculture. The most expensive and (in some cases) the most ineffectual are those involving the construction of huge dams and weirs with their highly paid staffs of hydro-technical engineers. This method, at any rate in the Union of South Africa, has been condemned by experts as tackling the problem at the wrong end. The service of the botanist and the forester, they say, should be called before that of the engineer and the stonemason; in other words, the work of control should commence in watershed areas."

WATSON, J. (597)
"This article is concerned with erosion or soil washing and the preliminary construction of storm drains above lands, and deals not at all with sheet erosion, which is caused by heavy rain falling on the land itself." The author gained the actual experience in carrying out work on his farm.

WEBB, WALTER P. (598)
THE GREAT PLAINS. 525 pp., illus. Boston, Ginn & Co. 1931.
An interpretation of the life of the people who settled on the Plains and how these people changed their mode of living. In chapter VIII, pages 319-375, under the heading "The Search for Water in the Great Plains" the author discusses the available moisture supply, irrigation, and dry farming. "Dry farming is not farming without moisture: it is farming where the moisture is insufficient. A Californian, Professor E. W. Hilgard, made the experiments which proved conclusively that the arid lands were even more fertile than the humid lands because the humus had not been washed from

5983°—38—7
the soil... the dry-farmer stores the water in the soil itself, just beneath the growing crops, and then cultivates the crops in such a way as to establish a connection between the plant roots and the stored moisture." Discussing various vagaries of the search for water in the Great Plains, the author refers to the continual hope of the people that Nature may set aside one of her long-established laws for their benefit. "The first explanation was that rainfall would follow settlement. The plowing up of the land would hold the moisture, would increase evaporation, and would make precipitation possible. The growing of crops would in some way have the same effect. The burning of the prairie would produce rain...?" References cited for this chapter, pages 383-384.

Wehrwein, G. S.

The writer attributes the lack of tangible and far-reaching effects of the enthusiasm for conservation which Theodore Roosevelt aroused to the fact that "the fundamentals of economics, the framework of our institutions and the legal aspects of conservation were largely ignored... because the 'wolf criers' had deadened the nerves of the public by their overemphasis and distortion of facts." The author expresses the hope that "this second crusade" for conservation will not make the mistakes of the first.

Wein, W. W.

Weybright, Victor

In discussing flood, drought, and soil-erosion problems Weybright cites the opinions of Morris L. Cooke, former Administrator, Rural Electrification, who maintains that a complete solution of these problems will not be realized until there is a concerted effort on the part of the people to cooperate with the Soil Conservation Service program, plus an extensive program of dam building.

Whipple, G.

"Generally, this history attempts to present a connected story by tracing events from cause to effect and by bringing together under their related heads many fragmentary but essential elements of the conservation movement which have been garnered from more than 75 publications. This is the first time that an attempt has been made to produce a comprehensive writing on conservation in New York."

White, Edward Lucas.

The purpose of this volume is to correlate and discuss the various political and socioeconomic causes leading to Rome's destruction. Considerable attention is given to the factor of religion and its influence. On pages 271-273 a brief discussion is given of soil exhaustion which led to a decline in the standard of living, and a falling off of population.

White, Owen P.

The writer traveled around the United States to get the true story of what soil erosion is doing to the country. The difficulty of making farmers understand the need for erosion-control measures is stressed. Instances are given of farms where topsoil has washed away and left them derelict. Coon Valley, Wis., is described as an example of the disaster caused by gullies and soil washing.
Whitney, Milton. (005)
The author presents a modern concept of soil and the historical development of agriculture. In chapter 3 methods of soil control are considered under the following headings: Irrigation and Drainage; Adaptation of Soil To Best Suited Crops; Crop Rotation; Flowing; and Fertilizers. Agriculture in the older countries of the world is discussed.

Whitson, A. R., and Dunnwald, T. J. (006)
keep our hillside8 from washing. Wis. Agr. Expt. Sta. Bull. 272, 18 pp., illus. 1916
"This bulletin deals with the extent and bad results of erosion on Wisconsin soils and describes preventive measures applicable to conditions of the State, including tillage, alternation of crops on sidehills, use of horizontal channels and terraces, protection of ravines and water courses with stones and grass roots, gradual removal of trees from wooded hillside8, and the use of sidehill land for pasture."—Expt. Sta. Rec. 36: 422. 1917.

Whittle, C. A. (007)
Cooperation of Georgia farmers with the United States Soil Conservation Service is described as "adopting a five-year cropping program; changing the old and familiar field lines; reorganizing the layout; constructing terraces of the right kind in the right place; planting trees where trees belong; establishing new pastures . . ."

Wilbur, R. L., and DePuy, W. A. (008)
conservation in the department of the interior. 253 pp., illus. Washington, Govt. Print. Off. 1931.
Under Public Lands, pages 31-48, the subject of utilization of the public domain, grazing, erosion, and protective policies are discussed.

Wilcox, W. W. (009)
Data "furnish little grounds for the often expressed fear that dairy production in Iowa and in the Corn Belt generally will be stimulated to a ruinous extent by the soil conservation program."

Wilhelm, D. (010)
tenant erosion. Country Gent. 84: 15, 43. April 5, 1919.
An authorized interview with Senator Cummins of Iowa, who "likens the loss of agricultural productivity, due to unsatisfactory land tenancy, to land erosion, which, by the way, is carrying down to the sea a tremendous soil potentiality." He suggests as a remedy, that methods used in England, Scotland, Ireland, and Wales, be used more generally in the United States.

Wilson, C. P., Neale, P. E., Parker, K. W., and Watenpaugh, H. N. (011)
This bulletin is in two parts. Part 1, entitled "On Range Lands", discusses the effects of overgrazing on plant cover. Part 2, entitled "On Farm Lands", deals with the slope, texture, structure, and organic matter of the soil, methods for soil and rainfall conservation, water and wind erosion, and floodwater utilization and control.

Wilson, M. L. (012)
The author reviews the recommendations of the National Resources Board and analyzes the waste of land. "First there is soil erosion. The top 6 to 12 inches of soil is the most important asset of a farm. But in addition to thirty-five million acres destroyed by erosion—gullies, soil leaching—there are one hundred million acres now heading the same way and countless other acres are feeling steadily year by year the effects of the loss of soil, of plant nutrition, and the cost of producing farm crops in the aggregate must go up."
The author discusses soil erosion, its causes and effects on the living standards of individuals. The need for conservation for the protection of American posterity and the need for the individual cooperation of all farmers to further the soil conservation program, are pointed out.

The author discusses soil-fertility depletion and states that "grass, trees, legumes, and other thick-growing plants are 65 times more effective than clean-tilled crops in holding soil against washing." Article by same title appears in the South. Planter 97 (9): 17. September 1936.

The difference between the Soil Conservation Service, established in April 1935, and the Soil Conservation and Domestic Allotment program of 1936 is pointed out.

"The erosion survey of Oklahoma soils indicate that 83 per cent of the cultivated fields are losing soil very rapidly from uncontrolled rainfall." Results of methods used at the Guthrie Experiment Station and its substations for conserving soil and moisture are given. Mechanical methods and soil and crop management practices to reduce soil and water losses are discussed.

Points out that the losses in North Carolina due to soil washing amount to $66,000,000 annually and outlines some of the objectives of the soil-conservation program.

Pages 55–65 outline the investigations of the upper Mississippi Valley erosion station established in 1932 in cooperation with the Wisconsin Agricultural Experiment Station. "Erosion is one of the most destructive factors with which farmers have to contend, and it is the purpose of this new station to develop erosion-control methods particularly adapted to the soils, topography and climate of the Upper Mississippi Valley."
Wisconsin University.

This publication outlines the problem of soil erosion and erosion control and indicates the nature of research necessary to cope with the problem. It also shows what facilities are available at the university to students of erosion.

WOHLCTZ, L. R.

Discusses principal crops involved, winter cover cropping, need for terrace outlets, and sheet and gully erosion on the Soil Conservation Service project located about 25 miles southeast of Los Angeles.

WOLF, D. K.

In view of present erosion damage the author questions: "Were we right in placing so much faith in our plows?" Tabulations indicate the average number of days each year that the soil is left uncovered under the various cropping systems. "These figures should not be interpreted to mean that erosion loss is necessarily in direct proportion to days of exposure, but they do mean that with any cultivated crop and any rotation scheme there is more or less opportunity for excessive erosion to occur."

WOLLMAN, ABEI.

This paper was presented at the Buffalo convention, American Waterworks Association, July 1937. The author discusses basic hydrologic data and research in progress; bills introduced and laws passed covering pollution control, irrigation, flood control, and beach-erosion control; contributions toward a coordinated water plan by Federal, State, and interstate measures.

WOODLE, H. G.

RUNAWAY FARMS. [A booklet to be had for 10 cents from Information Department, Capper's Farmer, Topeka, Kans.]

WOOD, J. D.

This address was given at the Idaho State Federation of Women's Clubs, at Mountain Home, Idaho. States that the Idaho State Planning Board aims to cooperate with and coordinate the work of all other agencies in the conservation of natural resources. Discusses mainly water resources and the ill effects of decreased vegetative cover, forest denudation, and overgrazing. Land-use planning activities as affected by the Taylor Grazing Act, and wildlife conservation are also mentioned.

WOODS, A. F.

Discusses soil erosion in the United States. Comparison is made with denudation in Asiatic countries.

WOOTON, E. O.

Bibliography, pages 68-72. "The business of raising stock on the arid grazing lands of the United States is said to be automatically limited by physical and natural factors;

Wisconsin University.

The purposes of this publication are to outline the problem of water conservation, to indicate the nature of necessary research, and to show what facilities are available at the university to students of water resources.
the resultant forage crop; and social and economic conditions, such as the
laws and customs determining methods of land utilization, marketing con-
ditions, and methods of financing the business. Plant and animal competition,
soil moisture and erosion, poisonous plants, wild animals, watering
places, and miscellaneous factors are described as some of the natural
conditions governing this industry."—Expt. Sta. Rec. 46: 784. 1922.

WORK, H. (630)
CONSERVATION MEANS HIGHEST PRODUCTION ON EACH ACRE. Reclamation and
Farm Engin. 9: 9-11, Illus. January 1926.
The conservation of land is a problem in the East as well as in the
West. "The meaning of conservation must be reduced to simple terms;
be taught in the schools, become an individual responsibility stressed by
authorities in State . . . Reclamation for a growing nation of 110,000,000
people should, from now on, include recapture and restoration of lost soil
fertility . . . We should farm less and farm better."

WRIGHT, J. O. (631)
397, Illus. 1907.
"In order to encourage the development of these marine marshes, the
Federal Government should be induced to cause a survey to be made to
determine their area, character, and fitness for reclamation and the prob-
able cost of doing the work." The author discusses three points requiring
special attention and treatment: (1) The method of protecting the land
from overflow by tide waters; (2) the plan of internal drainage; and (3)
treatment of the soil to eliminate excessive silt. Location of dikes and
specifications for building are given.

WRIGHT, L. (632)
CONTROLLING SOIL EROSION WITH DAMS. Engin. and Contract. 66: 306. July
1927.
The writer quotes H. H. Bennett as authority for the statement that
20 times as much plant food material is lost annually by erosion as is
removed from the soil by crops. Conservation by means of terracing and
damming are discussed.

ZEASMAN, O. R. (633)
249, 31 pp., Illus. 1931.
The author explains the two worst forms of erosion; causes and control
of soil erosion; erosion areas of Wisconsin; and making the soil absorbent
by holding run-off water through underdrainage and deep plowing. Types
of terracing and costs, together with instructions on building gully dams,
are considered. "The problem of erosion increases with age of farming.
On virgin soils erosion was scarcely noticed. Now at least a million acres
of farm land in Wisconsin have been seriously damaged, and limited
areas have been entirely destroyed by erosion."

EARLY WORK ON SOIL EROSION CONTROL IN WISCONSIN. Save Our Soil 1: 3.
March 1936.
A summary of work done in Wisconsin during the 10 years ended in 1932.
The author relates that "the first soil erosion-control work done as a Wis-
consin extension project was done primarily to protect highways."

ZOBELL, I. D. (635)
SOIL-MANAGEMENT AND CROP-PRODUCTION STUDIES, CARBON COUNTY AREA. Utah
Soils are classified as belonging to the Billings series and are generally
known as a very fine sandy loam; low in organic matter; tend to absorb
water slowly and especially susceptible to erosion. Gulies are said to be
increasing at an alarming rate in this area, for which overgrazing is re-
sponsible to a large extent. Windbreak and wood-lot studies have led to
the conclusion that Siberian elm and Russian-olive trees are most suitable
for this particular area.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

ZSCHOKKE, T. C. (636)

"Prevention is better than cure, hence a part of this bulletin is devoted to the harm done by erosion to the land itself and to the consequent loss to land owners. Some space is taken up by a consideration of ways of preventing erosion in agricultural land . . . The methods of saving the top-soil include better tillage, the use of cover and green manuring crops, broad-base terraces and the laying out of plant rows and ditches in such a way as to handle surface runoff more effectively." Present soil conditions in the Hawaiian Islands and how to prevent erosion are the two subjects discussed.

EROSION IN GENERAL

A review of the preliminary findings of an interim report issued April 1933 by the Beach Erosion Board of the United States War Department. It presents data on current velocities near the shore, sand movement, rate of erosion along the normal beach and at inlets, and the action of groins. Studies were made at Fort Fisher, N. C, and along the New Jersey and New York coast lines.

An editorial discussing unchecked soil erosion, the cause of topsoil loss, and reservoir silting.

The seriousness of grass burning and consequent carrying away of soil by wind and storm waters are discussed.

Two different pictures of erosion are described: the one seen with alarm by the United States Department of Agriculture, and one that members of the Geologic Survey regard with no alarm. "It is to be regretted that views so divergent and so confusing to public enlightenment upon an important national question flow out of Washington. The work of erosion and floods . . . is a question of national concern . . ."

"The greatest loss caused by drainage water comes as a result of sheet erosion, or the carrying away of soil and valuable plant food by the tiny rivulets that eventually dump into the raging streams below." The writer points out that soil erosion begins long before ditches appear and advises that methods of terracing suitable to local conditions be put into effect.

A picture is sketched of the effects of man-made erosion in the United States.

"Erosion takes $2,000,000,000 annually in soil fertility . . . there are national associations for the preservation of wild flowers and wild life, but none for the preservation of the soil." The writer thus quotes United States Department of Agriculture Circular 33 and notes the lack of scientific or popular information on the subject of soil erosion and conservation.
SOIL EROSION IS MENACE TO NATION. East Tex. 11: 5, 16. August 1937.

“Wasteful crop raising methods have cost this nation $20,000,000 during the last fifty years, have destroyed or damaged productivity of three-fourths of the nation’s farm lands and rapidly are causing the washing of the best soil of Texas into the Gulf of Mexico.”

“Fifty-nine percent of the land in North Carolina has been damaged by soil erosion . . .” The sections in which the most serious damage has taken place are discussed.

The writer comments on addresses by Lowdermilk and Uhland of the Soil Conservation Service and Henry S. Conard of Grinnell College, at a memorial meeting at Iowa State College, Ames, Iowa.

“The newest of countries may come to the same fate as the oldest. The forests of the United States may be eradicated like those of China . . . Deforestation means, more than anything else, erosion of lands and consequent decrease in the fertility of the soil . . . Fertility is not only destroyed but the very soil itself is washed away, leaving barren washes where formerly good grazing and agricultural acres were to be found.”

A brief description of the desolation and abandonment of a farmhouse resulting from the encroachment of soil erosion.

Attributes the fall of the Mayan empire to the failure to practice soil erosion control and prophesies the same fate for the United States, if steps are not taken to control our land policy.

AINSLIE, JAMES R.

SOIL EROSION IN NIGERIA. 4th Brit. Empire Forestry. Conf. (So. Africa), 14 pp., illus. 1935.

The physical features and climate of Nigeria are described. The writer states that the most active erosion factors in this area are rain and wind. Sheet erosion is going on with great rapidity. “There is little doubt that the destruction of the natural vegetation of the country is the fundamental cause of ninety-five percent of the erosion now going on.” Antierosion measures are described and discussed. A vegetation map of Nigeria is attached.

ALCATORRE, H. F.

DESTRUCTIVE RAINSTORM OF APRIL 8–9, 1913, IN ARKANSAS. U. S. Monthly Weather Rev. 41: 584–585. April 1913.

The weather conditions before the rainstorm and its progress are considered. All previous records for heavy rainfall were broken at Little Rock, Ark. A table shows the quantity of rain recorded during the storm at regular and cooperative stations of the Weather Bureau.
ALDABA, V. C. (653)
ON THE GROWTH OF COCONUT ROOTS. Philippine Jour. Agr. 3: 50-64, illus. 1932.

The exposure of the upper part of the root system of coconut trees about 15 years of age or older is mainly due to the erosion of the soil caused by heavy tropical rains. Experiments and results are discussed and illustrated.

ANTHONY, HAROLD G. (654)
A description of the abandonment and desolation of the town of Goforth, Hays County, Tex. Accelerated soil erosion is cited as the chief cause.

ANTHONY, HAROLD G. (655)
ONE LESSON OUT OF THOUSANDS—A TRUE STORY. The Land, Today and Tomorrow 2: 28-29. April 1935. [See also Prog. Farmer (Miss. Ed.) 50: 9, 57. May 1935.]
The plight of a colored family in Jackson Parish, La., impoverished by the encroachment of soil erosion on their 40-acre farm is told.

ASHE, W. W. (656)
"The profits of the farmer noiselessly flow from his sloping fields in muddy streams ... Soil exhaustion and erosion are the fundamental causes. The exhausted 'old fields,' eroded, gullied, raw with deep wounds, and red as though stained with carnage, need only the touch of knowledge to become revivified ... Erosion is the basal problem which underlies soil exhaustion in this region, and so prevalent and so disastrous is it that it has become not only a serious local agricultural problem, but an important national problem as well, affecting the value of many investments which have been made in the region." The effect of heavy rainfall, destruction of farms, increasing floods, terracing to check erosion, and tree-planting are all considered.

ATWOOD, A. W. (657)
Traces the history of conservation in principle and in practice. Attributes soil erosion on public lands to overgrazing.

AUTEN, J. T. (658)
The depletion and abandonment of farms in the Central States are described. "Hay Holler" is a valley in Vinton County, Ohio. The author describes erosion processes which caused its inhabitants to leave and settle elsewhere.

BAKER, O. E. (659)
THE FUTURE NEED FOR FARM LAND. U. S. Bur. Agr. Econ. 28 pp., illus. 1934. [Mimeographed.]
The statement is made that the depletion of soil fertility by erosion is advancing at an accelerating rate. Data are given on soil-erosion losses throughout the United States.

BALES, C. G. (660)
"Half century of engineering to control the Mississippi and other huge streams from disastrous floods proves necessity for going back to source of water for reduction of flow ... correction at sources means redeeming of swamps, impounding at gully outlets and more tree planting." Topsol must be protected and farmers instructed in methods of plowing that will afford protection for their fields.
BENNETT, H. H.

It's Your Soil— Save it! Save Our Soil 1: 1, 2. March 1937.

Shows that the cost of erosion to the country is approximately $400,000,000 annually in reduced yields, abandoned acres, and lost fertility.

A paper read at the second Southwest Soil and Water Conservation Conference. Views the problem from a national standpoint and suggests broader methods of control.

This article is written from the viewpoint of plant food wastage through erosion. Figures are used to illustrate the annual discharges to the sea by rivers. The writer says: "The greatest error made in estimating the work of erosion on the basis of river silt comes from the fact that vastly more material is washed out of fields and pastures and deposited over lower slopes and flats and upon the flood plain upstream and in their channels than is carried into tidewater... There are good reasons to believe that the actual quantity of material thus stranded along the drainage basins every year is a hundred times the amount that actually reaches the sea."

SOIL EROSION CAUSES $200,000,000 LOSS TO FARMERS EACH YEAR. Engin, and Contract. 65: 243. November 1926.

Figures in acreage and dollars lost through annual rainwash are given. "Rushing rainwater sweeping over the fields of the United States carries away 20 times as much plant-food every year as is permanently removed by the farmers' crops... Probably not less than 10,000,000 acres of land formerly cultivated have been permanently destroyed by rain-wash."

"We know that at least 513 million tons of suspended soil material are carried out to tidewater every year by the rivers of the country..." Figures on plant food loss through soil deficiencies are quoted and examples of destruction and impairment of land are discussed. "In almost countless grazing areas and in many irrigating regions splendid valley lands have been ripped to pieces with gullies in western Texas, New Mexico, Arizona, Colorado, Utah and in parts of California..." Sheet erosion, relation of soil type to erosion, and relation of erosion to floods and land protection are among the subjects treated.

BOWIE, WILLIAM.

A discussion of geologic erosion and soil washing. Findings of the United States Geological Survey in soil losses are given.

BUSFIELD, R. M.

Salt pollution is beginning to show in the underground fresh water supply in Texas. "The solution of Texas's year-around fresh water problem lies partly in the utilization of the flood waters which yearly exact a heavy toll from Texas farms and cities... This immense supply of fresh water tumbles into the Gulf of Mexico carrying with it millions of tons of rich and fertile top soil from Texas farms." The writer advocates the immediate acceptance of the recommendations for water conservation drafted by the water resources committee of the Texas State Planning Board.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

CHAMPION, A. M. (668)
“Conditions ... in Africa are different from those in many parts, where increased density of population has stimulated the development of improved technique, for the Africans seem to have remained static: The increased population demands more from the soil, and yet knowledge regarding its preservation has not progressed.” The author discusses the causes of accelerated soil erosion; the nature and physical structure of the soil; the formation and geological structure of the underlying rocks; the gradient on which soil rests; atmospheric conditions; the existence or absence of a mantle of vegetation and its nature; nature and extent to which the land is cultivated; and overgrazing by stock. He urges the need for regulated and systematic research in all problems of soil erosion.

CHAPLINE, W. R. (669)
“Erosion, the removal of the soil cover by water and wind, has been materially hastened by depletion of the vegetation on western range lands.” Overgrazing, the formation of gullies with consequent widening and deepening of them, and the need for measures of prevention are stressed by the author. “Faced with so big a problem, research needs the most earnest encouragement and support.”

CLINE, JOHN H. (670)
The writer contends that careless farming is bringing about the self-destruction of America. “Floods and dust-storms ... are only spectacular demonstrations of the results of insidious soil erosion in virtually every state in the Union. Careless farming and timber-cutting ... has brought this country dangerously close to economic ruin.” The land can be saved if man and science intervene to conserve the land. New legislation to this end is discussed.

COLE, W. S. (671)
“The structurally controlled meanders of Coy Glen were modified in 1935 by a flood of short duration but unusual volume and force ... As slow incision, structurally controlled, formed the spurs, their modification in a single flood is definite evidence that such erosion is extraordinary.”

[COLLIER, JOHN] (672)
The Navajo problem is acute. These Indians should be “given a chance to expand normally on additional land ... The eroded reservation is no longer able to feed the sheep that support this virile race of original Americans.”

CONNAUGHTON, C. A. (673)
Gives information on the relation of fire to erosion in central Idaho and indicates the necessity of fire protection as a watershed-management measure.

COOKE, C. W. (674)
Attributes the decline of the ancient city of Uaxactun in Guatemala to erosional processes. Tells of soil washing from cultivated lands into a lake, converting it into a baja, or logwood swamp, unsuitable for habitation.

"Some of the factors . . . that may have caused the decline of the Mayan Empire and the depopulation of the Petén are (1) erosion of the soil and the consequent scarcity of arable land, (2) silting of the lakes and the destruction of water transportation, (3) diminution of the water supply during the dry season, (4) increase in the number of mosquitoes, and (5) introduction or increase of malaria." The writer describes the topography of this district, both uplands and lowlands.

Results are given of a recent survey of the upper Rio Grande watershed in New Mexico. It is stated that "on 40 per cent. of the watershed in New Mexico above Elephant Butte Dam, deterioration of the natural vegetation has reached an extreme stage, and the lands are excessively eroded. On 35 per cent. of the area, the plant cover is in a medium stage of deterioration, and erosion is advanced. Evidences of accelerated erosion were found on parts of all the major vegetation-type areas, principally where utilization was uncontrolled."

Striking evidences of accelerated erosion in this region are channeled valleys, arroyos, gullied slopes and sand washes, altered courses of mountain streams, accumulations of stones and sand, and disappearance of luxuriant valley grasses and soils. Destructive effects of accelerated runoff are evidenced by destruction of primitive irrigation works, silting up of river channels and reservoirs, flood destruction around Elephant Butte Dam, destruction to recreational and wildlife resources. Causes of deterioration of range and forest lands are discussed together with vegetation-erosion relationships.

Literature cited, pages 87-88.

Cultural burning is a general practice among tenant farmers, and even many of the more intelligent owner-operators indulge in "this insidious procedure." The author states that "from the standpoint of the Soil Conservation Service the delta region offers a novel problem, one not wholly within the field of erosion control, although severe wind erosion and soil loss occurs as a result of these fires."

"It has seemed to me that our theory of the stages of the cycle of erosion has suffered from two matters of defective observation: first, over-emphasis of the power of washing; second, under-estimation of the power of lateral corrosion. The whole theory was worked out at a time when denudation was supposed to be accomplished by three main processes—headward extension of tributaries, downcutting by all streams, and reduction of interfluves by wasting . . . A fourth dominant process has been appreciated, namely, lateral corrosion . . . Nothing has been done to amend the erosion theory in the light of newer knowledge of these four kinds of action."

The writer considers each of these in turn.

OUR WASTEFUL NATION. 134 pp., illus. New York, Mitchell Kennerley. 1908.

This is the story of American prodigality and the abuse of our national resources. "The following chapters are intended to give an idea of the enormous waste of which our people are guilty. They were written and
compiled in the hope that they might teach the lesson, that it is well to economize in the days of plenty, so that we may have sufficient in the days of need." The destruction of the forests, waste of water and soil, waste of mineral resources, vanishing game and birds, and waste of public lands and privileges are subjects discussed. The writer declared that the strongest proof of an awakening in the Nation to the danger of waste has been the conference of Governors held at the White House in May 1908.

Crosby, I. B.

A canyon over 50 feet deep and half a mile long was made by flood waters at Cavendish, Vt., in a single night. "It is not safe to refer all cases of erosion to the distant past and consider that they have taken a very long time... Undoubtedly there are other places in New England where unusual flood conditions may lead to a disaster but which can be prevented if they are foreseen in time."

Dana, James D.

The author describes the action of erosion and cites examples in California and the Rocky Mountains.

Davis, R. O. E.

"This bulletin discusses the conditions affecting soil erosion as observed in a field study through the States of Virginia, Tennessee, Missouri, Mississippi, Alabama, Georgia, South Carolina, and North Carolina."—Expt. Sta. Rec. 32: 811. 1915.

Deck, S. F.

Of recent years various commissions have investigated the problem of soil erosion and denudation both in South and in East Africa. It is well known that in northern Africa what is now desert was once fertile country, carrying a large and highly civilized population. In Kenya the people are mainly pastoral, but about 140,000 acres are estimated to be under cultivation, the main crops being millet, beans, and sweetpotatoes. The denudation and soil erosion which are rapidly turning this once-fertile district into a semidesert are of recent occurrence. Erosion in Kenya occurs in an aggravated form under the following conditions: Where the rainfall is definitely seasonal; where the annual rainfall is 30 inches or less; where the geological formation is schistose or a recent volcanic ash. The older lavas generally form a stiff compact soil on which erosion is less marked.

Dicken, S. N.

"Marginal to the Western Coal Basin in western Kentucky is a sandstone-capped cuesta, unusual in that the capping layer is less resistant, from the standpoint of normal surface erosion, than the underlying limestones. Only because solution is, locally, the more important process and only when the opened fissures in the limestone have captured the surface streams can the limestone be removed more rapidly than the sandstone. Thus the cuesta is formed and maintained (with gradual migration down dip) by solution rather than normal surface erosion."

Dole, R. B., and Stabler, H.

"The accompanying tables present estimates of the rate of denudation in the United States. The figures show the rate at which the earth's crust is being moved as solid particles carried in suspension by streams and as matter carried in aqueous solution. The first table is a summary of the estimated denudation for the whole United States and for the primary drainage basins; the other tables contain detailed estimates for smaller areas. The map indicates graphically the rates of denudation in different parts of the country." The methods of computation and their probable
accuracy are considered. "The estimates reveal that the surface of the United States is being removed at the rate of thirteenth ten-thousandths of an inch per year, or 1 inch in 760 years."

Dreier, John. (687)
General discussion of land depletion in the United States.

Duley, F. L. (688)
"Studies conducted at the Missouri Experiment Station are reported which showed that under the conditions existing at the Station the increased loss of soil by erosion due to early plowing for wheat may be considerable, and during this period has been slightly more than that during the rest of the year. On the whole, however, erosion from wheat land is not extremely serious, being only about half as much as from corn land. Where wheat follows another crop like corn or soy beans, and is itself followed by clover, the erosion is greatly reduced."—Expt. Sta. Rec. 56: 75. 1927.

Eaklin, Henry M. (690)
HARMLESS EFFECTS OF EROSIONAL WASTE. The Land, Today and Tomorrow 1: 4-7, Illus. November 1934.
This article points out that accelerated erosion means accelerated waste and describes soil losses in the southern Piedmont, the Black Lands of Texas, and various sections of the Southwest.

Fenneman, N. M. (691)
"The interpretation of erosion in terms of cycles is based largely on the recognition and identification of peneplains. The author also discusses the various associations and origins of peneplains, and emphasizes the "principle of erosion without change of form ... It has long been known that gullying of fields is one of the major wastes of our civilization."

Flint, H. R. (692)
FOREST FIRES AND EROSION. Forestry Kaimin (Mont. Univ. Forestry Club), 103 pp., Illus. May 1927.
On pp. 17-18, and 42 the writer points out the erosive effect of a torrential rain on 2,000 forest acres that had been denuded of forest cover by fire. "Probably thousands of tons of ashes, charcoal, lighter surface soil, small stones and pieces of wood were washed off the steep slopes ... The river just below the burned area turned a dull chocolate brown from the load of sediment and charcoal which it carried"

Gilbert, G. K. (693)
An abstract of a paper based on material gathered by the author while in the employ of the United States Engineers. "Sand is efficient in erosion (1) when moved by water, and (2) when moved by air; and in our western territory are to be seen some peculiarly forcible illustrations of both phases of its action. The function of flowing water in denudation is threefold. It dissolves rock; it carries the sand which cuts rock; and it transports the debris ... Precisely analogous is the action of dry sand carried by the wind." Other phases of erosion by dry sand are described.
GLENN, L. C. (604)
DENUDATION AND EROSION IN THE SOUTHERN APPALACHIAN REGION AND THE MONONGAHELA BASIN. U. S. Geol. Survey Prof. Paper 72, 137 pp., illus. 1911.

“This report presents a brief summary of the results of an examination of the southern Appalachian region during the field seasons of 1904 and 1905 and of the Monongahela Basin in West Virginia and Pennsylvania in 1907, made for the purpose of studying the effect of deforestation and consequent erosion of the steep mountain slopes on geologic, hydrologic, and economic conditions, both in the mountain region itself and in the surrounding areas through which the many streams that rise in the high Appalachians flow on their way to the Mississippi, the Gulf, or the Atlantic.”

GRIFFIN, GERALD. (695)
SCRAPING OFF SILT TO FIND FARMS. Louisville (Ky.) Courier-Jour., Mag. Sec., p. 8, illus. May 2, 1937.

The author describes the January floods in Mississippi which left tons of worthless topsoil in the form of silt on many farms. Silt used to be a blessing, but sheet erosion and gullying have ruined sloping fields and the subsoll has washed down onto the fertile fields. Sand, scoured out of the river bed or washed from terraces along the rivers where high waters cut into the banks has, in some cases, ruined the farms.

HARGER, H. S. (696)

The writer considers the south African continent from Jurassic times onward. Basing the rate of erosion at 1 foot in 3,000 years, it has taken about 10 million years to reduce South Africa to its present level. “During the degradation of the continent by rivers and their smaller tributaries, important climatic changes appear to have taken place. In the earlier stages of denudation we appear to have passed through a period of much heavier rainfall than is experienced at the present day... Evidence points very strongly to a period of great diluvial intensity... further evidence of intense denudation due to heavy rainfall is to be seen in the new desert and very dry countries further west.” Rivers of considerable size traversed these deserts and are now almost or completely dried up. Eolian erosion, the work of winds in Southwest Africa and the movement of sand dunes are considered.

HARTWIG, L. H. (697)

Destruction of land by erosion represents an annual loss to farmers and ranchers of $400,000,000, “not including the damage resulting from silting of streams, lakes, and harbors, nor the cost of repairing railways and roads. Erosion is definitely the cause of much submarginal land. Floods, on the other hand, are a direct result, for when the absorptive topsoil has been washed away, the volume and frequency of freshets is proportionately increased by the more rapid flow of rainwater from millions of exposed acres.” Erosion is traced in the United States from the coming of the white man. Comparison is made with the Mayan civilization which perished through the results of erosion, and with the fate of many lands in China.

HAVILAND, P. H. (698)

“The subject of soil erosion in the Union of South Africa was investigated very fully by the Drought Investigation Commission a few years ago.” The Commission stated that “the diminished capacity of the country to hold up and utilise the rain which falls have been caused by the deterioration of its protecting vegetal cover and by soil erosion.”

HIGGINS, JAY. (699)

The following conditions exist: an increase of erosion; overgrazing, resulting in depletion of vegetative cover in certain regions; a marked association between denuded areas and erosion.
HOBBIE, W. H.

A study of the deserts of northeastern Africa. Treats of the contrasting features of humid and arid lands; the casehardening of rock; sand-blast erosion; evolution of ideas respecting the origin of desert depressions; and the oasis depressions of the Libyan Desert.

HOR, COLONEL.

 Causes are attributed to unequal resistance of different parts of the river bed or to deflection of the current from one bank to the other; to centrifugal force of the current which attacks all banks slightly concave; and to deposits in the stream. The author supports his contention by citing the Moselle and Danube Rivers as examples.

HOLLAND, L. B., AND GLOVER, H. M.

Discusses rainfall and geological features of the region. The effect of forests on rainfall and run-off are also considered. Erosion factors in the Inner and outer Himalayas are treated separately.

HUNTINGTON, E.

"This book is the record of a journey in Central Asia, and its aim is to illustrate the geographic relation between physical environment and man, and between changes of climate and history." On page 102 the author considers wind erosion: "The areas of sand and lacustrine deposits comprised in the central plain [Lop basin] are notable as examples of the kinds of regions not adapted to life of any form. They are more important as showing that in times past, under different conditions, the same regions were more favorable to life. In the eastern part of the plain, widespread deposits of broken and blistered salt, and beds of variegated clay, proclaim that long ago the lake of Lop-Nor was much larger than now. Farther west, the waste of sand known as the Takla-Makan Desert illustrates the work of the wind, acting upon the materials deposited by the streams in broad flood plains... In many places the sands of Takla-Makan have buried the ruins of ancient villages, or the remnants of ancient vegetation..." Further examples of aeolian erosion are given in chapter VIII in which the tamarisk mounds, 2,000 years old, formed and fed by the wind, are described. Ch. XVI deals with erosion in Iran, quoting Vredenburg: "In all the valleys around Zara there are to be seen hundreds of stone walls... Sometimes they stretch right across the flat, pebbly floors of the great valleys... The country is quite uninhabitable for want of water, and yet there is no doubt about the nature of these walls... being, in fact, nothing but terraced fields. In many cases they still hold back the soil, formerly cultivated, which had been heaped up against them."

JACOBS, E. C.

Describes a gully 40 feet deep and 200 feet wide, caused by flood in Vermont.

JENNINGS, A. C.

"In traversing unoccupied parts of the country where human agencies have not been at work, there are, except on steep hillsides, practically no evidence of surface washing or donga [gully] formation... The principal form of erosion so far experienced in Rhodesia is... surface or sheet washing of cultivated lands; and this, owing to its insidious nature, is undoubtedly one of its worst types..."
JOHNSON, DOUGLAS W.
Technical study of geologic erosion. Gilbert's statement of the theory of lateral planation is outlined.

JUDD, C. S.
Overgrazing, causing exposure of soil which trade winds carried out to sea, has left barren the small island of Kahoolawe in the Hawaiian group. "The first step in the plan of reclamation has been to get rid of the wild stock on the island, and during the last eight years over 4,000 goats have been exterminated . . ." Improvement has resulted from increased growth of native weeds, grasses, and mesquite.

KEIL, P. F.
Compares conditions that existed 2 centuries ago with those of today. Describes causes of land devastation.

KELLY, WILLIAM A.
"The area in the vicinity of Grand Ledge comprises the most extensive exposures of Pennsylvanian rocks in Michigan. The sandstones, shales, coal seams and the single limestone stratum have an estimated thickness of about one hundred and fifty feet . . . Subdivision and mapping of the strata are facilitated if reserve is made to the hypothesis of cyclical sedimentation, as outlined by J. Marvin Weller. There are at least nine cycles represented. Each group of strata has an interrupted distribution as the result of erosion subsequent to a cycle of deposition."

KEYES, C.
The writer contends "that the wind-borne dusts from western deserts are alone probably depositing materials over the entire Mississippi Valley faster than the river and its tributaries are carrying rock-waste to the sea." He adds: "Nowhere on earth is there finer exemplification of vast continental sedimentation . . . Growth has exceeded decline a hundred-fold." He believes that elaborate stream measurements give little clue to the absolute rate of continental lowering through erosion.

KEYES, CHARLES R.
After criticizing the present-day geological exploratory expeditions, as trending to unbridled imagination rather than cool scientific judgment, the author considers desert erosion from various viewpoints. "That the erosion of the desert is potent, extensive, and unusually rapid is amply attested by the evidences abounding on every hand . . . It seems probable that we must now regard wind-scour not only the most important erosive agent under conditions of aridity but more potent than all other agencies combined."

KNIGHT, HENRY G.
A paper read at a meeting in Syracuse, N. Y., June 1932. The author discusses the national aspect of soil erosion and estimates the losses to the entire country. The suggestion is made that the problem be placed under State and Federal control. Erosion conditions in Texas and New Jersey are especially noted.
Lawson, Andrew C.

After stating the limitations of the problem, the writer goes on to consider the batter of canyon walls, the lowering of rounded hilltops, earlier discussions of convex profiles, the process one of transportation, not corrosion, the straight slope, the occurrence of round-topped hills, the increase of radius of curvature with time, the convex ridge, the dome, the geomorphic tendency of late maturity, and parabolic convexities versus circular.

Lee, L. L.

The geographical provinces, underlying rocks, and topography are discussed, and mention is made of the extremely diversified soils in New Jersey. Erosion is considered in the Piedmont plain, the Appalachian valley, the highlands, and the Coastal Plain.

Linton, D. L.

A general treatise on the rapid acceleration of erosion in recent years throughout the world.

Lowdermilk, W. C.

"Treatises on erosion in geological text books are generally restricted to the conspicuous processes evident in arid regions, and to the work of waves and of flowing water in streams . . . Trenching by streams creates erosional potentials for water-action within landscapes; it is response to these erosional potentials that requires our brief examination." The writer discusses the significance of slope profiles, soil creep, importance of relief areas in erosion studies, interdependence of vegetation and soil, geological norms of erosion, and accelerated erosion.

McCallie, S. W.

"Thousands of acres in this region [Georgia] within the last few years have been made worthless for agricultural purposes by the destructive
agent of rain wash, as a result of the removal of forests." Three practical methods are open to man to retard soil washing: "terracing, deep plowing, and the protection of the forests."

McCABY, S. H. (721)

Pages 7–12 furnish data on the progress of soil erosion studies conducted at 10 experiment stations throughout the country.

McDonald, Angus. (722)

An account of the struggle in Oklahoma against the ravages of soil erosion. Traces briefly the settlement of the State from 1889 to 1906 and the subsequent erosion resulting from the removal of vegetation. "Erosion appeared first in those areas which were put into cultivation earliest." The trial-and-error method of checking erosion, as practiced by individual farmers, is discussed. "The solutions of individual cases of erosion lose much of their significance when later the enterprising farmer is overwhelmed by erosion caused by his neighbor's neglect."

Malott, C. A. (723)

"In this paper an attempt is made to clearly present the erosive processes and to give the terms which the writer appeared suited to them ... Distinction is made between weathering and erosion, which are regarded as inclusive terms comprehending two sets of distinct processes which may act separately or in conjunction ... The various individual processes of each of the great erosive agencies are described under the terms which appear to be well suited to them ..." Subjects treated are: Weathering and erosion, processes of wind erosion, processes of running water erosion, and glacial erosion.

Martin, L., and Williams, F. E. (724)

"The Lynn Canal-Chatham Strait fjord is in a mountain region where glacial erosion, stream erosion, change of level of the land, and faulting have all taken place. Its origin may, therefore, be thought to have involved: (1) ice erosion alone; (2) stream erosion chiefly, followed by sinking of the land; (3) stream erosion and glacial erosion, followed by submergence; (4) faulting as a major cause; (5) some combination of all four. It is the purpose of this paper to show that the fjord is due chiefly to glacial erosion and that stream erosion and faulting are of minor importance."

Matthews, E. R. (725)

Gives a résumé of the erosion and accretion that is taking place around the coasts of Great Britain and Ireland and treats comprehensively all forms of sea defenses, the merits and demerits of each type being discussed. Special consideration is given to methods of construction in reinforced concrete. Comparative costs are given.

Maxwell, Hu. (726)
LAKE MICHIGAN'S ENCROACHMENT ON ITS COAST. Sci. Amer. 120: 687, 699–700, Illus. 1919.

"The destruction of land by Lake Michigan has been extremely rapid in comparison with the rate at which seas usually destroy their coast. This high rate of destruction is accounted for by the kind of material washed away and its low power of resistance when attacked by waves." Article shows how the currents are stealing land from the western shore and giving it back at the southern extremity.
Which may take place from erosion...
their relation to various climatic agencies. The latter discusses the various phases of stream erosion. It also describes the formation of deltas and the development of stream valleys.

“In a recent summary of ventifact localities in the United States, the omission of certain regions where wind abrasion is widespread and obvious, indicates that the criteria of this process are often overlooked. Conspicuous examples of wind carving are to be found in the Dells region of Wisconsin and the upper Arkansas River Valley and South Park in the Rocky Mountains of Colorado. Little wind work now occurs in these regions; most of it probably took place under preglacial conditions in the Pleistocene ice age.” Accompanying photographs show boulders and granite marked by wind abrasion.

“Usually, the soil washed from hillsides is carried away by the streams, and no one is the direct sufferer except the owner of the fields that are so carelessly cultivated; but recently the writer’s attention was directed to several examples in Wayne County, [Tenn.] in which not only the land of hillsides was destroyed by wash, but the rock from these slopes is spread out over much of the bottom lands, to their destruction.” This latter condition is discussed.

The area considered is Cape La Croix Creek, Mo.

Soil washing on California orchards.

The author finds that removal of vegetative cover, mainly through excessive grazing, has caused alarming increase of stream trenches produced by floods. “The testimony of settlers is unanimous that, in the early days, there were few trenches in the valley bottoms, and that trenching has followed the appearance of heavy floods.”

Points out two possible examples of the influence of normal erosion, as distinct from catastrophic erosion, on the course of profile development.

The area studied is located near the experiment station at Pullman. It is typical of Palouse topography and is characterized by Palouse silt loam soil. Data are given on erosion of slopes bearing different types of vegetation.

Discusses three types of soil erosion: (1) Winter erosion; (2) soil drifting in dry lands; and (3) erosion from summer rains. It is the result of studies conducted in the Palouse and the Columbia Basin sections in Washington.
Rockie, W. A.

Presents figures on soil losses in the Palouse section of eastern Washington.

Contrasts the present eroded condition of various hillside slopes of the Palouse section of eastern Washington and northern Idaho with their productivity of 25 years ago. Control methods to check the encroachment of erosion are recommended.

W. A. and McGrew, P. C.

"Violent summer rains are less frequent in the Pacific Northwest than in most parts of the United States, but this region is not immune to their destructive forces. The conditions and results of an individual storm of the type that is infrequent but none the less damaging, are described in this paper . . ."

Rost, C. O.

"Virgin lands suffer little from erosion. It is only when the natural cover is disturbed or removed to establish agriculture on the land that problems of erosion arise." Estimates by the United States Department of Agriculture on erosion are included.

Rusch, C. P.

The author contends that the rapid loss of topsoil in all sections of the country where land has been farmed for many years will eventually cause the disappearance of much farm land. A chart indicates the changes in cropping plans that Iowa might adopt to insure a permanent agriculture.

Ryan, Will.

"It is the belief of those who have made studies of the matter that erosion is the greatest menace facing the future of agriculture in this country." Urges California farmers to consider the problem seriously.

Seffontein, J. L.

The author discusses the effects of erosion on South African lands, pasturage, stock, population, and general economic conditions.

The author deals with the value of the soil, the manner in which erosion takes place, and its chief causes.

Shaw, C. F.

The uplands of Great Britain, now being plowed for crop acreage, are discussed. The author contends that erosion is active on all these upland soils, and that the national program for self-sufficiency should plan agricultural activities on a soil-preserving basis.
SHELDON, PEARL. (754)
SIGNIFICANT CHARACTERISTICS OF GLACIAL EROSION AS ILLUSTRATED BY AN EROSION CHANNEL. Jour. Geol. 34: 257-265, illus. 1926.

“A channel produced by glacial erosion following the outcrop of a dike lies like a groove along the side of a large, deep valley. This grooving resulted from the differential erosion of a band of comparatively weak rock made up of weathered kimberlite from the dike and the contact jointing zones on each side of the intruded rock. Active differential movement within the ice is indicated as permitting and facilitating the erosion processes. Plucking was particularly effective and different phases of this process could be determined. Deductions regarding the depth of glacial erosion are based on the conditions observed.”

SHORT, A. K. (755)
A short review of a report of Secretary of Agriculture Arthur M. Hyde to President Hoover giving data on annual soil losses.

SINCLAIR, J. D. (756)
EARLY OBSERVATIONS ON SOIL WASTAGE IN MISSISSIPPI. Forest Worker 6: 19. November 1930.
Excerpts from a report on the geology and agriculture of the State of Mississippi by the State geologist, published in 1857, are given.

SOKOLOV, S. S. (757)
There are three types of erosion in the Ukraine: river erosion, ravine erosion, and denudation. Methods of mapping all three are described.

STALLINGS, J. H. (758)
“Careless, haphazard, erosion-inducing farm practices of tillage and cropping have taken severe toll of our good farm areas... This wastage is proceeding in America faster than with any race or people, civilized or barbaric, in the history of the world. Land deterioration has very markedly influenced, and even determined, the actual destinies of nations.” Surveys and soil-erosion experiments through the Piedmont and from Oklahoma to California are dealt with at length.

STANTON, F. W. S. (759)
In 4 parts: Part 1 consists of general observations on the difficulties encountered in checking the perennial encroachment of the sea on the east coast of England; part 2 deals with the causes of erosion and its extent in various seaports of England; part 3 discusses engineering structures to check coast erosion; and part 4, an appendix, describes the physical formation of the Thames estuary.

STARKER T. J. (760)
“One of the greatest factors in soil erosion is the amount of precipitation and the period over which it falls...” Recommendations for proper soil cover to prevent ruinous washing are made.

SUNDERLIN, H. H., AND CLYDE, A. W. (761)
“The removal of the top layers of soil is a more serious problem than is generally realized.” Surface erosion is discussed with regard to organic matter, deep plowing, and contour farming. Hillside ditches are discussed with regard to sod strips, and tile drains.

TARR, R. S. (762)
“Thus it will be seen that the great agent of erosion, water, is of particular importance in the arid regions on account of its intensified action
during brief periods; that the direct effect of aerial currents is a powerful factor in the erosion of these plateaux; that the sun’s heat must also play an important part; that plants are only slightly conservative and slightly destructive; and that animals, by tramping down the soil or by burrowing and tunnelling into the earth, are important aids in the great work of subaerial denudation by which the plateaux of the West are being gradually eaten away.”

TEZAGHI, K. (763)
“The most impressive subsidence and slip due to underground erosion with which the writer has had direct experience occurred on the high bank of the Mississippi River at Memphis, Tenn. . . .” Similar processes are considered a possible cause of the failure of the Corpus Christi Dam.

THOMPSON, M. W. (764)
“A notable example of severe erosion immediately following the destruction of the forest cover by fire, in contrast with the very satisfactory protection afforded by forest cover on an adjacent area, is found near Rapid City in the Black Hills National Forest, S. Dak. The destruction of the protective cover was the only change that occurred prior to the time the erosion took place—all other factors remaining unchanged. Here the direct relationship between the removal of forest cover and subsequent erosion is clearly demonstrated.”

UDDEN, J. A. (765)
The author contends that the subject of this paper has not received any general and searching attention from geological students in this country. “This is the only excuse for presenting . . . a few considerations bearing on the topic. I take the liberty to state in a dogmatic way what appear to me to be some laws governing aerial erosion, transportation and sedimentation in general . . . As an agent of erosion air is far less efficient than water.

UNITED STATES CONGRESS, HOUSE COMMITTEE ON APPROPRIATIONS. (766)
An explanation of the soil-erosion item in the bill is given, as allotted to the several bureaus. Work done under this appropriation, and the work of seven projects under the “National program of erosion-stream flow investigation on forest and range lands,” is outlined. Work done under the allotments to the Bureaus of Chemistry and Soils and Agricultural Engineering is described.

UNITED STATES WEATHER BUREAU. (767)
“The deepest and most precipitous canyons occur in regions that have but little frost and only occasional but heavy local rains. In these regions a comparatively small watershed of very steep gradient carries a mass of water downward with such force as to do far more erosion and other damage than if the same rain were spread over a longer period of time”

VER STEEG, KARL. (768)
“During the past four years the writer has spent considerable time in the field and in the laboratory studying the Appalachian region, especially in New Jersey, Pennsylvania and eastern Ohio. It was obvious in the beginning that a study of the northern Appalachian region without the southern portion was inadequate to anyone wishing to obtain a correlation of erosion-surfaces. In consequence of work done recently in the southern Appalachians, a tentative correlation is here presented.”
CONSERVATION IN GENERAL

ADJUSTMENT IN THE YEARS TO COME. Fert. Rev. 10: 10-11, illus. 1935.

The writer refers to President Franklin D. Roosevelt's statement that the policy of the A. A. A. in the future would place even greater emphasis on the improvement of soils through the use of adjusted acres for soil-improving and erosion-preventing crops. Balanced production and soil-saving grasses are discussed.

Rates of payments which California farmers may earn for soil- and range-building practices under the 1937 program are listed under 22 items on grasses and legumes.

"Alarmed by the rate at which soil is being washed down rivers to sea, some of the Federal Land Banks are making conditions on loans specifying steps to be taken to prevent erosion. All banks are being asked to cooperate in the effort to keep the soil in its place."

A description of the way in which a South Carolina farmer is following a soil erosion-control program recommended by the Soil Conservation Service. Terraces, meadow strips, and the kind of plow utilized are described.

"This is a story in which the text explains the cause or chief cause of the so-called 'Dust-Bowl' and the pictures show the cure or one of the cures."

The soil erosion service program is outlined showing distribution of $20,000,000 P. W. A. allotment for reclamation of 35,000,000 acres of eroded land. "Effective control of erosion can be accomplished in the project areas through such measures as contour ditches, check dam construction, strip cropping, reforestation, and revegetation of the steeper denuded slopes."

Benefits deriving from the new farm bill amending the Soil Conservation Act are stated as: (1) Providing cash payments to the farmer for participation in a soil-conserving program on his own farm; (2) shifting grain acreage into pasture and so preventing overproduction and price drop in grains; (3) aiding livestock prices by preventing the overproduction that always follows cheap grain; and (4) providing for Federal purchase of surplus livestock products for distribution to unemployed.

"The advisory and demonstrational activities of the State colleges and the Federal Soil Conservation Service ... are of incalculable value ... but the actual work of saving the soil will have to be done by local agencies."
This article explains the various systems and schemes used to combat soil erosion in South Africa.

This article describes the main types of erosion and gives considerable data on donga, or gully control. Sheet-erosion control is also discussed. Chief methods described are storm drains, embankments, and ridges.

This article recommends as control measures the reforestation of submarginal farm land or land where the slope is too great for profitable farming; the construction of many hundreds of small dams rather than concentration on a few large ones; and greater soil-conservation and flood-control cooperation from the individual farmer.

This article outlines the action necessary for the prevention of "earth disease", i.e., lost topsoil, gullied slopes, dry watercourses, dust storms, and floods.

This article stresses the importance of fertilizing and liming soil to increase crop yields and to decrease erosion of topsoil.

This article tells what the Soil Conservation Service in cooperation with the Civilian Conservation Corps and Works Progress Administration is doing to check erosion. Quotes estimates on soil losses from the writings of H. H. Bennett.
ANONYMOUS.

An account of the Coon Valley soil-erosion program in western Wisconsin.

In the Norris Dam Reservoir area, the Tennessee Valley Authority applies erosion-control technique along highways by fertilizing, seeding, and mulching with brush or straw.

The writer describes the erosion-control demonstrations in Steuben County, N. Y., conducted by the Soil Conservation Service.

KEEP HILLSIDES FROM WASHING. Farming 10: 305. March 1921.
Information on soil erosion, its causes and effects, is quoted from bulletins published by the University of Wisconsin and the Mississippi Extension Service, respectively. The losses to farmers annually from soil washing and preventive measures are discussed.

A practical example of treatment on gullied slopes in Clark County, Ind., is presented. "With this experience as an object lesson, a crew of men worked at the Morgan-Monroe forest, filling gullies with brush, and planting black-locust seedlings and pines on the eroded fields." The cost of control was estimated at about $12 per acre on gullied land.

The area for the Arizona and New Mexico project involves 8,000,000 acres in the drainage basin of the Gila River.

"The gullying of land can be checked by planting trees . . ." The spreading, compact root system of the black locust tree is recommended as a soil binder.

Reference is made to a series of articles on soil erosion by T. Eden, in which he forcibly stresses the menace of erosion in relation to the general question of the maintenance of soil productivity. "The relationship between water run-off, rate of soil erosion, and surface gradient has been critically investigated." Three general methods of combating this menace are discussed.

The new A. A. A. program of national soil conservation provides $120,000,000 in benefits for farmers of the Middle West who cooperate. What individuals must do to help this program is discussed along with other aspects of the program.
This article outlines the terms of the soil conservation program for 1936, as announced by Secretary Wallace. The salient points of the program including agreements, soil-building, and soil-conserving payments are explained. A review is also given of the administrative organization, organization in States and counties, and a preliminary classification of crops.

NEW LIGHT ON SOIL EROSION. Farm and Ranch 53: 24. July 1, 1934.

Some observations on the findings of the Soil Erosion Experiment Station No. 4 near Tyler, Tex. Information is given on crops to check erosion, gully control by Bermuda sod bags, strip cropping on terraces, and closed-end level terraces.

NEW PROGRAM FOR CONSERVING SOIL. Wallaces' Farmer 61: 4, 8. December 19, 1936.

A discussion of the Soil Conservation Service program for 1937 showing how the farmer may benefit by cooperating.

ONE WAY TO STOP SOIL WASHING. Power Farming 27: 43. February 1918.

The reason for excessive wash of the rich and fertile soil around Griffin, Ga., is the underlying red clay which is impervious to water penetration. The author cites an experiment made in 1916 "Two of the three washes were subsold with dynamite while the third was left as a check. The idea in blasting along the sides of the wash and back of the terraces was to break up the hardpan." Wheat planted on the blasted sections was found to yield 20 percent more than did the rest of the field.

On the wind-erosion control project east of Dalhart, Tex., trees are being set in natural sites and in engineered sites where water collects naturally or by diversion of natural run-off.

PREVENTABLE SOIL EROSION IMPOVERISHING NATION'S FARMS. Manfrs. Rec. 98: 42. September 18, 1930.

This editorial stresses the need for contour plowing and terracing to control erosion and conserve moisture. "... it is encouraging to know that soil erosion prevention methods are beginning to show results."

A treatise on highway erosion and its control in Rhodesia. A sketch shows a suitable lay-out which facilitates delivery of storm water to road drains without erosional damage.

THE PURPOSE OF UP-STREAM ENGINEERING AND ITS HOPE. Outdoor America 2: 4-5, 11, illus. November 1936. [Reprinted from the Young Executive, official publication of the Junior Chamber of Commerce, by permission of the publishers.]

"Up-stream engineering is the engineering of multitudinous little structures and of proper land use ... The time has come when both the rural and urban dweller must unite in a fight to save American soil . . ."

Figures show how a farm-power contractor can function in a community to aid farmers. Costs of terracing pasture land are given.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

The engineer's part in saving the soil is stressed, and a number of recommendations by a representative of the Soil Conservation Service in Wisconsin are listed. Among them are terracing, strip cropping, and gully control.

Experiments reported from Griffin, Ga., show that the force of a high explosive may be used to save as well as to destroy. On one farm on which experiments were carried out the land was rolling and the soil typical of the section. Two bad washes in one field were blasted in order to effect vertical drainage. The unblasted one suffered soil erosion later, but the other two were seeded to wheat and resisted downpours and consequent erosion.

Numerous advantages that would result from a well-coordinated erosion-control policy are listed.

Brief summary of five schemes under which government assistance is afforded for the control of soil erosion and the building of small dams for water conservation in South Africa.

Attention is called to "the first important test of some of the wind and water erosion prevention practices being advocated and demonstrated by the Federal Soil Conservation Service." It is stated that watershed dams, contour farming, terracing, and diversion ditches constructed in Powers' and Baca Counties, Colo., proved successful to control run-off during and after a 24-hour precipitation. "The results are not only gratifying to the Service but are encouraging to landowners who are planning to carry out similar soil-retaining practices on their own ranches."

This editorial discusses results of an experiment conducted at the University of Georgia to determine loss of plant-food value by soil erosion. "A comparison was made between 115 pounds of soil washed from an acre of woodland in a year and 11,316 pounds (56 tons) eroded from the same area of typically bare soil in the same time . . . On the woodlands only 3 pounds of plant food valued at 5 cents was lost. To replace them would require only 3 1/4 pound nitrate of soda, 1 pound superphosphate and 1 1/2 pounds muriate of potash. But to replace the plant food lost in the 56 tons of soil washed from the acre of bare ground, the farmer must spend 8,775 for 450 pounds of nitrate of soda, 12 for 1,100 pounds of superphosphate and 38.40 for 1,700 pounds muriate of potash. Had these washed plant foods stayed in the soil, they would have been sufficient to make an acre of land yield 50 bushels of corn for four separate seasons."

$6,000,000 TO COMBAT EROSION. $6,000,000 TO COMBAT EROSION. Ariz. Prod. 12: 5. December 15, 1933.

Launching of the large Government projects on the Navajo Reservation and Gila watershed are summarized.

"Upstream Engineering Conference in Washington discusses many subjects related to the conservation of soil and water at the headwaters of
rivers; lack of adequate engineering condemned." Brief summaries of papers of the conference held September 22 and 23, 1936, are presented. Topics emphasized are watershed moderators, soil-erosion studies, the beaver—first upstream engineer), erosion losses, types of flood control, surface run-off control, weather cycles, farm ponds in Kansas, use of small dams, and "dry lakes."

Describes the work of the Soil Conservation Service in the Northwest in cooperation with the Civilian Conservation Corps.

Discusses the soil conservation program for 1936, particularly the conditions under which contracts are entered into. A soil-conserving crop list is given; questions and answers bearing on vital points are included.

Attention is called to the need to prevent losses caused by soil erosion. The importance of maintaining a good vegetative cover, terracing, and the use of dams to reclaim gullies are stressed. "Half the battle against soil erosion lies in prevention."

"The general method of erosion control is to restore a vegetative cover." This phase of T. V. A. conservation work in remedying the damage done to land robbed of its natural protection is discussed. A tabulated summary of the accomplishment of the C. C. C. units for a 6-month period is given.

This is a review of the report of the committee on soil erosion (Ceylon Sessional Paper III of 1931, Govt. Record Office, Colombo.) "The Committee made exhaustive enquiries into the state of affairs existent in Ceylon by visiting all the important planting districts and inspecting agricultural works, irrigation works, village settlements, and forest clearings. . . Estates, small holdings. . . forest clearings, are considered seriatim, and the measures taken to combat soil erosion on each of these forms of cultivation are enumerated at length. The external evidence of erosion in the siting of estates and paddy fields, the damage to irrigation works, roads and railways, the siting and flooding of rivers is also described. . . The views of the Committee form the subject of a separate chapter."

SOIL EROSION SERVICE. Science 78: 596. December 29, 1933.

The work on a 200,000-acre erosion-control project in north-central Missouri is described.

Areas selected for the demonstration programs by the Soil Erosion Service are given. These areas are the upper Mississippi Valley near La Crosse, Wis.; north-central Missouri; south-central Iowa; central and southern Illinois; Black Belt of Texas; South Carolina Piedmont; Palouse wheat belt near Pullman, Wash., extending over into Idaho; southern California; Oklahoma; Navajo and Hopi Reservations in Arizona; New Mexico; and Utah.
Anonymous.

An important soil-management problem on a 62-acre peach orchard at Cucamonga, San Bernardino County, Calif., and the way it was solved.

A description of erosion-control work in the Southwest by the Soil Conservation Service in cooperation with other public authorities and with private individuals.

STUDY EROSION CONTROL ON BUREAU ROAD PROJECT. Pacific Road Builder and Engin. Rev. 44: 21, illus. April 1936.

This is a report of erosion-control experiments conducted on several large fills on the 5-mile unit of Angeles Crest Highway in Los Angeles County, Calif. Brush was placed between fill layers during compaction, and hay was placed at the bottom of the fill to cut down volume and rate of flow, reduce water concentration, and bind the surface. Illustrations show erosion-control work on the fill.

Describes the costs per acre of controlling erosion on the average farm in the Palouse wheat belt and discusses the work and program of the Pacific Northwest Soil Erosion Experiment Station at Pullman, Wash.

TO STOP SOIL EROSION LOSSES. Sci. Amer. 145: 97, illus. August 1931.

The writer discusses the findings of Henry G. Knight, who visited regional erosion-control stations of the Department of Agriculture at Bethany, Mo., and Pullman, Wash., outlines control methods, and shows that the western farmer is becoming rapidly aware of the necessity of coping with the problem.

“When farmers attend community meetings this month, to learn about the 1937 soil conservation program, one feature of special interest will be the neutral crops classification. Under this provision, certain soil depleting crops, when handled in specific ways, will be regarded as neutral and may be used to take the place of killed-out seedings of soil conserving crops. Two questions undoubtedly will arise at all meetings: What is the acreage limit on such substitution? What soil depleting crops will qualify and how must they be handled?” Both questions are discussed.

A reply to some of the sharp attacks on the advocates of conservation. “Conservation . . . means use, wise use, determined by the actual needs of the people . . . it denies the primary right of a few individuals to use for their private and personal gain the resources of the people.” Concrete examples are given of deforestation and devastation of public lands.

WINNING COUNTY AGENTS TELL OF BATTLE TO LESSEN SOIL EROSION. Fert. Rev. 4: 8-11. February 1929.

The author quotes Dean I. O. Schaub, of the North Carolina State College: “The greatest factor that limits production is soil erosion. If you ride from Raleigh to New Orleans you can almost pick out the counties that have county agents by observing the localities where the fields are terraced . . .” A review is given of the program of six county agents whose success in erosion control gained considerable recognition.
ANONYMOUS.
WISCONSIN 4-H BOYS DOING GOOD WORK TO STOP EROSION. Wis. Agr. and Farmer 64: 3, 8, illus. January 30, 1937.
Describes the work of 77 members of 4-H Clubs in several Wisconsin counties on erosion-control projects.

AKERS, B. H.
Discusses experiments in erosion control at the La Crosse Experiment Station in Wisconsin. Studies were in strip cropping and terracing, both involving contour cultivation.

ALLRED, B. W.
LOCAL GROUPS AID SOIL EROSION WORK. W. Farm Life 38: 8, 23. June 1, 1936.
Discusses the cooperation of Colorado farmers and stockmen with the Soil Conservation Service, in organizing local county associations for promotion of erosion-control programs.

ALLRED, C. E., AND ESRY, D. H.
SOIL CONSERVATION PRACTICES IN ACTUAL USE BY FARMERS; EASTERN HIGHLAND RIM, 1932-1936. U. S. Works Progress Administration Monog. 28, 38 pp., illus. 1937. [Mimeographed.]
The following soil conservation practices are described: Cropping systems; limestone; commercial fertilizers; manures; contour tillage and furrowing; strip cropping; diversion ditches; protected waterways; mechanical structures for gully control; terracing; and natural reforestation. A list of plants suitable to the section (Overton County, Tenn.) is given.

AMES, C. T.
"Experiments at the Holly Springs substation farm on the prevention of soil erosion are described . . . The laying off and construction of terraces is also described."—Expt. Sta. Rec. 32: 514. 1915.

ANSTEAD, R. D.
Methods for stopping soil erosion in a practical and economic manner have been adopted with success on many estates in southern India. The first is a modification of the terracing work done in Java, and the second is “to abandon forking and clean weeding on very steep slopes, and to keep the soil covered all the time by some selected weed . . . The choice of evils, lying between keeping a cover of weeds on steep slopes and allowing them to be washed by the heavy Monsoon rains is largely in favor of the weeds."

Describes two methods. The first is a modification of the work done in Java, and the second is the establishment of “particular” weeds by selective weeding.

ARKANSAS COLLEGE OF AGRICULTURE EXTENSION SERVICE.
For each of 12 areas, information is given as to climate, soils, and soil erosion, land use and crops, types of farms, and recommendations for improvement, among which are mechanical control of erosion by terraces and contour farming; use of winter cover crops; idle or abandoned land re-stocked with timber or improved pasture; steep slopes permitted to remain in woodland; and crop rotation.

ARKANSAS STATE PLANNING BOARD.
PROGRESS REPORT . . . NOVEMBER 1936. Ark. State Planning Bd. 244 pp., illus. 1936.
The section devoted to soil erosion, pages 44-45, includes the recommendations that, (1) the State, through some suitable department or agency,
avail itself of the facts and experience obtained by the United States Soil Conservation Service through its demonstration projects in Arkansas; (2) a long-term State-wide soil conservation program be evolved through the cooperation of individual farm operators.

Armsby, Sidney P.

Association of Southern Agricultural Workers.

At the symposium on soil and water conservation, 37th annual convention, Jackson, Miss., February 5–7, 1936, the following papers were given: Soil Conservation Program in the Southeastern States, by T. S. Buie, pp. 22–23; Some Phases of Vegetative Control in the Soil Conservation Program, by Ernest Carnes, pp. 23–24; Terracing Machinery and Terrace Construction Practices, by R. W. Baird, pp. 24–25; The Relation of Pasture Management to Soil Conservation, by R. E. Penn, pp. 25–26.

At the 1937 symposium, Nashville, Tenn., February 5–7, the following papers were included: The Interest and Responsibility of Agriculture in the Protection of Stream Flow, by C. R. Hursl, pp. 172–174; Meadow Strips, by A. H. Veazy, p. 174; The Place of Kudzu in Southern Agriculture, by R. Y. Bailey, pp. 175–176; Making Use of the Forest and Forest Trees in a Program of Erosion Control, by Richard Kilbourne, p. 176. Other papers of interest in this volume are: Research Procedure, by M. L. Nichols, pp. 34–35; Soil Conservation in an Improved Agriculture, by M. F. Miller, pp. 51–52; Marketing the Farmer’s Timber Crop, by D. E. Lauderburn, pp. 112–113; The Relation of Soil and Water Conservation to a Land-Use Policy for the South, by H. V. Gelb, p. 186; The Place of Legumes in a Soil Conservation Program, by T. S. Buie, pp. 204–205.

Atlanta & West Point R. R. Agricultural Department.

Ayres, Q. C., and Scoates, D.

Chapter 22, entitled “Control of Soil Washing” is an account of the kinds, causes, and results of soil erosion together with methods of controlling sheet erosion. “Many slopes are too steep to cultivate successfully . . . In such cases, it is best to sod them down for pasture use or reforest them . . .” The two principal types of terraces—the bench and ridge—are considered with variations and instructions for building.

Benham, J. F.
Indiana Soil Conservation Program. Purdue Agr. 30: 40–41, 48, 50, illus. January 1936.

Discusses the establishment of the Soil Conservation Service and the work it is doing in Indiana. The cooperative activities of the C. C. C. are outlined. Article further describes control methods employed, such as strip cropping, terracing, cover cropping, contour furrowing, and gully control.

Bennett, H. H.

This paper discusses the many phases of the soil conservation movement, including the constructive measures now being adopted by many
States in cooperation with the Federal Government. "There has been a
nation-wide network of demonstration projects ranging in size from 25,000
to 16 million acres each. Here the farmers of the county are shown by
actual concrete example that it is both practical and possible to halt the
inroads of erosion on the fertility, even the very physical substance of
their fields . . . There must be a permanent program of erosion control
if this country is to maintain permanent prosperity on its agricultural
lands."

The need is stressed for the cooperation of farmers and landowners,
businessmen and the press, but especially of the creative cooperation from
organizations, such as the American Society of Agricultural Engineers.

BENNETT, H. H.
beating back devastation. Mag. of Wall St. 58: 27. April 25, 1936.
Emphasizes the responsibility of the farmer in tilling the soil and at the
same time conserving its fertility.

THE COST OF SOIL EROSION WITH CONTROL SUGGESTIONS. Ill. Farmers' Inst.
30 pp., illus. 1934. [Also in Cong. Rec. 4857-4860. March 17, 1934.]
This address, delivered at the thirty-ninth annual meeting of the Illinois
Farmers' Institute, describes the ravages of soil erosion in various parts of
the United States especially Illinois. The different types of erosion are
described, and various treatments for each are suggested. The author
further discusses the national program of soil conservation and comments
on the work conducted on various demonstration areas.

EROSION: A CAMPAIGN TO CHECK THE WASTE OF OUR PRECIOUS TOPSOIL.
"The Federal Land Bank of Houston is making loans on the basis of
the top six inches of soil, which . . . represents the farmer's principal
capital." The bank's conservation specialists instruct the farmers in ter-
race building to save Black Belt soil in Texas. The causes of erosion,
and the destruction of fertile farmlands in many States are discussed.
"Six experiment stations have been installed in six major regions where
the problem is serious. Every soil-saving method of promise will be ex-
hauotively tested, such as terraces, various cropping schemes, new crops
strip-cropping, and strip subsolling . . . gully control will be experimented
with, even including 'living dams'—dams built of sacks and living grass
roots."

EROSION CONTROL IMPERATIVE. Better Farm Equipment and Methods 4:
33-34. March 1932.
Erosional damage in other countries and in the United States. "Con-
trol of the erosion problem is a matter of correct land usage and correct
protection."

HOW YOU CAN HELP. U. S. Soil Conserv. Serv. SCS-MP-14, 14 pp. 1936.
[Mimeographed.]
An address before the Young Men's Conference "On Behalf of a Con-
tinent," September 24, 1935. The author warns of the encroachment of
accelerated soil erosion and stresses the need of intensified research to
solve the problem. Various control measures are discussed.

A MAJOR EFFORT AT EROSION CONTROL. The Land, Today and Tomorrow.
This article discusses the work of the Soil Erosion Service, dealing with
its general plan of procedure. The author stresses the fact that only
through strongly concerted effort will the Service be able to cope with the
erosion problem on a national basis.
The work program of the Soil Erosion Service is described. “The program is characterized by a synthesis of procedure, involving the use of all proven methods of prevention and control in accordance with the most effective practical application of each, with undue emphasis given to none.” Tables show different erosion conditions in a reconnaissance erosion survey of the United States, and a 4-year summary of soil and water losses at Guthrie, Okla.

SOIL CONSERVATION TOMORROW. Ag-Ex News (DuPont) 4: 1, 4, 5, 8, illus. August 1935.

The Soil Conservation Service program, involving more than a half billion acres of land and millions of dollars in investments, is described. Five elements of the program are: (1) Adequate expansion of demonstration projects to cover representative erosion regions; (2) the start and completion of all erosion work needed on land owned or controlled by the United States and on lands draining into Federal reservoirs; (3) application of practical erosion-control measures on large watersheds in the various agricultural regions of the country; (4) adequate research conducted on a scale that will provide fundamental information upon which an effective national erosion-control program must be based; and (5) effort to educate the public in approved methods of control.

“The direct damage from sheet erosion is incalculably vast. Gullying and sliding cause much damage to fields and overgrazed and overburned watersheds and ranges. But this spectacular type of land impairment by unrestrained water is small in comparison with the never-ending process of soil wastage by sheets of rain flowing down unprotected slopes.”

WHAT TO DO ABOUT SOIL EROSION ON PIEDMONT FARMS. Tobacco Grower 1: 3-5, illus. July-August 1933.

Part of a series on soil erosion in the South. Discusses the general nature of southern soils and their susceptibility to gullying and sheet erosion. A national program of soil conservation is described wherein the following are considered: Strip cropping, cover crops, crop rotations, gully control, and the use of steep land.

BOWER, H. J.

On surface soil washing and gullying in Kansas, and methods and materials to he used for checking.

BOYCE, E.

“The availability of an adequate supply of water suitable for use can easily be a controlling factor in the agricultural and industrial development of a state.” The writer contends that the problem of reducing the pollution of streams is still acute. “Equitable policies with regard to stream pollution must recognize such usage of a stream as will serve the general public best.” Storm-water run-off and storage reservoirs are discussed.

BRAND, CHARLES J.

The author discusses various methods of soil erosion prevention practised in Ireland, England, France, and Germany. “In the field of forestry,
swamp land reclamation, preservation of soil fertility, and erosion prevention. Germany and some other European countries are farther ahead than we."

Briggs, Frank A.
Farm Land a Paying Investment. Farm and Ranch 53: 1, 5, illus. February 1, 1934.
A description of strip cropping and terracing on the Hooks farms in Hill County, Tex. Discusses the advantages of scientific methods in preventing soil erosion.

Brooke, D. A.
"This bulletin is an account of the progress made in three years in changing a run-down cotton plantation into a profitable stock and hay farm." Pages 18–19 deal with surface drainage and control of soil washing.

Brooks, B.
[Abstract in Engin. and Contract. 45: 548. 1916.]
Reference is made to the mountain terracing and irrigation system of the Igorots of the Philippine Islands; and to the Mangum terraces on the uplands of North Carolina, South Carolina, and Georgia in the United States. The object of this paper is to suggest soil conservation and flood prevention measures.

Brown, Grover.
The author contributes some practical information on four types of furrows in Region 1. He treats of uniform slopes, disposal of water from diversion ditches, drainage of spring areas, and the conducting of water from shallow draws.

Brown, H. Bates, Jr.
The problems of soil erosion, particularly in the Kentucky karst and Tennessee, are discussed in this article. "In an attempt to define erosion hazard in relation to slope, the Soil Conservation Service has divided all slopes into four groups and has made major land-use recommendations accordingly . . . Indications that southward-facing slopes are especially susceptible to erosion have been observed in such widely separated sections of the country as South Carolina, New Jersey, Idaho, and California."

Brown, C. B., and McCash, C. J.
The authors review the advancement in erosion control in Pima County, Ariz., since 1920 by increased vegetative covering, diversion ditches with tributary branches, check dams, woven-wire barricades, reservoirs, etc.

Bryan, Kirk.
This paper discusses the formation of arroyos in northern Arizona and southern Utah, southern Arizona, southern New Mexico, and Sonora, Mexico. Opinions of several authorities are cited, and the conclusion is reached that the greatest need is for further research on the subject.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BURGIE, T. S. (865)
This article reviews the past work of the Soil Conservation Service and its predecessor, the Soil Erosion Service. The present program is discussed as applied to the Southeastern States, giving an account of land-use policies, cooperative research, and control methods. The problem in South Carolina is especially considered.

BURGESS, R. L. (866)
Some highlights of the committee reports of the Salt Lake City Conference, March 9 to 11, called by Secretary Wallace to make suggestions for adapting the new farm program to the needs of the 11 Western States: Crops and Practices on Cropland; Range Conservation Program; Bases and Payment; Producer's Work Sheet; Special Crop Program; Organization and Procedure; Program Planning for 1937; Landlord and Tenant Payments; Education and Development of Soil Conservation.

BURNS, PEARL ROBINSON. (867)
GRASS AND SURFACE DAMS WILL SAVE PLENTY OF WATER FOR THE DUST BOWL. Farm and Ranch 56: 6, 23, illus. August 1, 1937.
The author describes the devastation resulting from wind erosion on areas which never should have been plowed. The reversion of the area to grass and its division into small stock ranches or farms is advocated.

Caldwell, Nat. (868)
"2,500 farmers in Gibson County have pledged 200,000 acres in soil conservation program for the next five years . . . Called a soil conservation project by its sponsors, the vast 200,000-acre experiment seeks to prove that proper conservation of soil will result in proper conservation of surface and subsurface water, and will to a large extent control sudden rises in creeks and rivers draining the area."

CALKINS, HUGH G. (869)
This article describes the work of the Soil Erosion Service at the Navajo project in New Mexico and Arizona. A program has been put into operation requiring a technical staff, a land-use experiment station at Mexican Springs, and a series of demonstration areas ranging from 5,000 to 40,000 acres each.

Carrier, Lyman. (870)
EIGHTEEN FARMERS SAY "WE'LL DO IT OURSELVES." Soil Conserv. 2: 165-167, 188, illus. February 1937.
A detailed description of an erosion-control program in the Piedmont of Virginia.

This article presents data on erosion control in Virginia, as a result of studies conducted at the Soil Conservation Service headquarters in Danville, Lynchburg, Cbatbam, Charlottesville, and Blacksburg, Va. Virginia's 11-point erosion-control program is described under the following headings: (1) Crop Rotation, (2) Contour Tillage, (3) Strip Cropping, (4) Winter Cover Crops, (5) Repairing Galls and Gullies, (6) Terracing and Run-off Control, (7) Permanent Meadows and Pastures, (8) Use of Lime, Manures, and Fertilizers, (9) Reforestation and Woodland Management, (10) Fire Protection of Forest and Fields, and (11) Wildlife Management and Preservation.
CATHRALL, S. G.

DYNAMITE WORKS WITH CCC CAMPS TO DISPOSE OF SULPHUROUS WATER INJURIOUS TO PENNSYLVANIA FARMS. Ag-Ex News 5: 8-9. May 1936.

Describes method of ditch blasting on a Pennsylvania farm for construction of waterway to control flow and spread of sulphurous water from coal mines and at the same time solve an outstanding erosion problem. The method of ditching with dynamite, proposed by workers of Soil Conservation Service, proved efficient in control of all excess run-off.

CEYLON DEPARTMENT OF AGRICULTURE.

In a memorandum from the Department of Agriculture it is stated that "the first attempts in Ceylon to prevent soil erosion in tea and rubber cultivation consisted in the provision of contour drains." Other measures, among them terracing, silt pits, contour walls of stone, and the use of leguminous cover crops, have been practiced, and a carefully planned experiment has been inaugurated on the experiment station at Peradeniya to test the amount of soil erosion which is taking place and the effects of certain ameliorative measures.

CHAOONON, RAY.

CHAMBERS, T. B.

COOPERATIVE EFFORTS LAUNCHED TO CONTROL EROSION ALONG HIGHWAYS. Soil Conserv. 1: 1-4, 11, illus. April 1936.

In recognition of the seriousness of erosion along highways in all parts of the United States, Thomas H. MacDonald, Chief of the Bureau of Public Roads, recently proffered to the Soil Conservation Service the cooperation of his agency in the study of control methods. The suggestion was eagerly welcomed by Mr. Bennett, who at once named a committee to work out cooperative relationships between the two bureaus . . . the ultimate objective should contemplate the adoption of effective erosion control measures on existing highways and inclusion of them in plans for future highways"

CHAPMAN, H. H.

INFLUENCE OF OVERGRAZING ON EROSION AND WATERSHEDS. Civ. Engin 3: 74-78. February 1933.

The author contends that too little control of grazing and of other agencies harmful to the natural cover is the cause of the rapid increase in erosion and flood damage in the intermountain region of 134 million acres of public land usable for grazing purposes. "Erosion has destroyed, in a generation soil that took 40 centuries to build. This soil is capable of filling storage reservoirs, burying farm land, and reducing the area of both farming and grazing country to such an extent as to definitely diminish the capacity of the country to support population." Intensive scientific study of the causes of erosion to determine means of control is suggested.

CHAPMAN, I. N.

VISITORS SEE FARMS RESTORED WHEN EROSION IS CONTROLLED. Soil Conserv. 1: 8, 11, illus. December 1935.

"Erosion control demonstrations in the Shue Creek-Wolsey areas, Beadle County, S. Dak., have recently been the object of a number of organized inspection tours."

CHARLES, F. E.

A brief account of soil conservation work at the Benton Harbor erosion-control project where conservationists are cooperating with fruit farmers toward the adoption of recommended practices of terracing, contour furrowing, and other soil-saving measures on their farms.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

CHARLES, TUDOR. (879)
Erosion-control methods as practiced by the Soil Conservation Service in Kansas. Describes contouring, terracing, and cropping systems. Buckbrush is especially recommended. Article gives statistics on general erosion conditions in Morris County.

Tells how the work of the Soil Conservation Service is made available to every farm in Kansas. Specific illustrations are given.

CHEERS, ALBERT. (880)
NOTES ON EROSION WORK IN FAR-AWAY ITALY. U. S. Soil Consprv. 2: 17–18, illus. 1936.
Points out the importance of vegetative cover and suggests means of providing it. Dams for the control of mountain waters, preparing ground for reforestation work, the regulation of streams and rivers, and the conservation of the soil by careful planting are discussed.

CLAPP, S. K. (881)
Around its reservoirs and aqueducts the city of New York is planting conifers to serve a dual purpose—as a soil binder to prevent silt from washing into the water, and to bring about a pleasing landscape scene. Gives a description of the work being done and discusses the experimental work of the nurseries.

CLARK, A. N. (882)
INDIANS WORK, TOO. Indians at Work 3: 35–38. June 1, 1936.
Describes Navajo and Pueblo Indians' interest in soil- and water-conservation work, their cooperation in performing labor, and their pride of achievement in successful projects.

CLEWHRONE, W. S. H. (883)
This is the continuation of an article in which the construction of stone and brush weirs as a means of combating soil erosion was discussed. Further means of overcoming the present-day erosion problem are here presented.

This is an account of satisfactory soil-reclamation work that was inexpensively carried out and "is indicative of what can be attained when good judgment and common-sense methods are brought to bear on a problem of this nature."

(885)

An account of South African practice in fighting soil erosion and suggestions for improved methods, construction of dams and walls of stone or stone and wire, and the use of plants for fixing loose soil.

CLEMMER, H. J. (887)
Explains working program of the Soil Conservation Service in the field, with special emphasis on the South Dakota demonstration projects involving the Shue Creek and Wolsey areas of Beadle, Clark, and Spink Counties; the Tripp and Gregory County areas; and the C. C. C. camps operating under the direction of the Soil Conservation Service.
Damage by Erosion and Control by Terracing.

October–November 1934.

This issue contains some of the latest findings on checking soil erosion, such as terracing, rotation of crops, strip cropping, controlled waterways, reforestation and a wider use of grass on some of the steeper land. The technique of soil-erosion surveys is described, and a procedure for mapping a farm with a sketching board is given.

This publication is divided into two sections. Section 1 deals with the origin and nature of erosion, terrace construction, and maintenance. Designs and specifications are given for locating and laying out the Mangum or broad-base terrace, and for building a reversible V-drag. Instructions are also given on gully control by means of straw and brush dams. Section 2 discusses soil-building crops and fertilizers.

From available material on proper methods of soil and water conservation, the author has listed 19 points including legumes, rotations, lime and fertilizers, strip cropping, terracing, and gully control as being the most successful.

The author stresses the evils of overgrazing in the Navajo country and the importance of more careful land use to build up and maintain proper soil conditions.

Topics discussed are: Water resources; land problem areas including badlands, rough stony lands, tablelands, eroded drift and loess hills; irrigation reclamation; agricultural forestry; conservation and wildlife habitats; and water conservation. Literature references, pages 41–46.

"Since it is possible under the provisions of the 1937 Soil Conservation Program to qualify for benefit payments to the extent of approximately one-half the cost of liming materials, no one is justified in seeding alfalfa and clover on soils where the acidity is high enough to jeopardize the success of the crop... Any farmer who is neglecting to make full use of lime and commercial fertilizer cannot hope to fully capitalize on the shift from depleting to soil-building crops."

The writer stresses the importance of photographs in soil-erosion work and gives a few simple instructions toward their improvement.

A description of methods used in the Netherlands and in England to control coast erosion. Gives designs and specifications of various types of dikes, spur jetties, and low groins.
CRAVEN, AVERY O.

"It is not the purpose of this monograph to attempt an exact measurement of the degree of soil depletion that occurred in Virginia and Maryland in the period under consideration, nor will any effort be made to measure the full effects of soil depletion upon the social order. The term 'soil exhaustion' will be applied as the men of the period applied it and no effort will be made at exactness. From such a study it is hoped that the importance of this factor in the history of the region may be pointed out, and that a basis will be established from which the more important questions as to why the men of this section employed destructive methods in their agriculture, may be answered. A solution of this latter problem has been sought in a rather detailed study of agricultural practices . . ."

CHEIL, GEORGE.
Tells how the Soil Conservation Service was born and something about its work which "links up with almost every known problem."

CULPIN, CLAUDE.

"The application of this apparatus and of certain other methods for the study of soil structure to experiments on the 'gyrotiller' is briefly described." The gyrotiller is a rotary cultivator with a Diesel engine.

Curtis, N. J.
[Mimeographed.]
The author describes various treatments of turn rows at each end of a field, as well as simple measures to prevent accumulation of water, and gullyng.

Daniel, H. A.
Costs of terrace building and contour cultivation are considered. Practical methods of controlling soil blowing are recommended, such as cropping and tillage systems, utilization of erosion-resisting residues, emergency cover crops, and planting trees for windbreaks.

Davis, Arnold.
BRINGING EROSION CONTROL TO SOME HIGHWAYS. Soil Conserv. 3: 48-50, Illus. August 1937.
"Each highway erosion-control project embraces (1) changes and treatment of the road section, (2) type of cover to be established, and (3) a detailed plan of special control measures contemplated." A short description of methods used is given.
DAVIS, ARNOLD

"The Soil Conservation Service has offered to cooperate with state highway departments in establishing a number of highway erosion-control areas in Region 4. [Louisiana, Arkansas, and Texas.] The U. S. D. A. Bureau of Public Roads has also displayed an interest in such areas, and will approve the expenditure of funds through the regular federal aid program in order that this work may get under way." The areas are described as cooperative projects between the Soil Conservation Service and the different State highway departments. A summary of the work is given.

DAVIS, R. H.

second annual report coon creek demonstration area, la crosse, wis. U. S. Soil Conserv. Serv. SCS-AR-2, 24 pp., illus. May 1, 1936. [Mimeographed.]

This report summarizes the results of studies conducted at Coon Creek, Wis., and discusses the research work of the project under the following headings: Soil Types, Erosion-Control Plans, Terracing, Check Dams, Forestry, and Wildlife Conservation.

DENHAM TILL, F.

"The outstanding features of these clearings are that the earth has been shifted on a carefully thought-out plan, and all terraces are given a definite reverse slope against the hill, instead of being level."

DETWILER, S. B.

In Japan "regulated tillage, intelligent farm management, reclamation practices, and care for the steeper lands have yielded quick and convincing results, and this fact undoubtedly lends encouragement to the newer program in the United States." Species of trees are listed which have proved effective to control erosion in Japan.

DREIER, JOHN.

Enumerates the important factors involved in a coordinated program for protective land use in the dust-storm area. Development of soil conservation districts in each State is indicated to be of utmost importance.

DRIPS, W. E.

FARMS THAT WASH AWAY. Wallaces' Farmer and Iowa Homestead 58: 9, illus. July 22, 1933.

"Soil control to prevent washing seems to be bound up in crops," is the opinion of the author, based on results of experiments made at Bethany, Mo. experiment station. A deep gully has been filled and made productive, terracing has proved effective to slow down water, and rotational crops have held and built up the soil again.

DUCHE J. T.

THE EFFECT OF CATTLE ON THE EROSION OF CANYON BOTTOMS. Science 47: 450-452. 1918.

"From a study of the steep-walled arroyos of southern Colorado the author concludes that their development has been contemporaneous with the development of ranching, and he believes they are due to the wearing of trails and the destruction of vegetation by cattle."—Expt. Sta. Rec. 39: 512. 1918.

DULEY, F. L.

A paper read at the second Southwest Soil and Water Conservation Conference. Discusses the soil erosion problem in Kansas and describes experimental work at the Hays station.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

DUPLAT-TAYLOR, F. M. (911)

"There are many localities where reclamation can be effected with advantage for industrial and other purposes not connected with agriculture. Such works have been frequently carried out, and some of these have been described in this book." Objects and methods of reclamation, reclamation by enclosure and by filling, with tabular data, are considered. Chapter IV is devoted to the reclamation of the Zuider Zee in the Netherlands.

EAST, L. P. (912)

In this article on erosion control in North Carolina, the author presents data on three major control methods: (1) Di kes or flat ditches; (2) hillside ditches; and (3) terraces. Other means of reducing erosion such as cover crops and tillage are considered briefly.

EKBLAW, G. E. (913)

"The walls of the valley of Illinois River constitute an admirable locale for landslides, and in the vicinity of Peoria, where the Pennsylvanian system of rocks crop out, and is overlain by glacial drift, landslides are numerous." The only real cure for these slides is proper drainage.

EWALD, R. F. (914)

"Flood flows over high dams contain enormous energy that must be expended and absorbed in friction on the toe of the dam, in erosion of the river bed below, or in a water cushion. If this energy can be absorbed in the work of creating the hydraulic jump without assistance from river channel friction, there is no likelihood of failure due to erosion." The author gives the results obtained by his studies and draws a preliminary conclusion.

F., W. C. (915)

It is stated that there are at least five major objectives in the Nation-wide effort to control erosion: (1) Prevention of moisture loss by water run-off; (2) control of soil-washing; (3) control of flood water; (4) restoration of the water table; and (5) control of soil drifting. Work at the Pacific Northwest Erosion Experiment Farm, Pullman, Wash., is described. Data on erosion in the Palouse section are presented in tabular form.

FEISINGER, E. O. (916)

A plan to reduce soil erosion, devised and carried out with considerable advantage on the writer's estates at Primrose Hill, Kandy, and Fruit Hill, Hatton, in Ceylon is described.

FENNEKAN, N. M. (917)

This paper discusses the nature and formation of gullies, and some of the topographic effects of erosion without valleys. "The area in question is the St. Louis quadrangle and adjacent territory."

FENTON, F. C. (918)

The writer discusses briefly the weather and rainfall in Kansas. A chart is included showing the rainfall history at Manhattan, Kans., for 75 years.
"Overhead irrigation applies water in form of rain with the advantage over nature of perfect control as to time and duration of application—rainfall when and where needed, and in just the right amount. There is no waste of water—distribution is even and controlled and no grading or levelling with consequent movement of top soil is necessary. Erosion is not a problem with this system, and soil fertility is maintained at its maximum."

FICK, J. C.

The author suggests practical methods for combating soil washing and wind erosion. He describes the use of terraces, embankments, and contour walls and recommends various cropping systems. A few species of trees for windbreaks are listed, and data on permanent vegetation given.

FISHER, F. A.

"This paper describes briefly and accurately just what the Soil Conservation Service is doing in a 'typical prairie state,' with figures on the limestone requirements. Producers of agricultural liming materials everywhere should get behind this movement to conserve our most precious heritage—our arable soils."

FITZPATRICK, J. L.

A chief feature of President Roosevelt's recovery program is the employment of men in conservation projects of one kind or another. The Civilian Conservation Corps has kept 300,000 young men enrolled for two 6-month periods and is to be continued for another year. A description of life in these camps and the reforestation work and fire fighting by the Corps is given. A short summary of the Director's report is presented. The work of the Army in training the Civilian Conservation Corps boys is also mentioned.

FIKMING, B. P.

A retrospective account of accelerated soil erosion precedes a description of the policy of the Soil Erosion Service and its program. The author states that cooperation with farmers is being sought, practical programs are under way, and the greatest care is being exercised in making recommendations.

FLETCHER, S. W.

"Unchecked erosion has ruined many farms and seriously hurt many others ... A very important problem for the farm owner to consider is how to check erosion cheaply and effectively." Various measures are discussed with emphasis on the need for vegetative cover.

FOREST, T. C., Jr.

Outlines the objectives of the recently developed watershed district plan in Texas. The work of the Civilian Conservation Corp and the Soil Conservation Service in erosion control is discussed.

FORSLING, C. L.

Watershed protection is considered under four headings with special emphasis on the checking of erosion to prevent depletion of the soil itself. Chemical analysis of the Utah National Forest soil and work at the
Missouri State Agricultural Experiment Station are discussed. “Protection of the soil will have to be accomplished largely by good forestry, the prevention of fire, and the application of proper grazing practices.”

French, A. L. (927)

The author, a practical farmer, holds that soil cannot be effectively enriched until soil washing is stopped; terracing should be supplemented with soil-binding sods; washing of land is stopped by under drainage, deep plowing, and vegetation.

Fuller, Guy C. (928)

The author describes the Minahan power stripper for harvesting grass seed and enumerates its advantages. He also describes the Hays vacuum machine for harvesting buffalo grass seed.

Fuller, Myron L. (929)

Funchess, M. J. (930)

Sets forth some vital facts about crops in the South. Low yields show that poor lands must be built up. Terracing of land subject to washing, and the subsequent planting of legumes as soil-building crops are strongly urged.

Geib, H. V., and Hill, H. O. (931)

The authors give measurements of amounts of water and soil losses on control plots and discuss strip cropping with sorghum or oats as erosion resisters. Terracing methods for erosion prevention are included.

Gilkerston, R. H. (932)

“Terracing and contour farming take out the uphill pull in field work. They let you farm hills on the level. You farm across the slopes. They check soil washing. They build up fertility . . .” The author adds: “The idea is to make terracing, contour farming, seeding down steep slopes, gully control and a cropping system stop the tremendous loss of moisture and soil fertility that has been going on . . .”

Gorrie, R. M. (933)

Extracts from reports on erosion conditions from 1855 to 1936 are discussed. “Forest conservation has to some extent checked erosion, but even with the best intentions the earlier forest settlements have failed to forestall the progressive deterioration which has inevitably taken place in face of persistent heavy grazing.” Among the measures advocated for erosion control are development of tree fodder supply and green fodder crops and silage; intensive improvement of natural grasslands with “gully plugging;” terracing and leveling of fields; stream training to reclaim cultivable lands along torrent channels.

Gossett, M. H. (934)

A discussion of what has been accomplished in soil and water conservation work and its significance to the agriculture of Texas. “In three years more than three times as much land has been protected from erosion and water losses as during the previous 20 years.” It is stated that Texas then had one-third of all the terraced land in the United States.
Granger, C. W. (935)

C. C. C. work in the Rio Grande district is described, with special reference to the Elephant Butte Dam and Reservoir and problems connected with them. Ten camps were established "and enrollees . . . under the supervision of technical men, have accomplished voluminous work which already has proved effective for soil and water conservation and revegetation."

Gulley, F. A. (936)

The destructive effect of uncontrolled water on the lower Mississippi and from the Ohio River to the Gulf of Mexico is stressed. "I soon became convinced that a successful system of ditching, that would control the action of the surface water and remove the excess of soil water, was of more importance than fertilizing to bring the land up to profitable production of crops." Methods and specific results from ditching are discussed.

Gum, E. P. (937)

"In Oklahoma our bankers, working through the agricultural committee of the Oklahoma Bankers Association, are cooperating with Government and state agencies and the American Bankers' Association to help save our soil . . . We have secured the passage of a bill through our state legislature appropriating six power terracing machines for each county. Where this fails to take care of the demand of farmers who cannot afford their own terracing equipment it will be the purpose of our bankers to furnish a few homemade machines which can be constructed at a reasonable price. Through this method we may be able to furnish an outlet for the latent power ready to start the work of terracing thousands of our farms."

Haffert, W. A. (938)

SOIL CONSERVATION SURVIVES TEST. Farm and Garden 7: 34. October 1936.

The Monmouth County, N. J., demonstration area has proved that all erosion-control measures were successful.

Haines, W. B. (939)

The author explains that the term "silt-pit" in soil conservation work is not entirely well chosen. "It is apt to carry with it the idea of silt-collecting pits rather than that of silt-prevention pits. Silt being the product of soil erosion it is plain that an ideal system for preventing erosion will put silt out of the question." Among the main features summarized are the following: "In the first place a low-growing ground cover must be looked upon as the main line of defence in regard to soil erosion. It protects the soil from direct impact of the rain as nothing else can do; increases the absorptive capacity of the soil while at the same time binding it together; and maintains healthy conditions in the soil surface."

Hanson, A. C. (940)

Brief review of soil conservation practices employed by northwestern Iowa farmers.

Haviland, P. H. (941)

Discusses the nature of soil erosion and presents important data on control by means of storm drains and terraces.

"In this paper it is proposed to give a short account of the actual practical measures adopted in Southern Rhodesia to prevent that insidious evil—
soil erosion.” Three forms of erosion are considered: General veld erosion; erosion of vleis; sheet washing or the erosion of cultivated lands. Examples are given of typical cases which have been dealt with in the past.

HAVILAND, P. H. (943)

The first article of a series on erosion and erosion control in Rhodesia, deals with the various types of erosion and discusses generally methods of control.

The second article deals with the laying out and construction of contour ridges. Plans and specifications are given and costs of construction are itemized. Gully control is also briefly described.

HENDRICKSON, B. H. (944)

This article discusses the progress of a cooperative study conducted by the United States Bureaus of Agricultural Engineering and Chemistry and Soils at Experiment Substation No. 2, Tyler, Tex.

HENRY, JEROME J. (945)

This article briefly discusses the 11-point program for erosion control by the Soil Conservation Service in cooperation with the Extension Service in Virginia.

HENRY, S. T. (946)

“Only a start has yet been made in the improved farming program; years will be needed to show full results. But thousands of farms already have seen that cover-crop farming will make money. Given a decade or two, the agriculture of the valley will be changed completely as the outcome of this demonstration program. Such a change will mean that soil erosion will be largely stopped, stream siltation reduced, and agriculture placed on a permanent basis... Regional development work ranging from flood control and navigation improvement to agricultural and forest development is TVA’s fundamental problem, largely overlooked because of power controversies.”

HENRY, T. R. (947)
WORLD WATCHES EXPERIMENT WITH NAVAJOS. Indians at Work 4: 32–34. September 15, 1936.

The Soil Conservation Service work at Mexican Springs is described. “It is notable that the methods now being used to repair the damage are copies of farming practices followed by these Indians from time immemorial. The primary problem at Mexican Springs is the restoration of the land.”

HILGARD, E. W. (948)
SOILS. 593 pp., illus. New York, Macmillan Co. 1906.

On pp. 216–220 some phases of soil erosion are considered, under the following headings: Washing Away and Gullying in the Cotton States; Injury in the Arid Regions, and Prevention of Injury to Cultivated Lands from Excessive Run-off.

HITCHCOCK, E. (949)

The modes and extent of erosion by rivers are considered on page 91. The making of rivers is a process of both erosion and filling up, the process of excavation, however, exceeding that of deposition. “Without attempting to determine the precise amount of erosion by rivers, I wish to state distinctly that I do not impute to this agency the whole, or even the larger part, of the formation of the valleys through which rivers now run...” The writer states that the Delta of the Mississippi, at its present rate of increase, must have required over 14,000 years to accumulate.
Hoffman, M. H.

The author claims that brush dams and tile drains reduce destructive flow after rains and cause gullies to fill with sediment.

Hoffman, M. H., and Turner, A. W.

"This report is in two parts and deals with practice in checking and preventing soil erosion in Iowa. Part I, deals with the treatment of hillside ditches. It is stated that one of the best methods of preventing hillside wash in Iowa is the practice of contour farming. The practice of leaving permanent strips of sod in hillside valleys is also strongly recommended. Part II, deals with the checking of overfall. It is stated that practically all ditches in Iowa are caused by overfalls working back. A successful method of preventing the overfall from working back is to case the water from the higher to the lower level by putting in an obstruction of straw and brush staked down."—Expt. Sta. Rec. 43: 420. 1920.

Holland, T. H.

"There are two areas available... The proposal is to duplicate two methods of treatment in one area and another two methods in the other area." These treatments are described and illustrated.

Holman, R. L.

"Few, if any, projects undertaken by the Soil Erosion Service promises to be of greater importance to as many tillers of the soil in such a large area as the one at present being organized in the Great Tennessee Valley." Five demonstration stations have been established for the purpose of carrying on experimental work in a big way. Projects to be established are discussed.

Holmes, J. S.

"The gradual clearing of the forest from even the steeper slopes of the uplands and the continuous cultivation of these fields without addition of any vegetable matter to the soil has caused extensive and ever increasing erosion... The beneficial results of drainage have been very marked." The North Carolina drainage law is quoted as providing for the maintenance of the ditches or canals when they become obstructed or begin to be filled up with sand. "Excessive erosion of the upland can be prevented and must be prevented before the creek bottoms attain to permanent usefulness."
A concrete example of a policy to be followed is that of the Buffalo Creek Drainage District, which is outlined. Terracing, permanent pastures, reafforestation, and proper management of the farm wood lot are advocated for the prevention of erosion on Piedmont lands.

HOLMES, J. S. (958)
Landslides in western North Carolina in July 1916 are discussed from the standpoint of causes, topography, nature of rock and soil, and forest cover. “The soil cover seems to have made little or no difference in inducing slides . . .” After quoting Marbut of the United States Bureau of Soils, the author says: “From this it would seem that the physical features which enable the forests to retard the run-off, and thus tend to control floods during periods of normal precipitation, might even increase the liability to landslides during periods of such excessive rainfall . . .”

HOOVER, M. M. (959)
Description of erosion control work at project No. 13 in central West Virginia.

HOPF, G. D. (960)
“Suggestions for the prevention of erosion of northeast Indian tea soils are given, special reference being made to terracing and drainage as practiced on Java tea soils.”

HOWARD, IVY M. (961)
Midwest farmers are discovering that erosion control and strip farming are not only saving their land but are also enabling them, through the droughts, to grow better than normal crops, and keep the springs flowing. Describes the work of various Oklahoma farmers.

Note on erosion control by the installation of hand-made gully checks and dirt fills, supplemented by sowing the low places with sweetclover and allowing crabgrass to grow.

HOLDING ON TO THE SOIL. South. Agr. 65: 6, 30, illus. February 1935.
This article describes the work and program of the erosion control project at Stillwater Creek, Okla. Special consideration is given to methods of gully control and terracing.

HUDSPEITH, T. J. (964)
In a letter the writer protests against any future talks about erosion in Arizona being caused by grazing. “This erosion you are fond of as a subject has been going on for the last eighty million years, or more . . . Had it not been for this erosion you would have had no fine Salt River land to worry about watering, or any other land rich enough to produce crops . . . Erosion made the great Imperial Valley which has fed millions of people and added millions of dollars to the Nation . . . Sheep and goats restrict erosion, something many people do not know.” The reason for this last statement are given. “In view of present-day conditions for the stockmen in general, I kindly and with all respect ask you to change your subject.”

HUFF, A. N. (965)
Explanation of work to be conducted on the research project in the Coshocton River watershed.

59893°—38—10
Hutcheson, J. R.

Soil conservation program, pages 8-12: “Soil conservation has been a definite part of the extension program since the first county agent was appointed, and as a result of the use of terraces, winter cover crops, and improved pastures, thousands of acres have been improved through proper crop rotation and the planting of legumes. During the last two years the soil conservation program in this state has received great impetus through the enactment of federal legislation establishing the Tennessee Valley Authority, the Resettlement Administration, and the Soil Conservation Service.”

Hutchinson, J. B.

“The Agricultural Conservation Program undertakes to help save it [the land] by encouraging methods of farming that do most to prevent depletion and erosion of the soil. Proper rotation, more land in grass and legumes, trees and sod on steep slopes, and adequate fertilization are among the well-known methods.” Other proposals in the program are also listed.

Illinois Agricultural Experiment Station.

Gives estimates on the acreage in Illinois subject to erosion and discusses terrace control.

Imperial Bureau of Soil Science.

Administrative action relative to soil erosion in the Empire is set forth. Experiments in Nyasaland and Uganda, Africa, in contour plowing and strip cropping, and terracing in the United States and its success are described and discussed. A laboratory study of the factors relating to erodibility is described, and determinations are quoted from United States Department of Agriculture Technical Bulletin 178.

Indiana Agricultural Experiment Station.

States that evidence of erosion appears where there is a steeper grade than 0.6 of a foot per 100 feet on the Paoli soil erosion experimental field, terraced in 1924.

Iowa Agricultural Experiment Station.

This report discusses the work of the State Soil Conservation Advisory Committee, pages 19-20; Coordination of Work at Erosion Stations, page 27; Cooperation with Missouri in Economic Implications of Soil Erosion Stations, page 27; Soil Erosion Experimental Nursery, page 38; Page County Soil Erosion Farm, page 39; Soil Erosion Investigations in Iowa, page 40; Erosion Control Work in Iowa, page 40; The Establishment of an Erosion Control Nursery, page 41.

Iowa Agricultural Extension Service.

“Hundreds of Iowa farmers have stopped erosion on their farms the last few years though on the whole erosion is going on at a tremendous
rate." Planting black locust with heavy vegetative cover for gullies; dams of earth, brush, wire, and concrete, terracing, and systematic rotations are among the measures recommended for soil conservation.

The chapter on soil conservation, pages 167-187, is devoted to measures for building up soil fertility and the establishment of permanent systems of agriculture. Crop rotation is stressed. Additional plant food, deep and thorough plowing, and the growing and plowing under of green manure crops are among the soil-saving measures recommended.

After an historical review of the fauna of insects and larger invertebrates in agricultural soil, the writer discusses the biotic structure of old-field soil and of higher soils, and environmental factors in the soil. Work embodying the subjoined data as to quantitative samples of soil microarthropods was done as part of the stream-flow and erosion project at the Appalachian Forest Experiment Station. The author states: "Microarthropods are abundantly distributed throughout natural, vegetated soil to a depth of at least a foot. This animate layer varies in population with development of roots and rootlets. The lower limit of this layer is therefore indefinite, fraying out below as does the root layer. Soil erosion eliminates this porous, channeled layer with its makers. Resowing of this fauna is useless without precedence of a vegetative covering."

"The purpose of this paper is to present summarized information regarding precipitation and its occurrence in various countries and latitudes; its relation to soils and run-off; the vegetative, topographic, and physiographic features of the watersheds; and the resultant influence on designs of drainage-structures and channels." A discussion of the paper is included.

The stabilizing influence of vegetative cover during rainfall is discussed. "It reduces the rate of denudation as a whole, and when the soil under a grass or other plant with fibrous roots is removed it is possible that the exposed roots may act as a filter, thus increasing reposition and countering denudational instability ..."

Deplores the prevailing apathy of the farmers to the erosion problem and shows how easily soil wastage may be curbed in the Southwest.

Gives suggestions for recharging water beds and conserving seep water. Suggests simple diversion dam which would spread flood waters over areas of high porosity and absorb much of that water, thereby recharging shallow water gravels.

This bulletin contains the following papers on reclamation of flood-damaged lands and soil conservation: Renewing Washed and Sanded Lands, by A. M. Ten Eyck; Sand-Binding Grasses, by H. F. Roberts; and Trees for the Sanded Areas, by Albert Dickens.
The writer describes nearly two dozen experiments made in Monroe County, Tenn., and advises planting galled lands to a good permanent sod. Mulch has many uses. It "preserves moisture in the soil for summer use, maintains a good capillary connection up to the very surface, prevents breaking and washing, protects it as a blanket in winter, adds vegetable matter to the soil by its decay, and generally livens up the soil . . ."

Kerr, H. W.

The author attempts to define the causes of erosion and lists the major factors affecting its intensity. He recommends and describes control measures such as tillage practices, vegetative coverings, terracing, and conveying water from higher to lower levels in artificial channels.

Kettunen, A. G.

"Conservation is a highly complex subject. We find an inter-relationship, an interdependency of many things. Fish and game are not our chief considerations, for to have good supplies of them it is necessary first to keep our waters unpolluted and our forests green. You have found or will find many of the fundamental principles of successful agriculture functioning in our wild lands and among our wildlife. It is necessary to recognize and to understand these fundamentals, for successful conservation practices begin with them." [Foreword.]

King, Barrington.

"Virginia's eleven-point erosion-control program represents an adaption of the best known methods of erosion control to actual farming conditions within the State. Under cooperative agreements with farmers in demonstration projects near Danville, Lynchburg, and Charlottesville, and in eleven CCC camp areas assigned to these projects, the program is being put into effect in these representative agricultural sections so that farmers throughout the State can see the effectiveness of the methods used under conditions similar to those found on their own farms." The program in its entirety is outlined.

Knapp, G. S.

Indicates interest taken by the State of Kansas in storing water. Mention is made of the early appreciation of the importance of storage of surface run-off as evidenced by the passage of a law in 1911.

Kraebel, C. J.

erosion control on mountain roads. U. S. Dept. Agr. Cir. 280, 45 pp., illus. 1936.

Destructive action of water on mountain roads and the movement of soil and rock loosened during construction of roads is believed largely responsible for eroded conditions. The author states the threefold purpose of his study: (1) To call attention to the seriousness of the problem; (2) to indicate preventive measures which can be incorporated in the planning and building of roads; and (3) to describe corrective measures
of more rational alinement, greater use of retaining walls and cribbing, tunnels and bridges, and improved drainage practice.

KRAEBEL, C. J.

The author cites some of the uses of willow cuttings in erosion control: (1) control of active gullies in range meadows; (2) reenforcement and protection of small dams at the ends and sides, upstream and down, and at spillways; (3) protection of stream banks which are being cut by high water; (4) protection of bridge abutments and the toes of road and railroad fills reached by flowing water; and (5) fixation of new road fills composed of fine shifting material.

LAKE STATES CONSERVATION CONFERENCE.

REPORT OF LAKE STATES CONSERVATION CONFERENCE, MADISON, WISCONSIN, APRIL 24 AND 25, 1935. 27 pp. 1935. [Mimeographed.]

Section 5 of this report, pages 12-14, deals with erosion control and discusses the work program of the C. C. C. relief labor, and erosion-control agreements with farmers.

LANE, D. A.

The author contends that “water spreading has a definite place in the water supply in the Southwest.” He describes the three general methods practiced, the ditch or furrow method, the basin or pondage, and the use of wells or shafts.

“The progress results of investigations on irrigation, specific conductance of soil and irrigation water, flume repair materials, vegetative control of erosion, terracing, operation of machinery on terraced land, effect of tillage, and effect on erosion of hogging of waste peas, and effect of erosion on cost of farm operations are briefly reported.”—Expt. Sta. Rec. 68: 827. 1933.

LATHAM, B. M.

Gives an account of how Berry gully in the South Tyger River area of South Carolina was checked and the surrounding land stabilized. Methods described are vegetative plantings, check dams, and sloped banks.

LEADLEY, T. A.

This article discusses the work of the Soil Erosion Service in the Plum Creek district, Boone County, Nebr. A demonstration in erosion control is described embracing (1) proper terrace construction, (2) gully control, (3) contour cultivation and contour cropping, and (4) a revised cropping system. The author comments on C. C. C. cooperation and the obligations of those farmers who are directly aided by the program.

LEE, L. L.

“Soil conservation is moving ahead in New Jersey. On a number of farms in the State’s first demonstration project area, on the Neshanic Watershed in Hunterdon and Somerset Counties, mechanical erosion control structures have been built, fall planting has been done across slopes, certain acreages have been taken out of cultivation and seeded to permanent pasture, and spring [1936] will see the planting of more than 300,000 trees on the 300 acres which to date have been specified for forest cover . . .” New Jersey has three such demonstration areas, which are described.
Experiences in terracing and better soil-management practices on farms in Williamson County, Ill., are described. The ways and means for terrace maintenance and a description of a V-shaped drag of value in this work are discussed.

Describes operations of the 20 C. C. C. camps in eastern Tennessee. Log check dams and cedar brush matting, staked down on eroded areas, are among erosion-control measures employed.

The widely varied methods of controlling soil erosion through various Government agencies are reviewed.

“The reforestation and soil erosion section, in cooperation with the agricultural division of the T. V. A. and the extension services of the states in the valley, is attempting to discourage the practice of emptying terraces into highway ditches wherever it is possible to find other outlets.” An outline showing how the T. V. A. drainage systems are protecting both farms and roads from indiscriminate dumping of terrace water is given.

Osage-orange stumps make excellent ditch and ravine stoppers.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

LINDLEY, J. G.
This article briefly describes the work of 22 E. C. W. camps allocated in 1934 to the Soil Erosion Service.

The author discusses the importance of erosion-control measures and mentions the cooperation of individual farmers in soil conservation programs.

LIVINGSTON, L. F.
RESTORING OUR DISAPPEARING FARM LANDS. Dupont Mag. 30: 8-9, illus. October 1936.
"Some of the steps that must be taken to counteract a serious threat to our national welfare" are discussed; among them is the use of dynamite in the fight against erosion.

LORD, L.
After a visit to Malaya, Indo-China, Sumatra, and Java in May 1929, the writer presents some notes on the use of green manures and on the methods of preventing soil erosion: "Soil erosion is prevented generally by silt-pits combined with continuous ridges." The construction and planting of these is described, and various plants used for cover and for turning under as manure are listed for Ceylon.

LOWDERMILK, W. C.
"To rule the river is to rule the mountain" (ancient Japanese proverb). Denuded slopes and growing erosion with dangerous floods in a certain part of Japan caused the area to be declared a protection forest. The author lauds "the faith, skill, technique, and strategy of the forest engineers. With a dam here and a dam there they had step by step robbed the torrential water of its transporting force; with buttress walls strategically placed they had prevented undercutting of slopes; with works of soil fixation on slopes where prostrate alder and grass were called into assistance they had reclothed eroding slopes with a preliminary vegetation. They had, in short, gradually diminished the progress of erosion . . ." Other examples of erosion control work are given, and the Forestry Act of Japan (1897) is cited. "The importance of torrent regulation, of erosion control, is signified by its general enforcement over the entire Empire of Japan."

LYON, T. L., and FITPIN, E. O.
The authors discuss the principles of soil technology and their application to soil problems from the standpoint of crop production. "Attention is called to the outline of contents which shows the method of treatment and the relation of the several parts of the subject . . ." Running water and wind are regarded as the chief causes of soil erosion. Recommended control measures are deep plowing, addition of organic matter for soil binding, underdrainage for saturated soil, various protective coverings of fine-rooted crops; contour farming; and sidehill ditches.

MCCLUNG, L.
Erosion-control methods are suggested, among them terracing, rock-lined ditches, sod, cover crops, and tree planting. The use of lime and marl is advocated to sweeten sour land.
There are in nature two strongly contrasted types of moving water bodies, namely, (1) streams, and (2) sheetfloods. The author discusses sheet floods and erosion in the Sonora district and other districts.

This bulletin discusses the agricultural duty of water, the duty of the soil, the natural and abnormal work of water in agriculture, and the remedies for soil erosion based on treatment of the soil by tillage, mulching, fertilizing, seasonable plowing, draining, and dust mulching; the treatment of cover by tree planting, grassing, nurse cropping, cover cropping, eradicating of weeds and rotation of crops; the treatment of slopes by contouring, terracing, vineyarding, retaining-walling, annual forestation, and grading; and the treatment of the water supply by regulating its movements. — Expt. Sta. Rec. 25: 425, 1911.

The writer deplores the destruction of forest cover and suggests rewards or penalties for protected or neglected lands. Furrowing and terracing are proposed to check soil washing.

Practices followed in Alabama indicate the increased popularity of kudzu for hay, soil building, and erosion control.

Silt and soil loss in Lancaster County, Pa., as demonstrated by the washing out of King's Dam on the Octoraro Creek.

Erosion control in Pennsylvania by the Soil conservation associations and the Pennsylvania Department of Forests and Water is discussed.

The writer points out the revolutionary change that will, in his opinion, have to be made in Corn Belt farming, if the loss of soil is to be arrested and the remnant saved.

In this volume dealing with various phases of water conservation, flood control, irrigation, and drainage, the subject of soil conservation is treated, pages 220-224. The author attributes soil erosion to the removal of vegetation from hillsides and stream banks. Control methods of Germany and France are described and control measures for the United States recommended.

A State forest examiner tells what should be done, and what was then being done, in western Tennessee to prevent topsoil washing. "In good agricultural practice, constant care is required on slopes to plow, cultivate, and sometimes terrace parallel with the contour lines in order to stop incipient gullies that may start . . . The best policy for the future would be to convert the larger gullies into farm wood lots, serving the double purpose of checking further destruction of land and growing a supply of farm timber on the least valuable part of the farm."
Methods of erosion control among them terracing, contour farming, and grass crops are discussed. Various types of dams to control gullies, and Mangum terraces are illustrated.

Mercier, W. B.

"Twin problems of agriculture, probably of equal importance, are: (1) the maintenance of soil fertility, and (2) water control." The writer discusses causes of worn-out land in the South, forms of water control, and various types of terrace building. Home-made terrace-building tools and their use are given consideration.

Miller, M. F.
CONTROL OF SOIL WASHING. Mo. Agr. Expt. Sta. Cir. 78, 12 pp., illus. 1915.

"Soil washing is the greatest single source of loss on many rolling lands. It is greater than the loss of plant food through cropping." The two kinds of soil washing and their causes are discussed, and control and prevention methods are described.

— and Krusekopp, H. H.

Describes briefly the results of a year's work in erosion control. Discusses the comparative merits of planting corn, clover, and soybeans.

Missouri University, College of Agriculture, Agricultural Extension Service

On pages 52-55 results are given of the collective program of 49 soil-conservation associations with a membership of 8,000 farmers. "An increased capital value of $160,040 was given 25,340 acres of sloping land through terracing. A total of 35,655 farmers followed crop rotation... approximately 400 farmers in 42 counties practiced strip cropping. The total number of farms upon which terracing has been done reached 2,918 and the acres protected 69,429." The author states, in part: "Farmers are rapidly learning the value of natural grass waterways in protecting areas subjected to harmful concentration of run-off water."

Mitchehill, G. J.

The removal of rock material has considerably lessened the depth of mineral deposits in northern Sonora, Mexico. The author discusses briefly various mineral deposits.

Moore, C. C. du Pré.

"The system advocated and found very successful is that of contour trenches (as opposed to drains). The earth from these is used to level the terraces above the trench and in forming an earth and stone 'bund' along the upper margin of the contour trench to assist in retaining the terrace. The system also contemplates the uprooting rather than the hurn-
ing, of grass in the opening of new lands, the grass being left on the surface to rot down and increase the soil organic matter. A diagram and photograph illustrate the scheme, which, in the trial here described, was applied to the preparation of new land for tea culture."—Expt. Sta. Rec. 62: 812, 1930.

Moorhouse, L. A.

The author discusses the relation of rainfall and wind to soil erosion and recommends various methods of soil conservation. The results of pot-culture experiments with several types of soil, and experiments with manure fertilizer are reported.

Morgan, A. E.

"Soil erosion relates to power production as well as agriculture. One means of checking erosion is to build a series of small timber dams in strips across the forming gullies and to plant the banks around them with various plants whose root systems will consolidate." The author discusses coordination of hydroelectric power on Tennessee River, the need of new agricultural economy, and legal restrictions on use of land.

Morrison, B. Y.

Man has contributed largely to soil erosion through "deforestation, over-grazing, lack of adequate fire protection or poor cultural practices, all of which, different as they are in themselves, have the same basic menace, the destruction of the richer surface soils in which most plant life exists." It is this problem of rapid erosion with which the writer is concerned, and he contends that it can be prevented.

Moses, D.

The author discusses practical steps toward preventing soil erosion. After defining the different kinds of erosion he discusses the question of slope and its treatment including crops and permanent pasture, Mangum or ridge terraces and their construction, equipment, and cost. Methods of preventing gully or "sluit" erosion are given.

Muehleisen, G.

The author describes his own idea of erosion control. "Store and keep the surplus rainfall and melting snow water at home or near the area on which it falls." He then gives data for the building of ponds and dams. "The benefits derived would far exceed the cost in the way of controlling erosion, moisture, and flood waters."

Mullen, C. W.

EROSION ARMY PUSHES ON. Farmer-Stockman 49: 3, illus. June 1, 1936.

Describes erosion-control work in Oklahoma by the Soil Conservation Service in cooperation with the C. C. C. and E. C. W. Explains also, the farmers' responsibility in erosion control.

The writer thinks that flood control must begin with control of soil erosion and questions the wisdom of spending millions for ponds and lakes, soon filled up with soil and silt from washing fields. Terrace building is urgently recommended as the first measure in soil conservation with strip farming as a concomitant.

A Texas pioneer finds terracing beneficial. Blackberries and dewberries have been his best terrace-holding crops; for controlling his hilltops against blowing he uses rye.
MUNNS, E. N. (1035)
CHAPARRAL COVER, RUN-OFF, AND EROSION. JOUR. Forestry 18: 806-814.
December 1920.
"An examination of certain burned-over areas on the Angeles National Forest, with special reference to the increase in soil erosion and a consequent decrease in herbaceous growth."—Expt. Sta. Rec. 44: 537. 1921.

MUSGRAVE, G. W., and NORTON, R. A. (1936)

This is one of the first publications dealing with the technical phases of the work of the soil-erosion stations which were organized under the Federal appropriation of 1930 for that purpose. It represents a comparatively new field of research in agriculture in which the methodology is largely undeveloped. Main headings are: Purpose and Plan of Experiments; Elements of the Control Problem; Infiltration; Surface Impounding; Vapor Losses; Surface Run-off; Strip Cropping; Erosion Control in Gullies and Terrace-outlet Ditches, and Checking Erosion at Terrace Ends; Experiments and Results of Run-off and Erosion from Terraced Areas. An appendix gives data on records of precipitation, run-off, erosion, and similar information for the period 1931-35.

MUSGRAVE, M. E. (1037)
February 1937. [Mimeographed.]

Tells what the Soil Conservation Service is accomplishing in erosion control at the Mexican Springs Station, N. Mex. The Navajos are becoming erosion conscious.

A brief account of the work of the soil erosion nursery at the Navajo experiment station. A list of plants grown is included.

MYER, W. E. (1039)

Soil erosion in the Tennessee Valley presents three factors: "A great deal of the land slopes steeply; the soil is especially soft; and the rainfall is very heavy." Work of the T. V. A. on this problem includes cooperation with farm bureaus and other organizations. "But in the long run effective erosion prevention throughout the valley must be effected, not through the positive acts of the TVA or any other central organization but through the enlightened efforts of the farmers themselves . . ."

NEL, L. R. (1040)

This article discusses soil erosion in the Southwest. Control methods recommended are: Vegetative covering and forestry; the substitution of small grain for cotton, peanuts, corn, and tobacco which are said to encourage erosion; winter cover for cultivated lands; and terraces.

This article states that the third stage in American agriculture is "that of soil building and conservation."

NELSON, RUFUS J. (1042)
CORRECT LAND USE SHOWING RESULTS. Farm and Ranch 55: 2, 14, Illus. January 1, 1936.

An account of how cooperation of farmers with the Soil Conservation Service in Arkansas resulted in increased food and feed crops through saving soil and conserving rainfall. A survey of percentages in 1935 over 1933 with details of methods used are given.
NEWLIN, J. J.

CONTROLLING EROSION WITH OLD WOVEN WIRE. Wallaces' Farmer 44: 1250, June 20, 1919.

Advocates the use of old wire fencing for the damming of wide ditches and gullies in Iowa.

NEWMAN, C. L.

"The almost total neglect of protection from washing of hillsides and of reclamation of wet lowlands in South and East Arkansas, suggested the writing of this bulletin." The protection of soil from surface washing, the treatment of hillside ditches, the use of terraces, drainage of wet lands, and of open and covered ditches with details as to various types of drainage, are discussed.

NICHOLS, ALICE.

Describes new devices tested in New Jersey for water and soil conservation which should be applicable in other Coastal Plain States.

States that New Jersey farmers are employing such methods as strip cropping, contour farming, graded watercourses, diversion ditches, and grassed waterways for control of erosion and conservation of water resources.

NICHOLS, F. B.

This article describes the work of the Bethany Soil Erosion Experiment Station at Bethany, Mo., in aiding local farmers to check soil erosion. The most effective methods of erosion control described are (1) contour farming, (2) strip cropping, (3) terracing, and (4) various methods of gully control.

NICHOLS, M. L., AND SEXTON, H. D.

Various means of erosion control have been advocated for many years. "As a result, terraces and cover crops are considered by the better farmers as a necessary part of any sound system of crop production on rolling lands." The method employed by the Alabama Agricultural Experiment Station in studying erosion and effect of rate of rainfall is described in detail with the aid of tables and diagrams.

NICHOLSON, J. H.

Work by C. C. C. camps in the Clinch-Powell watershed for the purpose of effecting erosion control to protect Norris Lake is described. The cooperation of landowners and farmers in erosion-control work is stressed.

NORTH CAROLINA AGRICULTURAL EXTENSION SERVICE.

SAFEGUARD THE GAINS OF SOIL CONSERVATION. N. C. Agr. Ext. Cir. 216, 14 pp., illus. 1937.

Sets forth the principles of maintenance of soil and water conservation practices. Deals with crop rotations, strip cropping, pastures, terraces, gully control, wood lots, and wildlife.

NORTH CAROLINA DEPARTMENT OF CONSERVATION AND DEVELOPMENT.

NORTH CAROLINA: TODAY AND TOMORROW. 270 pp., illus. N. C. Dept. Conserv. and Development. 1936.

This volume, dealing with the utilization of natural resources in the State, contains, on pages 265-267, a brief review of soil-conservation conditions and a proposed program embodying crop rotations, vegetative restoration, and terracing.
Ohio State Water Conservation Board.

First and Second Biennial Reports. ... August 12, 1931, to December 31, 1934. Ohio State Water Conserv. Bd. 49 pp. 1935.

Pages 9-10 contain a discussion as to what the Federal and State Governments are accomplishing in erosion prevention.

Oakeson, C. J.

On pages 143-145 rock characteristics as a factor in flood control and geologic features of importance in Salina Canyon are discussed. The author says of rodents: "They not only aid erosion by destroying part of the vegetative covering but also by forming well defined channels in which the rain and groundwater can flow toward the larger gullies. The main part of the erosion control program in this region consists of the building of dams across the main gully channels."

Olson, Lois.

A description of how erosion, one of Virginia's most vital problems of the present day, was met by early Virginia farmers, who put into practice many of the methods now being promoted on a Nation-wide scale by the Federal Government.

Overholt, V.

Erosion control methods in Ohio are discussed, such as broad-base or Mangum terraces, earth dams, straw and brush dams for controlling gullies, and sod strips to stop soil washing.

Owen-Collette, J.

On the effectiveness of wire netting and stock control to prevent erosion. The advantages of contour netting over furrows is stressed.

Partridge, N. L.

This bulletin brings together the results of other published data on systems of cover cropping, intercropping, cultivating, fertilizers, and soil management in general. The author discusses various methods of controlling erosion on fruit plantations.

Paulsen, M.

"Operations for the successful protection of farm land against a small river, by the use of groynes and the planting of willows in the river bed are described."—Expt. Sta. Rec. 42: 780. 1920.

Peterson, A. I.

"We find that the first settlers had only to dig down from 6 to 10 feet to get an abundance of water ... Today, we find that practically all over the State we have had to resort to deep wells for the necessary water to supply our needs ... " Continuous tapping of the ground for increased population of man and beast has caused lowering of the water level.

Poe, Clarence.

The author discusses the Nation-wide campaign to save the soils of the United States as "the most important issue of the 1936 campaign," and presents a suggested eight-plank soil-building platform dealing with the following: Interest of farm people; climatic influences on land; need for soil humus; soil washing; livestock; forest fires; abandoned croplands; and home ownership.
PORTER, J. F. (1061)

The author emphasizes the need of getting information on erosion control to the farmer. Terracing and permanent pasture to build up the soil are advocated.

PRICE, FITZHUGH. (1062)

This article points out the advantages of terracing to control erosion and also recommends the planting of Bermuda grass, clover, and vetch. The author maintains that the root system of the black locust is superior to pine in holding the soil together.

Puerto Rico Agricultural Experiment Station. (1063)

On the successful planting of terrace banks with Cordyline guineensis to prevent soil washing.

The need is stressed for studies of measures to check erosion together with restoration of plant nutrients to depleted soils.

Purdue, A. H. (1065)

This paper gives a general description of erosion conditions and recommends various control methods, namely, deep plowing, log and brush dams, grass plantings, and reforestation. Japan clover, Bermuda grass, and honeysuckle are suggested for grass planting, and yellow poplar, black walnut, and locust for reforestation.

Ramser, C. E. (1066)

The writer discusses research work of the experimental farms relating to soil erosion in the red lands of Texas and Oklahoma, the black lands of Texas and Kansas, the gray lands of Missouri and Iowa, and the sandy lands of Arkansas, Louisiana, and Texas. Data on the various experiments carried on by the Federal projects are given.

In general, the experiments outlined here were conducted by the Bureau of Agricultural Engineering in cooperation with the Bureau of Chemistry and Soils. The article presents important data on the construction, design, and maintenance of terraces, tillage methods, vegetative covers, strip cropping, gully control, and control and prevention of wind erosion.

Rast, L. E. (1068)

Erosion-control operations in Georgia by the Soil Conservation Service with cooperation of the Civilian Conservation Corps is described.

Reed, R. H. (1069)

An account of the self-help plan in Appanoose County, Iowa, "which may, in the opinion of many agricultural leaders, serve nicely as a blueprint for an efficient machine to fight soil erosion."

An account of the self-help plan in Appanoose County, Iowa, "which may, in the opinion of many agricultural leaders, serve nicely as a blueprint for an efficient machine to fight soil erosion."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

REINHARDT, JULES.
HOW EROSION IS PREVENTED ALONG ROADS IN WISCONSIN GLACIAL REGION.

"Since erosion, treating it in the abstract, is dependent on the velocity of the water, the solution of a particular problem usually requires either (1) arming the eroding soil with a surface tough and smooth enough to resist scouring, (2) enclosing the water in a channel or pipe having a similar resistance to erosion, or (3) checking the velocity by reducing the gradient, which of course requires providing for spillways where the fall to a lower level can be accomplished abruptly yet under complete control This plan not only protects the highways from hill-side debris but results in building up fissured farm land to its original level."

RICHARDSON, T. C.
A COUNTY GOES TO SEA. Farm and Ranch 54: 2, 18, illus. February 15, 1935.

It is pointed out that "flood control starts with forests, terraced fields, and well-grassed pastures which slow up and reduce run-off and store water in the soil." The program for saving city and county with particular reference to work done in Texas is discussed.

SAVE THE PEOPLE BY SAVING THE SOIL. Farm and Ranch 54 (7) : 3; (8) : 2, 7, 12, illus. April 1 and 15, 1935.

Outlines the work of the extension service in Texas and Oklahoma, and the cooperative efforts of the farmers with various State committees and associations in checking soil erosion. The article also describes the work of the State legislature in forming future erosion-control policies.

SAVING THE SOIL IS SAVING ALL. Farm and Ranch 53: 4, 10, illus. May 15, 1934.

Terracing in Collin and Hunt Counties, Tex. The farmers solve their terracing problems with the aid of the C. C. C., the county officers also cooperating. The author explains the advantages of a cooperative system.

RINGLAND, ARTHUR C.

The author discusses watershed protection at the Sybarius project in southern Italy. The project comprises 347,443 acres of mountains and hilly area and 79,099 acres of plains. Data are given on stream-bank sliding, water diversion, and soil conservation financing.

ROBERTSON, C. L., and HUSBAND, A. D.

Reports results of experiments to determine relative efficiencies of two types of ridges in reducing erosion and flood run-off at an experiment station and also to supply data as to the peak rate of discharge during rainstorms of particularly heavy intensity and thus afford an indication as to the height of ridge necessary to insure protection under the severest of conditions.

ROCKIE, W. A.

"The program of erosion control simply involves some common sense principles of safe use of the land."

ROS, H. B.

Various methods employed by agencies of the national program for soil conservation are outlined, among which are: Vegetative and engineering measures; land classification; crop rotation; controlled grazing; economic studies; rodent control; wildlife conservation; weed, insect, and disease control in field plantings.
ROE, H. B. and NEAL, J. H. (1078)

"Many simple practices in farm operation that the farmer may apply without outside help will be of great aid in controlling erosion on the farm. Likewise there are many of the common practices that he should avoid because they further erosion. To present these practices for the farmer's consideration and guidance is the purpose of this bulletin." Terracing with strip cropping, gully control and elimination, and control of sheet erosion are among the problems discussed.

ROTHROCK, J. T. (1079)

In considering pitch pine (Pinus Rigida) the writer says: "Today you will find it growing on a rich soil, tomorrow on a slaty ridge, then on a rugged mountain slope, and again on a sandy shore line where no other of our trees can maintain itself." A comprehensive description of the pitch pine is given of its growth along the eastern coast of New England.

RODDEBUSH, L. (1080)

The writer contends that "the drainage of the soil plays a very important part in preventing erosion... For the present, underdrainage, cover crops and humus must be emphasized as never before in our Ohio River Valley."

The writer presents photographically the subdivision of a 200-acre farm into 30-acre tracts, each under different management. Results of grass and tree planting for soil building and holding are contrasted with other methods involving soil erosion and destruction of fertile land.

ROUND, G. (1082)

The writer describes the help given farmers by county agents in establishing an erosion-control program in Nebraska. "Farmers in this county have partially remade the topography of their land by cooperating in what probably is one of the most successful soil-erosion projects in the Middle West."

RUMMELL, L. L. (1083)
LOST GOOD HILL LAND FARM! DISAPPEARED DOWN THE RIVER AFTER RAIN. Ohio Farmer 177: 10. April 25, 1936.

The writer describes demonstration plots and experiments as observed at the soil-erosion experiment farm near Zanesville, Ohio, and discusses prevention of soil losses.

RUSS, G. W., and JUDD, C. S. (1084)

"The object sought by this plan is to establish a forest cover on the eroded areas on the Kahaukli Ridge which are visible from the Honolulu waterfront, in order to prevent further erosion of the soil in this region." This plan is followed by a progress report, describing the work done and trees planted with results obtained to date. Photographs of the operations and the results in tree growth accompany the report.

RUTHERFORD, D. M. (1085)

Soil-conserving practices in California include long and short furrows, check dams and contour checks, gully control, cover crops. The need for experience and research into soil-conserving methods is stressed.
SARGENT, J. W.
"Tests made on unprotected and protected fields in the Arkansas project areas have shown that on cultivated fields and pasture areas protected with erosion control measures and practices, moisture is stored to a depth of twice as much as on similar areas which are untreated."

SAVILLE, THORNDIKE.
By virtue of his connection with the Water Planning and Water Resources Committees, the author tells about the coordinated movement to explore the Nation's stock of water resources and the plan for their systematic conservation and utilization. Early and current activities are discussed together with future trends and potentialities.

SCHEREB, G. C.
The author describes the construction of post and board fences to catch sand. Another protective measure is to build groins of bags of beach sand, "which bags of sand having no greater specific gravity than the sand upon which they rest, do not imbed of their own weight, but serve to catch and arrest the particles of sand in suspension during the ordinary prevailing winds of the seashore."

SENNANAYAKE, R.
Attempts to counteract soil wash are described. The successful one, initiated by the owner of the estate after a visit to Italy where he had seen a very fine system of contour stone terracing, is discussed in detail.

SHAPIRNSKY, R. B.
RECLAIMING ERODED LANDS. Farm Engin. 5: 8. March 1917.
Shows effectiveness of damming, blasting, and planting in restoring erosion-destroyed land to usefulness.

SHAW, C. F.
Erosion pavement is defined as "a surface covering of stone, gravel, or coarse soil particles accumulated as the residue left after sheet or rill erosion has removed the finer soil." The author illustrates erosion pavement in Santa Monica, Calif.

SHAW, FRANK R.
Address before Indiana section of the American Waterworks Association, April 8, 1936. A consideration of the problem of conserving our national water resources in connection with the various forms in which and places wherein water exists and the changes and effects which transpire in its travels, as well as the uses to which it is put. Shows that water for human consumption is either directly or indirectly affected by silt, lowering of the ground water table, decrease of infiltration, low stream flows, and floods.

SHEPPARD, J. H.
The author explains that "Wrong side up" is a picture of an old Indian turning back the freshly plowed prairie sod and saying to the new settler, "wrong side up" an actual occurrence with an old Sioux Indian and John Christiansen of New Salem in 1883. The point is stressed that a large percentage of the land is too hilly and stony for cultivation and should have been left in natural prairie grass for cattle.
SHORT, A. K.

The author describes the cooperation of the Federal Land Bank of Houston, Tex., with the extension service of the Agricultural and Mechanical College of Texas in an organized State-wide soil conservation program. This consists of three primary objects: (1) To teach more men and boys to use the farm level and to run terrace lines; (2) to impress upon farmers and businessmen the importance of soil and plant-food conservation; (3) to demonstrate building an adequate terrace. Texas has more than 450,000 farms, and the author states that more than 300,000 would be benefited by terracing.

SIMMONS, J. R.

A description of property near Albany, N. Y., where soil erosion was retarded by laying willow logs in shallow trenches along the slope of the bank. "In many cases willow logs laid on the ground in extremely sandy areas, and covered with a light layer of earth, have survived and aided materially in reclaiming the areas . . ."

SIMS, A. J.
EROSION IS SOIL ROBBER NUMBER ONE. Agr. Leaders' Digest 17: 10. March 1936.

Statistics are given on the removal of plant-food elements by erosion.

SMITH, A. G.

The author divides land into five general soil-erosion classes. Methods of erosion prevention and moisture conservation are discussed. Contour plowing and terracing are stressed, and their use in South Carolina is shown.

SMITH, Bernard.

"In water-supply the inorganic control is exemplified by such factors as rain fall, shape of ground, lie and nature of water-bearing strata, water levels, and so on; and the organic response is in the siting of villages and towns or the efforts of men to obtain, conserve, and control local supplies of water, or acquire them from a distance."

SMITH, Chester.

Address, followed by a discussion, at the Kansas Agricultural Convention in 1930. The author discusses the comparative merits of various types of terraces in erosion control. The discussion covers the construction of spillways, terraces, cover crops, subsolling, and wind erosion.

SMITH, H. P., AND OTHERS.

"The progress results are briefly presented of studies on the mechanical harvesting of cotton, factors of efficiency in the distribution and placement of cottonseed and fertilizer, soil erosion, types of terraces, soil erosion prevention and moisture conservation by strip cropping, strip subsolling and terracing, and run-off in relation to soil erosion. The work on soil erosion and related features is being conducted in cooperation with the U. S. D. A. Bureaus of Agricultural Engineering and Chemistry and Soils."—Expt. Sta. Rec. 67: 750. 1932.

SNELL, Bertrand H.

Suggests that adequate appropriations be made in the interests of a sound soil conservation program.
SOCIETY OF AMERICAN FORESTERS.

Discusses the following recommendations: (1) That the committee be authorized to broaden the scope of its activities to include all phases of watershed protection on wild lands; (2) that foresters realize the need and value of other technical practices to supplement forestry techniques; (3) that preparation for watershed protection should include a general 4-year forestry course, and (4) that research in this field requires 1 or more graduate years of specialized training. Presented at thirty-sixth annual meeting, Portland, Oreg., December 14-16, 1936.

SOUTH AFRICA DEPARTMENT OF AGRICULTURE AND FORESTRY.

[SPILLMAN, W. J.]

CONSERVATION OF RAINFALL. MEMORANDUM ON THE WORK OF COL. FREEMAN THORP ON HIS FARM AT HUBERT, MINN. 66d Cong., Ist Sess., S. Doc. 228, 5 pp. 1913.

The writer examined the farm of Col. Thorp, including the forest plantations, and studied the interesting methods which he has there developed. He discusses a number of important problems worked out by Col. Thorp in connection with farming. An embankment system for conserving rainfall is described, and an extract from the Kansas Farmer is included subtitled "Contour Farming in Kansas."

STANFORD, J. E.

The author recommends a well-directed regional program including proper utilization of land, prevention of overgrazing, strip cropping, contouring, and planting of shelterbelts to prevent excessive erosion.

STARCH, ELMER, AND KURTZ, L. I.

"Stubble burning has been practiced for only a few years in Montana and the ultimate effect upon the soil has not yet been determined. Some authorities are against the practice because of the loss of organic matter and plant food contained in the straw. Stubble burning should not be practiced on soils that have started to blow. Burning in the fall is not recommended inasmuch as the stubble should be left to hold snow and to aid in the control of soil blowing." Stubble-burning machines and their costs are discussed.

STEEL, W. A.

The importance of soil conservation demonstrations and the effect on the thought of farmers are discussed. The author's conviction is that future conservation is the responsibility of the individual farmer. Terracing costs are quoted.

STEWART, GUY R.

This article reviews the topographic and climatic features of India. An important factor affecting plant cover in India is the fact that the Hindu considers the cow as a sacred animal. The resultant overgrazing as a factor in soil erosion is pointed out, and a proposed program to develop fodder resources for local livestock and to improve standards of cultivation is outlined.

SWAIN, G. F.

The author takes issue with the conclusions of the Chief of the United States Weather Bureau.
In addition to the three major phases of its program, the activities of the Tennessee Valley Authority in erosion control are described under Agricultural Planning and Demonstrations, pages 39-41, and Forestry Planning and Demonstrations, pages 41-43.

THOMPSON, A. T.

"It is rather interesting that men who advocate soil-saving methods find more sympathy among older farmers than among their sons and grandsons . . ." The author believes that the pioneer, in his span of years, has watched cultivation and its effect from the virgin-sod period on down. Terracing, contour planting, and the use of limestone in Missouri's corn belt are advocated.

THOMPSON, J. P.

A discussion of the soil canyons of the Columbia lava plateau valleys, their geologic history, and accelerated erosion in these regions resulting from summer-fallow cultivation.

THORP, W. E.

In a letter from Johnson County, Iowa, the writer describes the accumulation of humus-laden silt brought down from upland farms in the form of drainage. The use of Mangum terraces for conserving soil and water and the use of dams for prevention of undue enlargement of the channel are suggested.

TILSON, S. D.

Suggestions for erosion control in Rhodesia are offered. "There is not sufficient experience available at present to dogmatise as to the types of plants best suited to the special conditions arising on the sides of gullies, where the sub-soil is completely exposed, and this is a problem of some difficulty owing to the marked infertility of the sub-soil in the red, chocolate, and black loam soil areas; but definite recommendations can be made with regard to grassing the wet vleis, and dry valleys, which are not yet severely eroded, and which are being utilized as the channels to receive the water from contour ridges and storm drains."

TOWL, R. N.

Briefly describes a means of river-bank protection introduced by O. S. Scheifele, of Waterloo, Ontario, involving a new system of angular or inclined tree planting.

TURNER, A. W.

"In general the secrets of erosion control are to build up the physical condition of the soil, to use sod pavement for carrying the water, prevent the water gaining too much momentum, and to block the dirt but let the water escape." Methods for handling ditches and various types of dams are discussed.

[UHLAND, R. E.]
FERTILIZING AND SOIL EROSION. Science 80 (Sup.): 6-7. November 23, 1894.

"Fertilizing and liming soil pays not only in increased crop yields but indirectly in decreased losses of topsoil due to erosion." In an address
at the Iowa State College of Agriculture and Mechanic Arts, the writer stressed this point and described experiments near Bethany, Mo., and results.

UHLAND, R. E. (1118)
HIS 238 ACRES STAYED HOME. JOHN TEBBEN WORKED OUT HIS SYSTEM OF EROSION CONTROL 60 YEARS AGO; HIS RECORDS SHOW WHAT WE MAY EXPECT OF OUR LAND. Successful Farming 35: 19, 66-67, Illus. February 1937.

Describes a pioneer's conservation program of building dams and plowing furrows along the slopes of a northeastern Iowa farm. "Soil conservation Service technicians estimate that the farm has from ¼ to ½ more top soil left on cultivated fields than similar farms in the community which have not received protection against soil erosion."

ULLMAN, C. G. (1119)
EROSION—THE PLANT FOOD ROBBER. Pacific Rural Press 133: 337. March 6, 1937.

Outline of erosion studies conducted by the Soil Conservation Service at the Las Posas project during the cropping season of 1935-36.

ULLMAN, CORNELIUS G. (1120)

Yield studies conducted by the Soil Conservation Service in the Las Posas project during the past cropping season (1935-36) indicate lower lima bean yields on soil suffering from soil erosion. A reduction of 329 pounds per acre was indicated between soils of moderately severe and very severe degrees of erosion.

UNITED STATES AGRICULTURAL ADJUSTMENT ADMINISTRATION. (1121)

"The report covers the activities of the Agricultural Adjustment Administration during the calendar year 1936, and reviews the shift in emphasis from emergency measures for alleviating the effect of tremendous surpluses, to long-time programs for the welfare of agriculture and especially for protecting and conserving the Nation's greatest natural resource, its soil."

UNITED STATES BUREAU OF AGRICULTURAL ENGINEERING. (1122)

Irrigation investigations include water supply forecasting, the duty of water, evaporation studies at Baldwin Park and Fullerton, Calif., silt in streams, storage of water underground, and drainage of irrigated land. Drainage investigations include run-off studies, drainage of timberlands, and durability of drain tile.

UNITED STATES CONGRESS, HOUSE COMMITTEE ON APPROPRIATIONS. (1123)

A. E. Morgan, chairman of the Tennessee Valley Authority Board, stated that they had made about 30,000 tons of fertilizer but had not sold any. H. A. Morgan, a director, stated that the kind of fertilizer they are making has never been made before. This fertilizer is being distributed to farmers on condition that they do not use it on plowed land—only on pasture land, because "the land that is being allotted there ought not to be plowed. We are trying to work out an economy that will stop soil erosion." Twenty farms to the county over an area of 7,000,000 acres are being used to demonstrate that waste land can be made profitable.

UNITED STATES DEPARTMENT OF AGRICULTURE. (1124)

In this article on forest conservation and related subjects, the question of soil erosion is discussed under "The Protection of Watersheds," pages 88-91.
Water and soil conservation program conducted by Kansas Emergency Relief Committee with the Kansas Extension Service as one of the main cooperating agencies. There are four general objectives included in the long-time phase of the program: (1) To conserve the top-soil and rainfall; (2) keep silt from filling up ponds and stream beds; (3) conserve some of the rainfall for irrigation purposes (by means of farm ponds); and (4) maintain a higher ground-water level.

Gives an outline of the Federal program for soil conservation.

Discusses the cooperation of county agents and emergency agencies in saving soils. "This work includes terracing, vegetative and tree-planting control measures, and obtaining, preparing, and distributing agricultural liming materials."

This article reports successful soil improvement and erosion prevention, with the use of legumes, in Spokane and Walla Walla Counties, Wash.

United States Office of Experiment Stations.

Mentions sorghums as crops for severe soil-blowing conditions, p. 45, and describes erosion-control methods and equipment, pp. 170-172.

United States Soil Conservation Service.

Contains reports from Texas, Iowa, New Mexico, Colorado, and Kansas, with regard to success of erosion-control practices during heavy rains.

This handbook gives instructions on how to lay out terraces and various types of check dams for gully control. Strip cropping is discussed, and various vegetative plantings are suggested.

"This handbook has been prepared for the use of personnel on Soil Conservation Service demonstration areas and outlying Emergency Conservation Work erosion-control camps in Missouri and Iowa. An attempt has been made to bring together in one publication the latest information available for the planning and execution of a coordinated erosion-control program."
UNITED STATES SOIL CONSERVATION SERVICE.

SOIL EROSION CONDITIONS AND SUGGESTED CONTROL METHODS FOR THE COSHOOTON RIVER WATERSHED PROJECT. 23 pp., illus. 1935. [Mimeographed.]

Grasses and clovers, strip cropping and contour farming, tree planting and gully control are measures prescribed for the control of erosion.

UNITED STATES SOIL EROSION SERVICE.

This handbook is especially intended for the use of landowners residing in Pittsylvania County, Va. It describes Banister River soils and gives instructions on gully control, terracing practices and construction, and contour cultivation.

UNITED STATES WAR DEPARTMENT.

UPTHEORE, DANIEL.

ROLLING CULTIVATED LANDS MUST BE TERRACED TO SAVE THE SOIL. Executives' Mag., pp. 16-17, 26, illus. July 1931.

Maintains that soil riches properly conserved are inexhaustible, but cultivated soil on rolling lands without adequate protection is one of the most perishable of natural resources. The St. Louis Southwestern Railway conducts terracing schools with illustrated lectures followed by field demonstrations. Cooperation of the Federal Government, Implement manufacturers, and Federal land bank at Houston, Tex., is extolled. The author contends that an acre yield is sometimes doubled by moisture conservation through terracing.

UTAH AGRICULTURAL EXPERIMENT STATION.

Under the heading "Soils and Fertilizers", pages 35-45, the soil types of Washington and Carbon Counties are considered. Results of cropping and manuring systems on soil productivity are given. Flooding and furrow methods of irrigation are described, pages 52-53. "In some irrigated sections gullies have been started by allowing waste water to run in the same place for a long period of time." The use of hydromechanics in a study of the control of ground water is mentioned, page 54. Methods of dry-land farming are discussed, pages 46-54.

UTZ, E. J.

The author advocates adaptable crops for various soil types and slopes classed as A, B, C, and D.

VANDERPORN, C. F.

A preface to this bulletin states: "This Bulletin contains, after a description of the objects and methods of the survey, the physical and chemical analyses and climatological and botanical relations of a number of the most important typical soils of Tennessee." On page 107 the author states that nine-tenths of these gullies had their birth in cultivated fields, and might have been checked if timely attention had been given them.
Veatch, A. C. (1141)

"The complete report on all these areas has been published by the National Survey as Professional Paper no. 46, entitled 'Geology and Underground Water Resources of Northern Louisiana and Southern Arkansas.' Excerpts from this elaborate paper dealing with Louisiana territory form the subject matter of this bulletin. It is believed that citizens of the State will find this bulletin amply exhaustive and much more convenient for reference . . ."

Erosion of the Port Hudson deposits is treated on pages 52-64.

[WALLACE, H. A.]
A general description of control methods and practices. Discusses the work of different Soil Conservation Service agencies and demonstration projects.

Discusses the Federal program and policies embodied in the Soil Conservation Service Act and the relation of the individual farmer and his needs to the program.

Wallace, H. A. (1144)
"Good farmers are soil builders; poor farmers are soil miners." Gives four suggestions for improving soil in the Corn Belt: manure; lime; rotation; commercial fertilizer. There follows also advice as to the kinds of clover best suited to the various soils.

WARNER, DAVID C. (1145)
This article discusses "... the natural evolution or developments of water through its diversified course or cycle ..." and divides the cycle into four classes of action. A program of water conservation is proposed in which the soil-erosion phase is considered.

Weatherwax, H. E. (1146)
An abstract of a paper presented on December 14, 1936, before the American Shore and Beach Preservation Association, which describes work of the North Carolina beach erosion control project on which about 1,000 W. P. A. laborers are employed. The brush fence was found to be the most effective type for the creation of new sand dunes which could be held in place by planting protective coverings of grass.

Wehrwein, G. S., and Baker, J. A. (1147)
The land-resettlement program and the zoning accomplishments since 1933 for Wisconsin are presented. Need for dredging lake bottoms covered with silt is stressed. "These lake bottoms are for the most part surrounded by farm land. The run-off from cultivated land carries silt into streams and lakes which act as natural settling basins. Planting the shores with trees and shrubs is recommended to control erosion . . ."

Whitcombe, C. D. (1148)
The importance of reclaiming land on the west coast of New Zealand is stressed. The bars at the mouths of the rivers are principally formed of...
sand driven along the coast or washed in by the sea into horseshoe shape, infinitely prejudicial to navigation. Systems adopted in France for the reclamation of sand lands are described, and plants for holding them are listed. The poplar is of special value as it will grow in exposed situations where nothing else can survive.

WHITNEY, D. J.
Review of water conservation accomplishments and cover-crop needs and plantings in Santa Clara County, Calif.

WHITSON, A. R.
A brief discussion on gully control in southwestern Wisconsin. Recommends and describes the advantages of the porous dam and the use of vegetative cover.

WHITSON, J.
WHAT CORN BELT FARMERS ARE DISCUSSING. Wallaces' Farmer 54: 1396. October 18, 1929.
"Soil erosion and its control is not the same problem in the southeast one-fourth of Iowa that it is in the Missouri local soil area of western Iowa. In both of these areas, this is one of the most serious problems facing farmers as individual farm operators and as community members." The author explains that the most effective control of soil erosion in the southeastern area is through the sowing of grass after legumes have been used, whereas seeding the yellow soil to sweetclover has proved most successful for western Iowa.

WILLIAMS, O. T.
Research on the erosion-control project at Dalhart, Tex. Shows that water evaporation on terraced land is less than on unterraced and that water conservation is the most important factor in control of wind erosion.

WILSON, F. W.
Suggestions made at the University of Nevada for a soil conservation program are given.

WISCONSIN AGRICULTURAL EXPERIMENT STATION.
Factors affecting erosion measured by La Crosse station are outlined on pages 27-35. "... to keep step with this increased interest in soil conservation, machinery has been set in motion for gathering facts on which to base a sound program of soil-saving farming practices." Discusses the influence of crops, crop rotation, slopes, organic matter, character of rainfall, field operations on terraced fields, small field gullies, and the effect of grazing and forest cover.

WISCONSIN UNIVERSITY.
Table of contents: Surface Water Resources; Water for Human Consumption and Industrial Use; Organic Pollution of Waters; Wisconsin Lake Investigations; University Facilities for Study of Water Resources. The purposes of the bulletin are: (1) to outline the problem of water conservation; (2) to indicate the nature and variety of research needed; and (3) to show what facilities are available at the university for students of water resources.

Statement of the drainage basin report of the water resources committee, outlining its principal features, limitations, and recommendations.

Report on accomplishments, purposes, and policies of the water resources committee of the National Resources Committee, presented before the annual convention of the American Waterworks Association, Los Angeles, June 9, 1936.

This work consists chiefly of a report on a joint conference on water planning policy held in Washington, January 22, 1936, at which time H. H. Barrows of the University of Chicago presented "A Declaration of Principles" based on the work of the Mississippi Valley committee and the former water planning committee.

This article discusses soil erosion in Nebraska. The author attributes soil losses and accelerated erosion to individual negligence of landowners. The various steps in erosion control are explained and include the maintenance of soil fertility by the planting of leguminous plants, contour farming, control of small ditches, control of large gullies, vegetative cover, and terraces.

"Millions of tons of soil particles slip silently away each year down the Mississippi to find a final resting place in the Gulf of Mexico... As long as rain falls on hilly ground there will be a certain amount of erosion, but there are measures which may be taken to help matters and first in importance is the upkeep of fertility." Soil-saving dams are described and illustrated.

Woodbridge, S. M. (1161) WATER CONSERVATION IN SOILS. Forester 5: 181-182. August 1809.

A brief discussion of soil porosity. The author concludes that vegetative cover is the greatest factor in the absorption and retention of moisture.

The extensive program to save farm lands by the use of check dams built of brush, stone, and logs to prevent gullying and the value of ditches to intercept and concentrate flood flow is outlined.

States that Bruckner's investigations on the circulation of water in the atmosphere dealt a serious blow to the theory that the vapor from the oceans is carried by the wind to the continent, there condensed in the form of snow or rain, and later returned through rivers back to the ocean. Maintains that a dense forest contributes more vapor than any other type of vegetative cover and gives figures on amounts of vapor given off from an acre of forest.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BIBLIOGRAPHIES

(For references to current literature on any given phase of soil erosion or conservation, the reader is referred to lists of references issued monthly by the libraries of the Soil Conservation Service, Bureau of Agricultural Economics, Bureau of Agricultural Engineering, Forest Service, and Public Roads of the United States Department of Agriculture.)

BECARW, LOUISE O., COMPILER.

(See last 5 pages of this publication for 69 other lists of references pertaining to agricultural economics.)

HANNAY, A. M., AND COLEVIN, ESTHER M., COMPILERS.

BRADLEY, MARY A., COMPILER.

AND HUNT, MABEL G., COMPILERS.

CLARK, ALVIN W., COMPILER.

CULVER, DOROTHY CAMPBELL, COMPILER.

EDWARDS, E. EVERETT.

See pages 8–10 for references to bibliographies of related subjects

FELDKAMP, CORA L., AND PENNINGTON, CATHARINE E., COMPILERS.

GRAF, DOROTHY W., COMPILER.

HAFERKORN, H. E., COMPILER.

HANNAY, A. M., compiler. (1179)

HAWKS, EMMA B., and TROLINOE, CHARLOTTE, compilers. (1180)

HEDRICK, ELLEN A., compiler. (1181)

Imperial Bureau of Soil Science. (1182)

Library of Congress, Division of Bibliography. (1183)

MOORE, HELEN, GOEN, ALICE, and STUART, ALICE, compilers. (1184)
SHELTERBELTS FOR THE PRAIRIES; AN ANNOTATED BIBLIOGRAPHY OF THE MORE IMPORTANT REFERENCES ON SHELTERBELTS AND WINDBREAK PLANTINGS IN AMERICA. U. S. Forest Service Libr. 21 pp. 1934. [Mimeographed.]

NICKELS, JOHN M. (1185)

"The bibliography of North American geology to the end of the year 1928 is contained in Bulletins 746 (Bibliography) and 747 (Index), covering the period 1785–1918; Bulletin 823, covering the period 1919–1928, in which previous bibliographies and cumulations of the United States Geological Survey have been combined; and Bulletin 834 (1929–1930)."—Introduction.

PiETERS, A. J. (1186)

United States Department of Agriculture Library. (1187)

United States Central States Forest Experiment Station, Forest Service. (1188)

YARNELL, DAVID L. (1189)

CLIMATE AND PHYSIOGRAPHY AS RELATED TO SOIL EROSION

Anonymous. (1190)

This article purports to show the influence of erosion by water in modeling the landscape. Diagrams illustrating the formation of earth pyramids are given, together with illustrations of actual earth pyramids in the Austrian Tyrol.

ALEXANDER, H. S. (1191)

"This study was undertaken for the purpose of determining hypotheses for pothole erosion that could be demonstrated by laboratory experiment. Three types of power circuits, experimentally demonstrated, are used to explain the three types of stream potholes. The bearing of these results on the 'moulin' and 'grinder' hypotheses is discussed."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

ALLIX, ANDRE.
This paper classifies and describes the different types of avalanches. Under Morphological Effects: Erosion by Avalanches, pages 543-546, the formation of gullies by gouging is discussed.

ANDERSON, J. G.
Discusses solifluction, or soil flow, in various parts of the world and the climatic features which intensify it.

ASHLEY, G. H.
"The present studies deal with the rate of erosion and other factors affecting surface sculpturing, and, if sustained by subsequent studies, may materially affect estimates of the antiquity of man." The contents of this paper include: Peneplanes; Old Peneplanes; Relation of the Surface to Rock Structures; Valley Floors and Their History; Appalachian Valley Section.

BAILEY, REED W.
The results of physiographic and historical studies of recent channeling in previously well-aggraded valleys in the Colorado Plateaus are here presented. Studies were made of naturally barren areas to determine whether a change could be expected in the gradational processes if climate had changed sufficiently to cause the accelerated erosion in adjacent valleys. Conclusions are that utilization of the region by man and the consequent reduction and modification in the plant cover are major factors in starting the new epicycle of erosion.

BAIN, H. F.
"The area which has been studied in the preparation of the following memoir lies in central Iowa and includes Marshall, Story, Boone, Greene, Guthrie, Dallas, Polk, and Jasper counties and a portion of Carroll ... It is intended here to treat only of certain specific problems connected with two of the drift sheets of the region ... The region outlined includes the southern termination of the Des Moines lobe of the Wisconsin ice sheet, and it is the relation of the latter to the outlying drift which it is proposed to discuss." An analysis of erosion curves includes river changes and correlation of outlying drift with time ratios.

BASCOM, F.
CYCLES OF EROSION IN THE PIEDMONT PROVINCE OF PENNSYLVANIA. Jour. Geol. 29 (6) : 540-559, illus. 1921.
"Since 1912, when Professor Barrell brought to the attention of the Geological Society of America some conclusions opposed to the earlier interpretation of the erosion history of certain portions of the Appalachian highlands, the writer has had in mind the possible application of similar conclusions to the erosion history of the Piedmont province of Pennsylvania. The results of this intention are published in this paper." The question as to whether peneplains are of subaerial or marine origin is debated.

BATES, C. G.
CLIMATIC CHARACTERISTICS OF THE PLAINS REGION. In Lake States Forest Experiment Station, Possibilities of Shelterbelt Planting in Plains Region, sec. 11, 201 pp. 1935.
On pages 83-110 the writer discusses wind direction and velocities, precipitation, relative humidity, evaporation, temperatures, and their significance. "In treating the subject constructively, it is hardly sufficient to say that the climatic conditions of the Plains are such and such. It is necessary
to develop a sufficient understanding of matters to indicate how far the local climatic factors can be changed by any 'developments' which might be undertaken by man... Hence the various phases of the subject are discussed, not in the order of their immediate importance, but to develop logical cause-and-effect relationships.

The unequaled series of older Tertiary deposits of the Gulf Coastal Plain comprise several thousand feet of sands, clays, marls, lignites, and impure limestones. These deposits have always been considered as forming an uninterrupted and conformable series, extending from the lower Eocene (Midway) to the top of the Oligocene (Vicksburg and Apalachicola). It is the purpose of the present paper to show that the strand line migrated back and forth over this area several times during the period represented by these deposits, and that the sedimentation of Eocene time was interrupted during several intervals, of considerable duration in terms of organic evolution.

To find the geologic age of mountain ranges involves careful investigation of many kinds of evidence. "The two immediate factors concerned with mountain building are elevation and subsequent erosion." Wind erosion and its force in the Andes is considered.

"This paper contains a general review of the six types of plains that are ordinarily found in deserts, considering them especially from the viewpoint of origin. The list includes pediments, bajadas (compound fans), lake bottoms (including playas), dip slopes, graded river flood plains, and aggraded river flood plains. Of these the first two are particularly characteristic of deserts and are far more widespread than the others... Pediments are the normal results of erosion under stable conditions in the desert. The formation of bajadas is induced by diastrophic movements, climatic change, and other interruptions of the normal cycle..."

"This paper will set forth the intimate relations between landslides and talus on the one hand and glaciers and mud flows on the other. All of these may be arranged in an intergrading series in which the typical landslide occupies a central position."

"In a typical mountain desert basin... there are three distinct parts—the rock mountain slope, the graded piedmont slope and the central playa or dry lake bed... It seems worth while at this time to describe the particular playa which offers the most striking indication of having been dominated by deflation." The Danby playa, in southeastern California, is the subject of discussion and the conditions found there confirm the opinion "that deflation is in fact a highly effective erosive process in deserts and one which locally exerts a powerful influence upon the features of desert landscapes."

"In studying the cycles of precipitation in the Pacific States, various data may be exploited. California records themselves extend back about 85 years. Then there are sun-spot numbers, which have been carefully recorded for
almost two centuries. To them definite value as indicators of rainfall variations are described by some investigators. Measurements of tree growth show records much farther back and so can be used to tie in all the rain indices.” The author discusses all these data in an attempt to find some interdependence.

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION (1200)

Bowen, T. G.

Work of Rain and Rivers. 144 pp., illus. New York, G. P. Putnam’s Sons; Cambridge, University Press. 1912.

The author hopes “to do a real service to persons of ordinary education if he can indicate, in language intelligible to them, the methods of observing, the processes of reasoning, and the conclusions reached by trained students of science,” with regard to the work of rain and rivers. The carving and carrying power of water, the making of valleys, and the transport and deposit of materials, are discussed, and the history of a river system is given.

Bowen, William.

On pages 118–121 erosion and sedimentation are discussed. Water erosion is far greater than wind erosion. “It has been estimated that in the United States the rate of erosion is approximately 1 foot in 9,000 years . . . The water falling as rain carries off vast quantities of material in suspension and solution. It unloads certain portions of the earth’s crust and overloads others.”

Bowman, Isaac.

“It is the purpose of this paper to examine certain climatic ideas now current, some of them rooted in experience and scientific truth, others fundamentally unsound.” The retreat of the glaciers, the evidence of the lake basins, and the rainfall curve are all considered by the author, who contends that “the analysis of rainfall records, region by region, must continue at an accelerated pace, in still more variable forms, and for longer periods. Only thus can we expect to obtain a more accurate expression for the degree of risk involved in living in any part of the semiarid region that contains submarginal land . . . upon which settlement became overextended.”

Bryce, L. J., and Belz, J. O.

“This bulletin contains a discussion of dry farming in relation to the amount and character of the rainfall and evaporation in the western United States.” Wind and water erosion are discussed briefly, pages 15–16.

Bryant, K.

“The papago country, as the term is used in this paper, is a region of about 13,000 square miles in Southwestern Arizona.” The surface features of this desert region are described. “These land forms, interesting in themselves and exercising complete control over the lives of the Papagos and the movement of travelers, are the result in large part of processes peculiar to a desert region. The object of this paper is to describe these land forms and to discuss their probable mode of origin.” The geologic and physiographic history is outlined. A glossary for the use of the lay reader accompanies this paper.

Pedestal Rocks Formed by Differential Erosion. U. S. Geol. Survey Bull. 790: 15 pp., illus. 1927.

This description of pedestal rocks in the States of Washington and New Mexico indicates the variety of processes involved in the formation of these
Minor forms and emphasizes the "accumulating evidence" that many pedestal rocks, even in arid regions, are attributable primarily to other processes than wind erosion. Examples cited tend to show that they are due to processes which are also operative in humid regions.

---, and McCANN, F. T. (1213)
"In the area drained by the Upper Rio Puerco and its tributaries, erosion has been marked by the development of a series of successively lowered, stabilized, local base-levels whose existence is recorded by multiple pediments and terraces. The early geomorphologic history is obscure. Some indications of a hypothetical early and wide-spread erosion surface exist. There are more definite traces of a later high-level surface of coalescing pediments. The detailed history began in the Pleistocene with the dissection of this second surface and involved formation of the Upper Rio Puerco by adjustment to structure with accompanying piracy. Thereafter, the La Jara pediment was formed to a stabilized grade 180-200 feet above that of the present stream. Two minor cycles produced terraces about 30 and 10 feet high, respectively, but on rock. Finally, the inner valley of the river was cut and alternately filled and eroded in the minor epicycles characteristic of the region." The article includes geologic diagrams and photographs of the Rio Puerco Basin.

--- and Schowe, Walter H. (1214)
This paper gives data showing that, in the climates prevailing in most parts of the United States, the presence of selenite fragments on the surface may be indicative of the general absence of effective wind scour.

Cairnes, De Lorme D. (1215)
"The domains of physiography and general geology encroach and overlap—but always to their mutual advantage. Nowhere has the writer found this better illustrated than in the district in which, during the past summer, he was engaged in connection with his regular field work for the Canadian Geological Survey. There in a single small area two contrasting types of topography are exhibited—one youthful, the other in a mature to old-age condition—and the differentiation is almost, if not wholly, due to the unequal powers of resistance which the dominant classes of bedrock in the district have displayed toward the various erosive activities to which they have been subjected."

Clarke, F. W. (1216)
The purpose of this paper was to attack systematically, with the evidence supplied by detailed analyses of many American rivers and of the waters east of the hundredth meridian, the problem of chemical denudation. It was written "in order to make existing data more available for discussion, and to point out the deficiencies in our knowledge. If it stimulates investigation ... its main purpose will be fulfilled." Taking the several continents in order, the composition of their waters tributary to the ocean are estimated. "The analyses represent, in ionic form, the percentage composition of the dissolved mineral matter, and under the caption of denudation factor I give the number of metric tons annually removed in solution from each square mile of drainage basin."

Cleland, H. F. (1217)
The geological history of the glaciated area of the Catskill Mountains is discussed.
Discusses an investigation of the rainfall of the western part of the United States and Canada in relation to the sunspot cycle of the year 1923.

"During recent years the untoward effect of climate has been strikingly in evidence throughout the Great Plains and adjacent regions. The most dramatic phenomenon has been a succession of bewildering dust storms driven by the wind from soil stripped of its protecting grass cover and parched by excessive heat and drought. The failure of crops and the extensive removal of top-soil has led to the abandonment of farms on a large scale and to the belief that a great portion of the land is permanently unsuited to agriculture. Such views are the outcome of too short a perspective and hence it becomes imperative to analyze the situation in the light of changes of climate and life as revealed by the geological record... to survey the climatic trends of the immediate and more remote past to correlate them with the responses of plant and animal life." A general summary of the results of these studies is given.

"Correlation of the erosion surfaces of eastern and southern Ohio and adjacent areas in Pennsylvania and West Virginia with the recognized surfaces in eastern Pennsylvania and adjacent areas has been attempted recently by Ver Steeg, Fridley and Noltlng, and Sharp. Considerable divergence of the views is expressed by these authors. This article is an attempt to present another view of the identification and correlation of these erosion surfaces in the light of information obtained by a study of projected profiles and field work."

Discusses erosion in general, effects of climatic change and glaciation, our relations to glaciation, effects of erosion and resulting land forms, wet and dry periods, evidence of soil depletion by erosion, and erosion prevention and control.

"The Oklahoma Climatic Research Center established by the Soil Conservation Service in cooperation with the United States Weather Bureau, has the distinction of being the most comprehensive undertaking ever attempted for the study of microclimatology and its application to the problems of soil conservation. In an area 30 by 80 miles in extent, including Blaine, Kingfisher, and Logan Counties, 200 fully equipped weather stations have been established. All weather instruments are read simultaneously and at short intervals. In this way it has been possible to trace individual storms as they cross the project area, to observe their behavior, determine their water contribution to each part and to the entire area, and to classify them according to their morphology."

"Precision has been given to the conception of a Plains type of rainfall." The graphical method is employed to show precipitation and temperature ratios, comparison of differential indices and significant rainfall changes, rainfall dispersion, and rainfall provinces.
Culbertson, Glenn. (1224)

An account of measurements of the inclinations of four slopes near Hanover and Madison in southeastern Indiana. Among other considerations and conclusions the author states: “Again, the soil of the north slopes is frequently frozen, and even covered with snow or ice, while that of the south slopes is unfrozen. Hence, the erosive action of many winter rains is almost nothing on the north slopes, while it may be quite marked on the south slopes . . .”

Cutting, H. A. (1225)

A “brown snow” storm in Vermont was found to contain dust or ashes which gave it a peculiar brown color. The author discusses the origin of such dust and compares this storm with those in other parts of the United States and of the whole world. In his summary the writer concludes that this dust in Vermont was probably meteoric. Eminent scientists support this view.

Davis, W. M. (1226)

This paper is divided into three parts. Part 1 analyzes an essay by Albrecht Penck on the summit level of the Alps, entitled “Die Gipfelflur der Alpen.” Part 2 discusses the “scheme of the erosion cycle,” outlining three principles: (1) That the erosion of the earth’s surface has been accomplished in successive intervals of time marked off by movements of upheaval; (2) that during the epochs of rest between the movements, the destructive action of the sea waves on the shore line, or of weather and streams on the entire extent of an uplifted region, may reduce it to a low and nearly featureless surface; and (3) that a systematic sequence of forms is developed during the progress of a cycle. Part 3 analyzes Penck’s criticisms of earlier studies of erosion cycles.

Davison, C. (1227)

“The object of this paper is to show how the soil cap, or its upper portion, may creep down an inclined surface through the action of frost.” Experiments are described and discussed.

Delury, Justin S. (1228)

Discusses relevant facts and theories concerning the earth and its crust and gives an outline of crustal phenomena and structures which demand explanation.

Dicken, S. N. (1229)

Karsts are limestone plateaus, marked by sinks or solution depressions, interspersed with abrupt ridges and irregular protuberant rocks. The Kentucky karst lies in a broad crescent southwestward from Louisville, flanking the western coal basin. The structure, lithology, and general geologic features of the forms are described and a discussion is given of the following landscapes: (1) Initial karst landscapes which deal with three stages, smooth or gently rolling cypress plateau, deeply dissected sandstone upland, and entirely on limestone; (2) the doline karst; (3) the basin karst; and (4) streams and basins. The relation of soil erosion to the development of these forms is treated.

“Marginal to the Western Coal Basin in Western Kentucky is a sandstone-capped cuesta, unusual in that the capping layer is less resistant, from the standpoint of normal surface erosion, than the underlying lime-
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

stone. Only because solution is, locally, the more important process and only when the opened fissures in the limestone have captured the surface streams can the limestone be removed more rapidly than the sandstone. Thus the cuesta is formed and maintained (with gradual migration down dip) by solution rather than normal surface erosion.”

Eakin, H. M. (1231)
Discuss the processes of solifluction, or the migration of detritus under the thrust and heave of frost action. “The character, rate, and topographic product of these processes vary with the nature of the materials affected, with the topographic situation, and with the vegetal covering; so that several distinct types of soil movement and resultant topographic forms are recognizable... In the region under discussion solifluction slopes are typically developed on the talus accumulations derived from the coarser granites, and alitplanation terraces in talus from the metamorphosed and highly indurated Mesozoic rocks. The study of these typical occurrences has furnished much of the data on which this discussion of solifluction is based.”

Englemann, J. E. (1282)

Fenneman, N. M. (1233)
The author's central theme is the land forms of the western part of the United States and how they came about. “This book is mainly geological. It treats land forms as effects, not as causes.” Chapter I deals with the Great Plains province, the High Plains of which are said to be of fluvial origin. Erosion of every kind and its effects on the topography are discussed, and the resources of the area described.

Field, Richard M., and Lammers, Edward. (1234)
“Recent investigations in the neighborhood of Junction Butte, and the length of the Lamar Valley, confirm the suggestion made by Jones and Field, in 1929, that the youngest basalt flows in the Yellowstone Park are not interbedded with the rhyolites but are post-rhyolite (Post-Miocene), and flowed upon a well dissected topography, damming and deranging the drainage. Due to the recent partial re-excavation of valleys (each originally dating from either the Oligocene, Pliocene or the subdivisions of the Pleistocene) portions of the Park present an interesting example of composite topographies, and permit a tentative correlation with the physiographic events in neighboring regions.”

Fleming, J. A.

Fridley, H. M. (1236)
IDENTIFICATION OF EROSION SURFACE IN SOUTH-CENTRAL NEW YORK. Jour. Geol. 37 (2): 118-124, illus. 1929.
“The plateau region of south-central New York is now dissected to the stage of early maturity. In part the topographic aspect of the region is due to the effects of the Pleistocene ice invasions. But the summits of the hills over the entire area are closely accordant in elevation (1,700-1,800 feet) and show considerable expanses of undisturbed flat-topped summit areas. However, the Devonian strata, of which the plateau
is built, dip uniformly (if only slightly) to the south. In consequence of these relations physiographers have been in doubt whether the flat-topped upland surface of this section is a structural plain or an uplifted, dissected peneplain. This paper presents the results of an investigation devoted to the solution of this problem."

Gautier, E. F. (1237)

Sahara, the great desert. 264 pp., illus. New York, Columbia Univ. Press. 1935.

After an introduction to the Great Desert, its climate, and the organization of desert life, the author treats of the physical existence of the Sahara, present and past. In a chapter entitled "Fundamental Laws of the Desert Surface Relief", among the forces involved he speaks of aeolian and fluvial erosion and warns against the belief in exaggerated influence of wind erosion. "On ground unprovided with vegetation, where the extremes of temperature splinter the surfaces of the rocks and reduce the clay substances to dust, the rare but extremely violent storms leave ravages of extraordinary erosion . . . Running water freighted with earth is necessarily a more powerful instrument of erosion than an air current . . . The forces of wind and water collaborate; . . ." In the chapter "Progressive Ddessication" the cycles of desert erosion are considered. A glossary is included.

Gregory, J. W. (1238)

"That the continental masses are due to uplift and the ocean basins to subsidence has been generally recognized by those who hold that the actual surfaces are generally recognized by those who hold that the actual surfaces are due to sculpture by the various agents which together produce denudation . . . Sir Archibald Geikie, whose views were deeply influenced by the work of the American Geologists in the Western States, remarked that 'the land owes its existence mainly to upheaval of the terrestrial crust'; but he attributed the existing surface contours mainly to erosion." Many other authorities are quoted on the subject, and the author concludes: "This brief summary indicates that not only are the major features of the earth, the continental masses and ocean basins, due to earth-movement, but that many smaller features are due to the same cause."

Guilbert, G. (1239)

Discusses the progressive and general decline in rainfall in France, with the conclusion that this is universal. There is an order of succession in the various meteorologic periods, a dry period followed by a humid one. Ancient times are compared with the present. Legislation for the protection of forests and woodlands is advocated.

Hafstad, Katharine C. (1240)

A study of "climatic variations which condition local differences on soil erosion" made in Blaine, Kingfisher, and Logan Counties, Okla., since October 1935. A rainfall map is included.

Hand, Irving F. (1241)

This dust cloud was noteworthy not only because observations showed a higher dust content of the atmosphere than ever measured by the Weather Bureau before, but also because of its brief duration. A note on the petrology of the storm is added.

Hayes, M. W. (1242)

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

Hershey, O. H. (1243)
A description of a great storm which reached Freeport, Ill., shortly after
noon on February 18, 1896. Other storms of like nature are described, and
the writer comments on various theories as to "black snow".

Hicks, L. E. (1244)
1893.
"This paper makes no pretensions to an exhaustive treatment of the
elements of land sculpture. There are other forces at work, and the forces
named operate in ways not herein discussed in detail; but in the broad,
general view of the subject the face of nature is moulded chiefly by these
forces: (1) Upheaval, which furnishes the structural blocks to be chiseled
into pleasing forms; (2) Weathering, which rounds off the asperities and
covers the land with graceful, swelling curves; (3) Washing of water,
which yields concave flowing lines upon slopes of erosion, and low convex
curves of deposition. The combination of the weather curve with the
water curve of erosion is here noted and explained for the first time."

Hilgard, E. W. (1245)
100-139. 1894.
"Since soils are the residual product of the action of meteorological
agencies upon rocks, it is obvious that there must exist a more or less
intimate relation between the soils of a region and the climatic conditions
that prevail or have prevailed therein. It is the object of this paper to
discuss . . . some of the more important phenomena dependent upon this
correlation and their effects upon the agricultural peculiarities of the chief
climatic subdivisions." The processes of soil formation, classification and
nature of soils, climatic conditions upon the physical character of soils,
influence of aridity upon the formation of humus, and vegetation are among
the studies discussed.

Hobbs, W. H. (1246)
Earth features and their meaning; an introduction to geology for the
student and the general reader. Ed. 2, 517 pp., illus. New York,
Macmillan Co. 1931.
"The keynote of this course may be found in the dominant characteris-
tics of the different earth features and the geological processes which have
been betrayed in the shaping of them . . . The present work has . . .
been prepared with a view to selecting for study those dominant geological
processes which are best illustrated by features in northern North America
and Europe." A full treatment of desert regions is given.

Holway, R. S. (1247)
The effect of seven years' erosion on the California fault line of 1906.
". . . the main effect of the seven years' erosion has been merely the
softening and rounding of the sharp edges of the broken sod" on the San
Andreas fault. Observations on this and on the Haywards fault are
discussed.

Holzman, B., and Clarke-Hafstad, K. (1248)
Changes in atmospheric circulation result in floods. Soil Conserv. 2:
It is stated that "the climatic elements such as temperature and rainfall
of any particular region undergo periodic daily and seasonal variations;
but the unexpected aperiodic variations are brought forcefully to our atten-
tion because they often result in such national disasters as droughts and
floods."

Howe, Earnest. (1249)
Landslides in the San Juan Mountains, Colorado, including a considera-
tion of their causes and their classification. U. S. Geol. Survey Prof.
Paper 67: 58 pp., illus. 1909.
"In a region whose last cycle of erosion has not yet passed beyond its
youth or very early maturity, wasting of land proceeds with the utmost
activity." This is a 10-year study of landslides.
HUMPHREYS, W. J. (1250)
WEATHER RAMBLES. 265 pp., illus. Baltimore, Williams & Wilkins Co. 1937.
The author discusses tornadoes, frost, snow, atmospheric conditions, the falling of dew, and rainfall among other aspects of weather.

JANSEN, J. C. (1251)
Observations made during the drought period of 1934 on the path of local thunder storms, changes in water table, rate of surface evaporation, and related data are presented.

JOHNSON, DOUGLAS. (1252)
AVAILABLE RELIEF AND TEXTURE OF TOPOGRAPHY; A DISCUSSION. Jour. Geol. 4: 293-305. 1933.
"Attention is directed to a recent discussion of 'available relief', or 'critical relief', and 'drainage relief'. Suggestions are made for redefining two of the terms, and the factors involved in the development of relief are examined. It is shown that the spacing of drainage lines (texture of topography) is a factor of prime importance in determining quantity of relief, and that available relief may vary greatly with the differences in stream spacing. Finally it is suggested that stages of land mass dissection should be expressed in terms of the amount of mass removed, not in terms of amount of upland surface destroyed, and it is concluded that available relief offers a useful basis for judging the progress of land mass removal."

KERB, W. C. (1253)
In this description of superficial strata the relation of frost to gully erosion is given some consideration.

KEYES, C. R. (1254)
"It is the arid region which has introduced us to an erosive agent more potent than corrosion, more constant than the working of the rains, more extensive and persistent than the encroachment of the sea. Eolian erosion, wind scour, or deflation, must ever grow in effectiveness as the history of our globe goes on and erosion lasts. It may be that in the lineaments of our moon we see the final effects of eolic powers." Other topics are peculiarities of an arid climate, rock weathering in desert regions, limitations to geologic work of water in arid regions, deflation of arid lands, and comparative effects of corrosion and deflation.

EROSIONAL ORIGIN OF THE GREAT BASIN RANGES. Jour. Geol. 17 (1) : 31-37, illus. 1909.
"In the consideration of the origin of the American desert mountains, it is usually assumed that they are strictly structural features... Present indications are that erosion—eolian erosion—must be reckoned with as one of the potent factors in desert sculpturing." Discusses Spurr's theory of stream corrosion as the most important or only sculpturing agency and Davis's hypothesis on the origin of the Great Basin ranges.

Discusses the theory of regional eolation. "The law of regional eolation will rank high among modern geological discoveries... The theory adequately explains a... host of perplexing phenomena concerning the larger features of earth... It projects the imagination backward to the beginnings of geologic history; and it carries it forward to the end of time. In the lineaments of our dead moon it may be we behold the final effect of eolic powers." Many illustrations are included.
Kincer, Joseph B. (1257)
The author discusses various geographic factors that influence agricultural conditions, principally climate, topography, and soil fertility. “Of these, climate is the most fundamental, unalterable, and important, not only in influencing the distribution of particular crops, but also in determining the suitability of land for agricultural purposes.” Moisture limitations, temperature, and climatic limitations to agriculture are discussed. “At present only about one per cent of the Plains is under irrigation . . .”

Knoepf, E. B. (1258)
A method of drainage analysis is suggested whereby it is possible “. . . to prove the existence of successive erosion cycles and to correlate the remnants of peneplanes or of old erosion surfaces in regions that have been recently uplifted.”

Koschmann, A. H., and Loughlin, G. F. (1259)
A discussion of the geology and ore deposits in central New Mexico.

La Goree, J. C. (1260)
“The warfare of waterways has sometimes changed the geography of our continents . . . The forces of erosion are the munitions of the rivers’ warfare; the sedimentary rocks and soil the fruits of their carnage; and landscapes the trophies of their age-long conflicts.” The Delaware, Susquehanna, and Shenandoah Rivers and the valleys they have cut are described, as well as other large and small rivers of the United States.

Langley, S. P. (1261)
THE INTERNAL WORK OF WIND. Smithsu. Contrib. to Knowledge 27 (884), 23 pp., illus. 1893.
“What immediately follows is an account of evidence of the complex nature of the ‘wind’, of its internal movements, of the resulting potentiality of this internal work, and of attempts which the writer has made to determine quantitatively its amount by the use of special apparatus, recording the changes which go on (so to speak) within the wind at very brief intervals. These results may, it is hoped, be of interest to meteorologists, but they are given here with special reference to their important bearing on the future of what the writer has ventured to call the science of Aerodromics.” Experiments are described, and graphs illustrate the subject matter.

Lawson, A. C. (1262)
Lists and describes the causes leading to the degradation of orogenic blocks in rainless regions and discusses degradation, alluviation, and truncation of epigene forms in arid regions.

Lee, W. T. (1263)
“The purpose of this paper is to call attention to some of the major surface features in the Rocky Mountain National Park and to point out their probable correlation with similar features in neighboring regions.” Discusses cycles of erosion in the Rocky Mountain National Park and the physiographic history of the Rocky Mountains.
Leighly, John.
"The recently cut arroyos of the Colorado Plateau . . . exemplify . . . the action of running water in sculpturing the land surface. It is from this latter viewpoint that they are brought under scrutiny in this article." Primary meandering in the drainage channels, the shape of the meanders, and the numerical characterization of their shapes are discussed with the aid of diagrams and maps.

Leith, C. K.
Silicification is defined as "... the replacement of rocks by quartz, chert, chalcedony and jasperoid, the filling of joints and other openings by these minerals, and also the mechanical concentration of fragmentary masses of them by leeching of associated soluble substances, followed in some cases by siliceous recementation." The process is described on pre-Cambrian unconformities in the Lake Superior section.

Malott, C. A.
"Base-level is a control level in the reduction of land surfaces as carried on by the denudational processes; it serves as the theorethic limit of reduction and sculpture of the lands by the active denudational processes, chief of which is running water . . . It is the purpose of this paper to give a review of the uses of the term base-level as presented by a number of leading authorities in this country, and to present a discussion which clearly distinguishes the varieties of base-level, following the principles originally stated by Powell in 1875."

Malott, C. A.
THE VALLEY FORM AND ITS DEVELOPMENT. Ind. Univ. Studies V. 15 (Study 81), pp. 3-34. December 1928.
Valley characteristics, general classification of valleys, general valley development and the lengthening of valleys, the deepening and widening of valleys, the development of the flood-plain floor of valleys, and the valley form in the erosion cycle are all considered in this paper.

Martin, Howard H.
The author explains his primary purpose with tables and graphs and says in part: "... it is first necessary to establish and consider the probable frequency of precipitation in the district so that the apparent relations between the two phenomena may be reduced to the true relations."

Matthes, Francois E.
Investigations extending over a considerable part of the Colorado River's course and much adjacent territory will probably be required for the determination of the cause of this aggradation. "Meanwhile the facts observed convey this lesson: that a cycle of erosion proceeding with sufficient vigor to produce narrow V-shaped gorges can be interrupted by an interlude of aggradation and then resume its course without the hard rock forms being sensibly affected."

Meyerhoff, H. A., and Olmstead, E. W.
This is a reply to Ver Steeg's attack on the mathematical analysis of wind gaps and water gaps as presented by the authors in Windgaps and Watergaps in Pennsylvania Amer. Jour. Sci. (5) 30: 98-105, 1932. Defends "grouping them into systems which may have some genetic relationship to cyclical erosion, and which, at the same time, may contribute support to the cyclical interpretation of Appalachian erosional history."
Moyer, Raymond T. (1271)
Examines the theory of increasing aridity in Shensi and Kansu Provinces and presents data which lead to tentative conclusions "... pending the contribution of further information which will give a more accurate picture of what the conditions have been, or a truer interpretation of what may be the climatic trends they represent." Discusses forest destruction, sand encroachment, and excessive run-off resulting from slope denudation as possible causes and gives data on the findings of Lowdermilk. Bibliography, pp. 79–80.

Nelson, A. L. (1272)
The author stresses the importance of climatic and soil studies in the erosion-control plan.

Nevin, Charles M. (1273)
PRINCIPLES OF STRUCTURAL GEOLOGY. 348 pp., illus. New York, John Wiley & Sons. 1936.
"The purpose of this text is to discuss, as simply as possible, the deformations of the earth. Matters now in dispute among geologists are not avoided ... References have been selected so as to present different viewpoints, with the hope that the reader will exercise his own judgment, rather than follow blindly the interpretation and emphasis given in the text." Physical properties of rocks, structures associated with igneous intrusion, structures in unconsolidated sediments, and mountain systems are among the subjects considered.

Olson, Lois. (1274)
The writer comments on conditions existing in the Great Plains due to climate and mentions field studies in climate begun by the Soil Conservation Service, which permits the accumulation of more detailed weather data than has before been possible.

Paige, Sidney. (1275)
Outlines considerations which suggest the following tentative conclusions: (1) Processes of erosion within an inclosed basin system in an arid climate tend ultimately to produce surfaces of very low relief about the borders of the gravel sheet which accumulate within the basin; (2) the gradual rising of the gravel filling implies an equally gradual rising of the local base level; (3) interstream erosion, lateral cutting at edges of accumulating fans, and progressive burial of low-lying areas are the factors which govern the formation of the rock-cut surface; and (4) sheet-flood erosion is considered a result of the rock-cut plains and not a cause.

Parkinson, G. R. (1276)
Results of studies as to sources of dust storms in the Middle West and the Southwest are presented. Precipitation deficiency over the western plains States is caused by polar continental air masses taking a track farther east than usual for several years prior to May 1935. The characteristic properties of air masses causing dust storms are described, and the author states that, in order to forecast dust storms, it is necessary to determine what air mass will prevail over the route for the time for which the forecast is desired, the characteristic properties of the air mass involved, frontal movements, wind velocities, vertical temperature gradient, previous precipitation in the location of the source region, and the time of day for which the forecast is desired.
Penck, Albrecht. (1277)
February 1905.

A study is made of slopes and their causes, together with river action in relation to land surface. "This study of erosional forms can be supplemented by that of corresponding deposits . . . Thus the study of deposits also reveals forms of the past, and if we are accustomed to interpret the meaning of forms and deposits, we can read far older climatic conditions in deposits than are exhibited in the existing surface features of the land."

Reed, T. E. (1278)

Author's abstract of paper read at the Rochester meeting of the American Meteorological Society, 1936.

Reed, C. A. (1279)
THE EARTH, OUR EVER-CHANGING PLANET. 120 pp., illus. New York, Univ. Soc. 1931.

Chapter IV deals with the atmosphere and the atmospheric agencies which affect the land, the work of the wind in carrying and depositing loess and sand, and weathering. "All of the changes which cause rocks to break up are known as weathering. Much of the soil and mantle rock which support the earth's cover of vegetation has been produced by these processes of rock decay."

Reinecke, Leopold. (1280)

"The primary object of this paper is to point out the importance of the measurement of average regional slopes upon 'old erosion surfaces', and to show that such data assist materially in the more accurate study of the physiographic development of the region in which these surfaces occur, and of the diastrophic movements which have taken place there."

Rich, J. L. (1281)

Examines evidence that not only fails to prove that the peneplain is Eocene but also brings out many features which point toward the conclusion that the date of the peneplain is probably late Miocene or Pliocene. A discussion is given in which Waldemar Llndgren states that the burden of proof regarding the Miocene age of the peneplain still rests on Rich. D. C. Livingston takes a similar view.

Rudolph, D. C. (1282)

On a flight from Dallas, Tex., to Texarkana, Ark., the writer secured a photographic record of various features of mound development "which is interesting not only as a contribution to the problem itself but also as a demonstration of what can be done by way of recording geographical features from a regular passenger plane." He discusses earlier explanations of the mounds, and his conclusions after the flight.

Rube, W. W. (1283)

This article discusses the origin and nature of the flat-floored scarp-bordered valleys common in various sections of the arid and semiarid western interior of North America.

Russell, E. J. (1284)

This article describes the effects of climate on the mineral framework of the soil and discusses soil losses, injury to the soil texture, etc.
"Perhaps the most interesting fact brought out by the study of landslide topography is that certain broad, nearly level areas, now covered with deep, rich soil . . . owe the minor features of their relief to ancient landslides . . . A review of the facts concerning the minor features in the relief of the broad wheat lands of southeastern Washington, in the light of the conclusions here presented, leads to the suggestion that some of the ridges and basins of that region may be due to the recession of cliffs produced by stream erosion . . ."

"It is the purpose of this paper to describe some of the more common alpine land forms and to emphasize the importance of certain significant processes. It is written in the light of field experience extending through the past 12 years and covering many of the highest regions in western United States, chiefly in California, Nevada, Colorado, and Wyoming. Field work in northeastern California in the summers between 1920 and 1925 served to arouse interest in alpine problems and led directly to practically every conclusion here presented." Deals with climatic factors controlling denudation and erosion; geomorphic processes; groups of land forms including nivation depressions and solifluction slopes; prevalence of alpine processes; over emphasis on glaciation; and possible misinterpretations.

"In this paper the attempt is made to give as full an areal analysis of California climates as present data warrant, expressing the facts of distribution strictly in accordance with a well recognized, widely accepted, quantitative plan, heretofore used principally in a world-wide classification of climates. The classification followed, and to some extent adapted, is that of Wladimir Köppen which has acquired wider acceptance than any other. Examination of the climatologic data at hand indicated that somewhat more detail was desirable than was provided by Köppen for this section . . . Accordingly, a few minor changes have been made in the critical values used, and four new subtypes have been introduced."

"The climatic-year concept furnishes a simple and apparently satisfactory means for the determination of climatic boundary zones. We may recognize as transitional any region that normally experiences a recurrence of climatic years typical of nuclear climates on either side. Thus the transitional zone between rain forest and savana is the region ordinarily experiencing both rain-forest and savana years. The nuclear rain forest, on one side, is characterized by an unbroken succession of rain-forest years, while, on the other side, only savana years occur." The adaptability of the climatic-year concept to climatological research is fully discussed.

"The rainfall of the southwestern deserts is not impressively torrential, is probably less spotty in distribution than that of humid regions, and, in the factor probably most significant to denudation—the excess over average annual—is not particularly variable. The summer-afternoon cloudburst is not a very effective factor in denudation. This conclusion is confirmed by discharges of streams where little or no diversion or water storage affects the regimen."
Russell, R. J. (1932)

This study, representing, in effect, an experiment along the line of a new application of the Köppen classification of climate and treating of two types of years (dry years, defined on the same basis as dry climates, and desert years, defined on the same basis as desert climates) presents, in numerical and cartographic form, data on their frequency. A description is given of frequency maps and their construction. Regional contrasts in dry- and desert-year frequency, and the significance of dry and desert years are discussed.

The author, to support the adoption of the January isotherm of 32° F. in the United States, describes erosion and denudation factors on northward and southward slopes in New Jersey and Ohio and shows why erosion is more marked on the north banks of rivers flowing east or west.

This paper, dealing with the distribution and explanation of land forms in the San Gorgonio Pass, and resulting chiefly from field work during the summer of 1930, describes the topography, drainage, and climate of the region and considers marginal areas of the San Jacinto wall, foothills of the San Bernardino Range, the Beaumont Plain, and the San Gorgonio Pass floor.

“Landslides play a significant and major role in the formation of lakes in at least one part of North America, namely, the northwestern Great Basin.” Geologic and erosional processes in several lakes in the Warner Range of northeastern California are described. Extinct lakes in the same section are also considered.

And Howe, H. V. (1933)

Cheniers are long, narrow, sandy ridges running roughly parallel to the coast of southwestern Louisiana. Their development is related to the same geologic processes which have produced Cameron Beach and Cameron Marsh. It is the purpose of this paper to describe their origin, "... a history involving several of the dominant geologic processes affecting the Gulf Coast during Quaternary time." Data are given on sedimentation and erosion.

And Others (1936)

"Plaquemines and St. Bernard Parishes together form the easternmost coastline of Louisiana, the portion most intimately associated with the recent alluviation of the Mississippi River. This bulletin consists of seven individual reports concerning the geology, natural resources, and prehistoric inhabitants of the Lower Delta, a term here employed to refer to the combined areas of the two parishes. It also contains a bibliography and list of maps which, while primarily compiled for the purposes of the study, is of interest as covering coastal southeast Louisiana in general."—Editor.

Sanders, E. M.

"In 1918 Professor Cvijic, ... published a resume of former theories on the development of subterranean drainage, supplementing them by the
results of his own work and by an ordered description of the successive changes that take place in the progress of the karst cycle. . . . The object of the present article is to present Professor Cvič's summing up of the whole matter, amplifying it with definitions of the terms used, and giving, where it is possible, the terms used by others for the same forms.

SCHAFMAYER, A. J., AND GRANT, B. E. (1297)

An investigation of the relation of frequency to rainfall intensity by the statistical method forms the basis of this paper.

SCHROEDER, R. A. (1298)
CURIOUS EROSION IN WEST TENNESSEE CLAYS. Jour. Geol. 27: 480-481, illus. September-October 1919.

An account of miniature erosion pillars in clay observed by the writer in western Tennessee.

SHALES, N. S. (1299)
SEA AND LAND. Scribner's Mag. 11: 611-627. May 1892.

The destruction of land by sea is considered. The writer states that "all the water of rain-drop, stream, or spring, is sent from the sea through the air for the direct downward attack on the emerged fields of the earth, so that the battle the oceans unendingly wage is so set that it assaults the opposite land in two directions: on the sea face it assails by the surges, and in the interior by the rain, the flowing water, and the glaciers. The result is that lands are constantly wearing away, while the sea-floor is taking the sediments which the waters have given to it and building them into new deposits. . . . every rain drop as it falls and strikes ground unprotected by vegetation takes away a little of the earth." The action of tides and waves on shore lines and cliffs is discussed from a geological point of view.

SHARP, HENRY S. (1300)

A large landslide involving Tertiary sediments overlying pre-Cambrian crystallines is described. By means of the forest cover an effort is made to ascertain the time of occurrence of the landslide, which is assigned to movement along the Tertiary-pre-Cambrian contact.

SHARPE, C. F. S. (1301)

Four major divisions of landslides are discussed: (1) Slow flowage, (2) rapid flowage, (3) sliding (landslide proper), and (4) subsidence.

SHEVE, FORREST. (1302)

"Under arid conditions the character and seasonal distribution of the precipitation is more important than under moist ones, both with reference to its agency in remodeling the land surface and its role in supplying water for plant and animal life. The influence of rainfall on physiographic processes is direct and immediate, but its relation to the vegetation is through the medium of the soil and is therefore subject to a number of modifying circumstances. The study and interpretation of these involves all of the conditions that influence the fate of water from the time that it falls until it becomes available to the roots of the plant. The following pages embody the results of an investigation of some of the influences operative in a desert of the less pronounced type. The digest of rainfall conditions is based on the record of the Desert Laboratory of the Carnegie Institution of Washington, at Tucson, Arizona, from 1905 to 1933. The investigation of runoff and soil moisture has been made on the part of the grounds of the Desert Laboratory which lies in the floodplain of the Santa Cruz River, and on the adjacent bajada soil."
"The prairie surface of certain areas in the Western provinces, and more particularly in Southern Alberta and South-Western Saskatchewan, is characterized by irregular but roughly circular depressions or eroded spots varying from 3 to 6 inches in depth and from a few inches to several or many feet in diameter. These depressions, pockets or eroded spots are commonly known as 'burn-outs'." This paper reports the results of an investigation on the nature of burn-outs conducted at the Government Demonstration Farm, Brooks, Alberta.

Reports the findings of a study on the nature of "burn-outs." "The results ... established the fact that a burn-out is an area from which the surface soil has been removed. Probably the first operation in its formation was burning or a mechanical loosening followed by the blowing-out of the surface soil by the wind. It is in fact the subsoil which is exposed at the bottom of a burn-out."

"As erosion is intimately connected with the physical and the climatic feature of a locality, a concise description of the tract and its climate therefore precedes the narration of the causes of erosion." The factors chiefly responsible for erosion are cited, and remedial measures are suggested.

Illustrates the theory of a physiographical balance produced by precipitation, erosion, and debris transportation and deposition by streams, by showing the effect on such a balance of (1) changes in the watershed cover, (2) effect of regulation on the natural balance of a stream system, and (3) effect of debris barriers on the stability of the stream bed on the debris conc. Bonner, in his discussion, gives the average rate of silt production in the United States as equal to 1 inch in 400 years.

"The author discusses the influence of winds on the moisture, temperature, and gas content of the soil; on chemical composition; and as a geological agent."—Expt. Sta. Rec. 12: 526. 1900-1.

"This paper describes a laboratory investigation of problems connected with frost heaving. The principles developed have applications in geology, plant physiology, and engineering."

Describes the origin of crustal movements connected with the theory of isostasy. Deepcs and rivers, alluvial plains, and river deltas are considered.

"Erosion is the natural complex of effects of wind and water, frost and summer heat, upthrust and gravity, on the massed lavas and jagged rocks
that were the earth's only original endowment . . . If there had been no erosion since the beginning of the world, there would be no soil for forests and crops to grow in . . . Through erosion, stones become bread.

THORNTHWAITE, C. W. (1311)

After commenting on the classification of world climates developed on a quantitative basis by Wladimir Köppen, the writer states that "in the present study a method has been devised whereby the precipitation-evaporation quotient can be computed where only the mean monthly temperature and monthly precipitation are given." In conclusion he says: "It is hoped that soil science and ecology may find in this classification a common ground which may bring them together and which can be used in the explanation of climax formations and mature soils . . . It is believed that the climatic elements of the landscape are here analyzed with a greater precision than has heretofore been attained."

THORNTHWAITE, C. W. (1312)

"Köppen was the first to apply to the entire earth a climatic classification based mainly on quantitative analyses of meteorological data. He recognized that the critical limits in the distribution of various types of vegetation were climatic and attempted to discover empirically climatic values that would at least approximately coincide with the various vegetational limits . . . The present classification is like Köppen's in that it is quantitative and attempts to determine the critical limits significant to the distribution of vegetation and also in that it employs a symbolic nomenclature in designating the climatic types. It differs from Köppen's classification in that it makes use of two new climatic concepts, precipitation effectiveness, and temperature efficiency."

THORNTHWAITE, C. W. (1313)

Data and conclusions derived by the Soil Conservation Service from observations in Oklahoma are offered. The conclusion states that "we believe . . . sufficient material has been presented to show the value of . . . detailed climatic observations over a long period of years . . ."

THORNTHWAITE, C. W. (1314)

Detailed studies of rainstorms by the Soil Conservation Service have brought recognition of two distinctive forms. "One type, of comparatively short duration and high intensities (the cold front type), is especially significant in the production of gully and sheet erosion and occasional local floods. The other type of longer duration and lower intensities, but ordinarily bringing larger amounts of rainfall (the warm front type), is significant in stimulating mass or gravity movements of soil, such as slumping, field slides and caving of gully walls and heads, and is invariably the cause of major floods." Such studies are making it "possible to approach the climatic problems relating to soil and moisture conservation, land use and flood control on a more intelligent basis."

THORNTHWAITE, C. W. (1315)

"Agricultural research is of three types: (1) experimental, (2) observational field and laboratory investigations, and (3) library and archive study. Although controlled experimentation is the most familiar type of methodology to agricultural research workers, the other types have contributed fundamental advances to agricultural knowledge." This program is discussed under four headings: Erosion History, Physiography, Climate, and Ecology.
Tolman, C. F. (1316)

Outline of paper: Physiographic division of Arizona into plateau and bolson country; discussion of the term "bolson"; topographical features of the bolson; analysis of geological agencies under the stimulus of aridity; climate; deposits of the bolson; climate as affecting the erosion of the bajada. "The data to which this treatment owes its development have been collected during a residence in the arid southwest since 1901."

Upleby, J. B. (1317)

"The principal problems discussed in this paper fall under four headings, as follows: (1) an old erosion surface which may prove to be a peneplain... extends over much of Idaho and into adjoining parts of Montana, Washington, and British Columbia. (2) The surface is assigned to the Eocene because of the relation of Miocene lake beds to it and because of its relation to Eocene deposits. (3) The Eocene surface forms a valuable datum plane in broad areas where time relations between the Algonkian and the Pleistocene are otherwise obscure. (4) Great granitic batholiths of the plateau region either initiated or accompanied the initiation of the cycle of erosion which resulted in the Eocene surface."

United States Weather Bureau. (1318)

Records made by seismographs are described.

Van Tuyll, F. M., and Lovering, T. S. (1319)

Contents: Description and Correlation of the Tertiary Erosion Surfaces; Modifying Effects of Alpine Glacieration; Quaternary Terraces; Deformation of Erosion Surfaces; Age Relations.

Veer Steeg, Karl. (1320)

"The writer recognizes the existence of three distinct erosive surfaces in the northern Appalachians and Allegheny Plateau region; the Schooley (Kittatinny) on the ridge crests of the folded Appalachians; the Harrisburg on the weaker rock formations in the valleys of eastern Pennsylvania and coextensive with the upland erosion surface leveling the Allegheny Plateau region; and a third, the Worthington (Lexington) erosion level, well developed in Ohio and Kentucky... This seems to the writer to be the most logical interpretation in the light of present knowledge concerning Appalachian erosion surfaces."

"It has always seemed unreasonable that a surface so well-developed as the Harrisburg peneplain, in eastern Pennsylvania, has, according to some geologists, no equivalent on the Appalachian plateau. In eastern Pennsylvania it constitutes the extensive, peneplaned surface on the softer rocks in the Ridge and Valley province and in the Great valley, east of Kittatinny mountain, where it is well-developed in the vicinity of Harrisburg, Pennsylvania, at an altitude averaging about 520 feet above sea-level. The purpose of this article is to trace the two peneplanes in a southwesterly direction from central Pennsylvania throughout the Appalachian Plateau region."

"Because the Harrisburg peneplain has a pronounced slope toward the southeast, it has been believed that widespread warping of that surface took
place in the uplifting of the Appalachians. There is reason to doubt this supposed warping, for evidence of it appears to be lacking in eastern Pennsylvania where the surface has its best development.

Visher, S. S.

This study on the geographical distribution of vegetation and wildlife in the Dakotas gives a brief discussion, pages 107–108, on the nature of sand-hill areas and badlands.

REGIONAL CONTRASTS IN EROSION IN INDIANA, WITH ESPECIAL ATTENTION TO THE CLIMATIC FACTOR IN CAUSATION. Bull. Geol. Soc. Amer. 48: 897–929. July 1, 1937.

Three types of erosion are extensive—sheet erosion, gulling, and wind erosion. "The problem: How great are erosional contrasts in Indiana; what influences have produced them? The Method: An analysis of the soil erosion map recently issued by the United States Soil Conservation Service has been made; field observations have been made in all the counties of the State, in order to add supplementary data; maps showing the distribution of several factors presumably contributing to the causation of the contrasts were prepared and compared in detail with the erosion maps. Conclusions: Despite, moderate differences with respect to elevation, relief, lithology, structure, geologic history, and climatic, Indiana has notable regional contrasts in soil erosion. Factors causing these include contrasts in local relief, soil types, recency of glaciation, climate and land use. Climatic contrasts clearly have played a larger part than has hitherto been appreciated. Regional contrasts in rainfall intensity—a factor hitherto almost ignored, because evidence as to its existence had not been compiled—appears to be of considerable significance in causing part of the observed erosional contrasts."

"Apparently correlated with the regional contrasts in rainfall distribution and intensity are notable contrasts in the type and extent of soil erosion, in topography, in crop yields, in agricultural practices, and in land use of other sorts, and in other respects."

Wallace, A. R.

Among other studies the author considers the true nature of geological change as affecting continents and islands; changes of climate, their nature, causes, and effects; and the duration of geological time and the rate of organic development.

Watson, E. B.

Account of an unusual display of clay boulders on the upper part of the large Hueneme fan in Ventura County, Calif. These boulders were 8 to 15 inches in diameter, and the writer states that they were rolled into place by running water and were never in suspension. "The distinction between the carrying and the rolling properties of running water has been too little recognized by those who study the forces that make soils."
WENTWORTH, C. K. (1329)

"The steep-walled, blunt-headed box canyons and the imposing cliffs or 'pales' of various parts of the Hawaiian Islands have long attracted the attention of travelers, and some instances faulting or other tectonic factors have been invoked to explain them. It is concluded that these features are mainly the product of the normal erosional processes of the region, of which the conditions differ somewhat markedly from those of most temperate, humid parts of the earth. The principal factors are the high porosity of the rock and its susceptibility to chemical weathering, the high mean annual temperature and the rarity of great ranges of temperature, the absence of frost and the high annual rainfall of certain parts of the group. As a result, chemical weathering at elevations near the low water table dominates the development of the deeper valleys and is a controlling factor in determining their configuration."

WEYLER, H. (1330)

"If measurements of the radiation intensity can be taken in certain narrow spectral regions, then it is possible . . . to determine both the dust and water-vapor contents. If a sufficient number of stations taking such measurements could be established along the main trajectories of air masses in this country, then it would be possible to determine how rapidly the air acquires dust and water vapor; and consequently to estimate the rate of evaporation of water vapor from the earth and the rate of wind erosion of the soil."

WILCOX, E. V. (1331)

The behavior of waves and cycles of weather are discussed. Floods, grasshopper plagues, as related to weather and sunspot cycles, are considered with statements quoted from scientists.

WILLIAMS, E. H., JR. (1332)

"The problem for discussion is the probable form and sequence of deposits over a region deeply flooded by an approaching but still distant glacier which forced the waters over a still more distant cop which was gradually degraded." The writer develops and discusses this problem in order to disprove the assertions made by a critic of G. F. Wright's paper on Post-glacial Erosion and Oxidation and to prove that "the bottom was leveled proglacially and that there has been no 'erosion.'"

WORK, P. MURRAY. (1333)

"In order that the reader may have a clearer picture of the region under discussion the usual procedure will be departed from in that the present drainage will be first considered. From the present drainage, the cycles of erosion from younger to older will be discussed, being taken up in reverse order of their occurrence."

WRIGHT, FRANK J. (1334)

A brief survey of the correlation of diversified levels of the Appalachian Valley peneplain or Harrisburg peneplain.

ZON, RAPHAEL. (1335)

Shows how "... vegetation from land contributes more to the precipitation over land than evaporation from the ocean, that forests evaporate more water than free water surface or any other vegetation, and that transpiration of the eastern half of the United States is intimately connected with the prevailing south wind"
DROUGHT

Unless there is readjustment of farming methods "the agricultural economy of the Great Plains will become increasingly unstable and unsafe." The committee advocates long-term readjustment, and it is contended that the "Federal Government must take the initiative both in guiding and in financing the needed public works," but without impairment of local and individual initiative. Remedies are proposed, and engineering measures discussed.

(1337) DROUGHT EFFECTS DEEPER. (Editorial.) Business Week, pp. 5-6, illus. August 11, 1934.

"Crop damage increases rapidly and world prices advance spectacularly; $5 billions is government's guess at havoc; million on relief rolls." Drought-prevention undertakings are criticized.

Says that the report of the Great Plains Drought Area Committee, issued in August 1936, contributes "nothing toward a solution of the essential question, that of recurrent drought periods and the extension of farm settlement into a pasture belt." Attention is called to the urgent need for maximum conservation of water.

A summary of reports on stream flow, ground water, and water supply in drought areas by the district engineers of the Geological Survey. Reports, arranged alphabetically by States, on water supply in drought areas.

The Government is undertaking a $10,000,000 experiment in combating drought in the dust bowl of the West and Southwest. Projected for New Mexico, Texas, Oklahoma, and Kansas, the experiment calls for the purchase of 1,282,522 acres of land. Nearly 6,000 Pueblo and Navajo Indians will benefit. The plans call for the conversion of dust-bowl territory into grazing land, the transfer of farmers to better land, and improvement of the conditions of those who remain. Launched by the Resettlement Administration, the project will have the cooperation of the Soil Conservation Service, Civilian Conservation Corps, and the Bureau of Indian Affairs.

The seed of drought-resistant plants from Turkestan, Manchuria, Mongolia, and the Gobi Desert, brought back by the Department of Agriculture explorers is being grown in experimental greenhouses on the plant-reserve stations established by the Department. It is stated that the discovery of one desirable drought-resistant soil-binding species would repay the costs of the expeditions.

This editorial stresses the importance of soil conservation practices in the high prairies of the Southwest for prevention of future serious droughts. A comprehensive survey of soils throughout the winter wheat belt is necessary to determine accurately which areas can be cropped and which will be forever unsafe for tillage.

"During the summer of 1933 came dust storms in the Northwest—Just in time to give initial impetus to the New Deal's soil-conservation and sub-
marginal-land-retirement programs. The great drought of 1934, however, turned the trick. The gigantic dust clouds which rolled out of the West, across the country and into the broad Atlantic dramatized the gravity of the soil-erosion problem as no other event in American history had ever done. Since then, statistics on the appalling loss of soil by wind and water erosion have made front-page stories, where previously they had never got much beyond Department of Agriculture bulletins. The continuation of the dust storms in 1935 and 1936 served as leitmotif to the haunting fear that America would soon go the way of the Gobi Desert, Mesopotamia and most of North Africa.

"After a visit to the White House late today [June 27] Mr. Wallace announced the formation of a committee of six to coordinate drought relief efforts of his department and cooperate with the Works Progress Administration. 'This committee,' Mr. Wallace said, 'will begin work immediately. It will consider all matters relating to the drought, and will coordinate the activities of the various agencies and will formulate recommendations and plans to meet distressing conditions in the stricken areas.'"

PRESIDENT ROOSEVELT'S VISIT TO THE WESTERN DROUGHT AREA; DROUGHT CONFERENCE IN DES MOINES. Com. and Financ. Chron. 143: 1491-1492. September 1936.

The President saw, among other works, a dam being built by farmers that will form a basin to serve the double purpose of a water hole for livestock and an impounding reservoir. He also drove to the site of a C. C. C. camp where a dam recently was constructed on a branch of the Missouri River.

The problem of drought is not one of control but of adaptation. Reorganization of the economic life of the high plains is necessary but will the administration dare to undertake it? Will it "reverse the error that transformed the semi-arid lands into unlimited private property, object of speculation and tragic deception? Or rock along with relief and futile patching in the hope that the next great drought will fall upon a remote administration?"

Pro and con opinions are expressed on the Illinois plan for water conservation proposed by M. O. Kasson at a meeting of Gov. Horner's drought committee in the summer of 1936.

ADAMS, R. R.

The author describes experiences in growing Lespedeza sericea for hay and reports success with this plant in Virginia in stopping soil washing and restoring nitrogen to the soil. "Sericea, like alfalfa, comes up from the crown year after year but unlike alfalfa, it will in a few years kill out the weeds, crab, and wiregrass ... and, unlike alfalfa, Sericea will grow on acid soil."

BARNES, S.

Experiments conducted in a typical dry-farming and cereal area in Canada are described. "Deep, watertight tanks, filled with soil as in the field, are used and crops are grown in this soil. The experiments are probably unique in that for the most part the only source of moisture for crops grown in the tanks comes from the natural precipitation. The crops do not appear to
suffer in the least by their novel environment except through a shortage of moisture." Results of soil-moisture experiments have shown that moisture is not used efficiently in the production of grain crops.

Becker, H. L. (1350)

In his annual report for 1935 a Wisconsin county agent tells of what he discovered in studying old drought-relief records of Oneida County, Wis. The farm-debt situation, size of farm, and farm income are all considered in this report.

Bowman, Isaiah (1351)

This article discusses droughts and wind erosion, and the economic problems arising from these forces in the semiarid regions of the West. The author maintains that droughts cannot be stopped. "We can only provide to some degree against its effects." The chief method of control is stated to be a wiser policy of land utilization. Summation of recommendations call for soil-erosion research on field projects; withdrawal of wind-erosion districts of the Great Plains from cultivation for the purpose of instituting experiments and studies toward the restoration of a sod cover to be followed by supervised grazing; shelterbelt practices; and analyses of climatological records "... to help determine and define the areas and grades of serious agricultural risk."

Brueër, M. B. (1352)

"Here is the epic of the drought—10 million cattle killed to save them, the long trek of a million more to green pasture, "processing" of fruit, grain and meat as work-relief projects. More dramatic than relief is the long-term effort to prevent drought, to balance the nation's water-budget, and to try to teach 50 million people 'the decent use' of the good earth." Among other control measures, contour plowing and strip cropping are described.

Chase, Stuart (1353)

This article traces the rainfall from the point on the height of land which divides one basin from another, that is from the top of the watershed, down the upland and lowland valleys to the ocean. It notes the problems and conditions, one after the other, which the water creates as it comes down, and concludes with the suggestion that there is no solution to the problems, "either for the continent or for man, except in co-ordinated control that comprehends all problems."

Condra, G. E. (1354)

Discusses rainfall, soil moisture, surface water, various types of wells, and irrigation. Uniform plant cover retards run-off and erosion, but weeds, while retarding run-off and erosion, waste much soil moisture in their growth.

Cox, W. T. (1355)

In tracing the history of the battle between forests and prairies the writer says: "As an explanation of the prairies, I ... suggest that the most adverse weather cycle or most severe drought occurring over a long period of time in any region determines the character of vegetation in that region."

Cronin, F. D., and Beers, H. W. (1356)

"The present bulletin is a preliminary effort to delineate areas of varying degrees of drought intensity and to select carefully defined sections as the basis for further study. It is the first of a series of three reports and will
be followed shortly by one on the population of this midcontinent drought area, describing the population shifts caused by unpredictable natural forces, and by another giving a brief history of relief and rehabilitation."

DAILEY, J. L.

"Weather experts assure us that there is no reason for holding such a pessimistic view . . . Series of droughts are bound to occur in the West. They are not caused by the cultivation of the Plains and cannot be prevented by the building of ponds and lakes." Article discusses causes of rain, droughts, and the work of various Government agencies in drought areas.

DETRES, M. E., AND SCHMITZ, HENRY.

The destructive effect of the 1934 drought is cited. The age and survival of different kinds of trees is discussed together with planting and care of shelterbelts. An appendix lists hardwood trees recommended for prairie planting.

DICKEY, SAM.

The author recommends lespedeza planted in rows 3½ feet apart on land out of production to replenish it before it is completely worn out. "Korean lespedeza didn't so much as wither during the drought" in extreme southwest Oklahoma in 1935.

FAILYER, GEORGE H.

This bulletin furnishes practical information on dry farming in various sections of the semiarid West. Partial contents are: Drainage; Subsoil Plowing of Drained Lands; Listing Ground, and the Lister; Cultivation to Retain Moisture in the Soil; Conditions in the Semiarid Regions; and Crops for the Semiarid Regions.

FICK, J. C.

"The Drought Investigation Commission (final report, 1923) came to the conclusion that the decrease in the vegetal covering, resulting from deforestation, over-grazing and veld burning, is the actual cause of soil erosion." Sheet erosion, soil type as a factor determining erosion, and the laying out of new and old lands are discussed.

FULGHUM, RALPH.

An example of terracing and turning cover crops into soil which paid. Because for the last 32 years, J. A. Johnson, of Jackson County, Ga., has followed these farm practices, "he has soil that is filled with organic matter, soil that picked up every bit of the moisture available earlier in the year and held it for use when the crops needed it during the drought."

FULLER, H. T.

"For twenty years or more I have been watching with much interest some slow changes of the surface of terrace formations in the valleys of New England rivers . . . We know that these terraces in the valleys of the southwestern part of the territory mentioned were once covered with a magnificent growth of pine and elm and chestnut . . . Now, however, portions of these terraced slopes are becoming absolutely desert, as bare of any vegetation as are the tracts of the African desert westward from the meadows of the Nile. The object of this paper is to direct the attention of
the Society first to the facts . . . and secondly to the causes as determined by long continued observation." Measures for remediying these effects of erosion are given.

HARRISON, G. R.
"Sweet clover actually tills subsoil and softens and pulverizes it." Various farmers were interviewed as to the respective values of clover and alfalfa as pasture for cows.

HAROLD, L. L.
In tabular form the author presents drought results which have directed the attention of engineers to approaching limits of water supplies as related to various human activities.

HENDerson, C. A.
The writer describes in detail agricultural conditions on one farm in Oklahoma with special reference to drought and resulting dust storms. The author went with her husband, soon after their marriage in 1908, to a farm in Eva, Okla. She says, "only people like ourselves who have invested their lives in the 'short grass' country know the sorrow of seeing these hard-won acres 'all up in the air'." She sketches the introduction of contour planting and terracing in her county in 1935, and the soil-erosion program in general.

HENRY, A. J., HUMPHREY, H. B., AND KABEL, B. C.
Discusses the influence of trees and associated undergrowth on the rate of stream discharge during the drought. Tabular data show daily maximum and minimum rate of water discharge of stream at Cabin John, Md., for the 28-day period, September 15 to October 12, 1930.

HOWARD, J. R.
The author reviews farm conditions at the close of the crop year and lists among the causes of curtailment during 3 unproductive years insect and drought menaces. Soybeans as a standard farm crop are considered a promising venture. The A. A. A. program and owner operation are discussed. "In a way it is a hopeful indication but mighty hard on a lot of good farm tenants, only a few of whom are able to purchase a holding of their own."

HOYT, J. C.
CONSERVING WATER TO MEET DROUGHT. Conservation 2: 1, illus. June 1936.
Investigations concerning all available water supplies, their fluctuations, and the possibilities for their conservation should be made, and information should include "climatic records, especially of precipitation; records of stream-flow from which both the total flow and the distribution of flow that may be expected may be estimated; and records of fluctuations of the ground-water table, with other information relative to ground-water supplies."

"This report summarizes, as an aid to the more detailed analyses that will arise in the consideration of specific projects, some of the more outstanding questions related to droughts, both physical and economic. It outlines the nature and extent of the droughts of 1930-34; compares them with past dry periods in terms of precipitation, run-off, ground water, evaporation, and transpiration; and sketches the effects of droughts on
water supplies as related to a variety of human purposes, including agriculture, domestic and industrial uses, health, power, navigation, and recreation and wild life; it also touches upon the relief, political, and economic elements.

KANSAS AGRICULTURAL EXPERIMENT STATION.

Results of drought and soil-blowing in 1934 are discussed, pp. 9-11. "... in western Kansas practically all fields that had been prepared for wheat were without a protective cover of vegetation when the strong winds started to blow in 1935." The writer gives information on soil conservation, and soil erosion and water conservation on pages 28-33, and 123-124, respectively.

KNAPP, G. S.

"Effective conservation of groundwater, the Plains' most vital reserve against recurring periods of drought, awaits intensive engineering study and a more satisfactory group of water-right laws."

KOLLMOGEN, W.

In tracing the history of what was for three centuries called the Great American Desert the author examines the claims of early writers who were convinced that increased precipitation was due to afforestation and cultivation by the pioneers. "The fiction of increased rainfall on the plains proved so popular and profitable as to evaporate all interrogations as to its validity. In the late eighties and nineties occurred a series of dry years. Crop failure followed crop failure. A beautiful theory of increasing rainfall became but a haunting and mocking memory to thousands who saw their substance wasting and parching about them."

LEVIN, JACK.

THE GREAT PLAINS COMMITTEE REPORT. Plan Age 3: 76-82. March 1937.

The author reviews "The Future of the Great Plains," the report of the President's Great Plains Committee issued in 1936. This report comprises four main parts: Statement of the Underlying Problems; Programs of Action, in General; Specific Methods of Effecting Programs Under Existing Practices, Laws, and Agencies; Experiments, Suggestive Associations, and Model Laws. "The vital damage by wind and water erosion is related vividly. In soil wastage we learn that overgrazing, the tremendous expansion of tilled acreage, the reduction of the organic matter in the soil, and a succession of years of low rainfall are the chief factors that have made possible the recent great increase in soil impairment and destruction."

MCKEE, CLYDE.

Excessive use of the sparse vegetative cover, especially during periods of drought, has exposed the thin surface soils of the Great Plains to serious losses through erosion by both wind and water. The writer outlines the results of experiments with crested wheatgrass conducted by the Montana Agricultural Experiment Station. Factors considered in the studies were preparation of the land, moisture conditions, rainfall, the grazing season, and investment aspects.

MAIN, T. C.

Pointing out that for 3 years precipitation has been subnormal in a portion of western Canada, the author gives an outline of the factors on which climate, weather, and precipitation depend and analyzes the relations between precipitation and yield in various portions of the prairie belt. He explains the effect of soil drifting, suggests as solutions for the present difficult situation, the systematic planting of hedges, forestry-conservation methods, the retention of sloughs and lakes, and the establishment of
storage dams for spring run-off water, and says that it may be possible for agricultural experts to develop a kind of wheat which would require less water than do the present varieties. The use of strip farming is advocated to minimize soil drifting while the hedges are growing.

MARAI$S, J. G.

Describes the value of spineless cactus and saltbush as fodder for dry and semidry regions of South Africa. American aloe and creeping saltbush are recommended for drought-area fodder and erosion control.

MARTIN, JOHN A.

The dust storms in the Great Plains country are more than a local problem. A program of preventive measures must be on a long-time basis. "The appropriation of $2,000,000 is for a superficial and temporary treatment only . . . There is only one way by which this great and growing menace can be combated and conquered and that is through soil conservation . . . a long time program . . . must take in much more territory than the so-called Dust Bowl or the still larger drought area."

MEYER, A. F.

A study of land evaporation and transpiration and wind movements over Minnesota is presented with special reference to drought prevention. Describes carragana-hedge plantings in Saskatchewan for the conservation of snow water on wheatlands.

MUNNS, E. N.

"As information on drought resistance of trees and shrubs is sadly lacking, the present affords an unusual opportunity to obtain data of outstanding value . . . Such information is not alone of scientific interest but has great practical value in many current operations, such as the reforestation program of the C. C. C., cultural operations in the forest, erosion, and flood control, etc." The United States Forest Service, Division of Silvics, is undertaking the collection of data on the drought damage on such features as the nature, extent, and character of the damage, the relative resistance of trees growing on different sites.

PEEL, W. F.

"The work of the service has been concentrated chiefly in the most seriously affected areas in the Plains states and the regions east of the Mississippi River . . . approximately 2,000 erosion-control projects have been established." The author tells of the helpful work of these projects and its educational value to the farmer. He advocates land-use programs that can be made to cooperate with nature for the prevention of extreme dearth and floods.

PULLING, H. E.

"Tests by the Forest Service show that windbreaks in Kansas and Nebraska reduce evaporation in their lee by as much as 70 per cent. Though this effect decreases with distance, yet it was measurable about twenty times as far from the windbreak as the windbreak was high."

RICHARDSON, R. N.

This paper deals with the history of events and movements that brought about the present conditions of droughts, sand and dust storms, and general physical problems of the Midwest. The author attributes soil erosion chiefly to overgrazing. Address delivered before the Southwestern Social Science Association, Dallas, Tex., March 29, 1937.
Savage, D. A. (1384)

"THEY CAME THROUGH"—SURVEY SHOWS WHERE DROUGHT MET MOST RESISTANCE. U. S. Soil Conserv. 1: 4-5. September 1934.

"Several hundred quadrat studies taken under various conditions have revealed that drought damage to the grasses seemed directly and positively correlated with the severity of drought intensity of gravity and proximity of cultivated fields. Heaviest damage was noted on small, closely grazed pastures badly scarified by dust-laden winds." These studies pertain to areas and conditions in Oklahoma, Nebraska, Kansas, Texas, and Colorado.

Smith, J. R. (1385)

In discussing such evils of drought as crop failures, wind erosion, etc., the author recommends a three-point policy as follows: (1) The carrying of calamity reserves in the form of unused credit in regions where agriculture is reasonably dependable; (2) restoration of grass acreage in regions where agriculture is not dependable; and (3) rigid legislation that will keep individuals from destroying the land.

South Dakota State Planning Board. (1386)

This report, part III of the Central Northwest Regional Planning Commission's report and recommendations on Great Plains area problems, includes recommendations on soil and water conservation and urges the cooperation of all State and Federal bureaus.

Thone, Frank. (1387)

Erosion attacking farm lands, grazing areas, and forests cuts the soil into sterile gullies which are useless for centuries. During a drought over China, with famine certain to follow, and a dust storm raging outside, a scholarly Chinese said: "These droughts, dust-storms and famines are just what you Americans are in for unless you wake up in time. I can understand them in China because the damage was done centuries . . . before people knew what deforestation and bad farming could do to a nation. But I cannot understand a country like the United States allowing such a thing to happen." The need for keeping the soil by means of grass and trees on sloping lands is stressed.

United States Resettlement Administration. (1388)

On pages 10-12 the Iowa State Planning Board land-use recommendations are listed which encourage soil conservation measures through education, demonstration, benefits, and other services.

Walton, F. H. (1389)

Drought conditions in the Great Plains caused by improper drainage projects of the past few years are discussed. Various emergency methods of impounding water and distributing snow water and rainfall to prevent further drought are suggested.

Weaver, J. E., and Albertson, F. W. (1390)

Studies of the environmental factors and structures of various prairies with changes in cover vegetation are presented. From extensive field and laboratory studies the authors state "all of the native grasses suffered some loss, but death was greater among those with relatively shorter roots . . ." Native grasses which have almost entirely disappeared and native forms which have increased are listed.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

WEAVER, J. E., STODDART, L. A., AND NOLL, WM. (1391)
Eastern Nebraska is the area considered. Factors discussed are: Water content of soil; responses of grasses and forbs; effect on flower production; relation of depth of rooting to endurance of drought; retention of water and osmotic pressures; environment during the most intense period of drought; behavior of species on uplands and behavior of species on lowlands.
Literature cited, page 629.

WILSON, C. M. (1392)
A comparison of the droughts of 1930 and 1934. Maintains that the former was more regional than the latter and that the problem is essentially one of distribution.

ECONOMIC AND FARM MANAGEMENT PHASES OF SOIL CONSERVATION

ANONYMOUS. (1393)
"History records a long line of great metropolitan centres that disappeared because they neglected the countryside which nourished them." Approves of a program that would "curtail waste and destruction of soil, safeguard the American living standard, insure the future welfare of urban and rural residents alike, and assure coming generations adequate food at reasonable prices."

The author views the Nation's blindness to the need for soil conservation "as not just an agricultural problem, but one of far-reaching and social significance, for it is impossible to substitute any other medium for soil in the culture of plants, without which human and animal life could not long continue."

EROSION CONTROL PROJECT CARRIED ON TWO YEARS IN WESTERN WISCONSIN. Wis. Agr. and Farmer 63: 3, 12. April 11, 1936.
A description of protective farm management and engineering methods used to save the topsoil of Coon Creek area in western Wisconsin.

"Loss of fertility is the great destroyer of wealth in our day. We will never stop that destruction until we make it possible for farmers to plant no more crops than the market needs, and to be aided in their efforts to get land back to grass."

REMODELING FARM PRACTICES AT GARNLAND. Farm and Ranch 55: 14. May 1, 1936.
Notes are presented on soil conservation work in Dallas County, Tex., including reclamation of pastures, strip cropping, and drainage methods.

Indicates that "conservation, by its very nature, is a public problem, not a private one, and it is a problem that demands for its successful solution a distinct shift in our fundamental social and economic concepts."
Anonymous. (1399)

Presents soil conservation campaign plans and progress to date on Green Lake, Dane, and Calumet County farms in Wisconsin as typical examples. Crop plan drawings are included, and soil-depleting crops pointed out.

The Federal program for financing farmers is briefly stated. "Conservation of the fertile top soil . . . will tend to maintain the value of land held as security for long-term loans . . ."

Alexander, W. W. (1401)
SOME FACTS ABOUT FARM TENANCY. South. Prog. 1:13, 27. October 1936.

The writer states that there has been a steady increase in tenancy during the past 50 years; an increase in white tenants and a decrease in Negro tenants. The need for diversification of crops, soil destruction, and the poverty of the tenant are discussed. "The tenant system stands directly in the way of agricultural diversification."

Allin, B. W. (1402)

The author states that "the Great Plains is the problem area of greatest importance from the standpoint of population redistribution." After mentioning other problem areas he says: "Altogether, five million people, or 15 percent of the present farm population, would have to move in order to promote what is here regarded as the best use of the land. Probably four million of this total are in the problem areas . . . The entire five million could leave agriculture without causing a significant reduction in commercial farm output." Paper presented at the twenty-sixth annual meeting of the American Farm Economic Association at New York, December 27, 1935.

Alexander, C. B. (1404)

"Nature cures while man endures" should not be relied upon in connection with soil conservation. Nature is too slow in repairing soil loss, as authentic illustrations on record show. A single hard rain on an unwisely cultivated field may carry away more fertility than Nature could restore in 400 years. The writer contends that it is man's duty to preserve and at the same time use the fertility of the soil. "Nature, supplemented with an intelligent production program by man, can avoid . . . distressing extremes so that all may have plenty always."

American Bankers Association (1405)

The selection of crops which have proved valuable in good farm management, and which contribute to soil conservation are listed as soil-depleting, soil-conserving, and soil-improving crops. Controllable factors affecting crop
and soil resources and their relation to credit agencies are discussed. “Permanent flood control, as well as permanent agriculture, involves erosion control over the entire watershed from ridges to river channels.”

(1406)

Carl Hollis spoke on soil erosion and farm credit. H. L. Young expressed the opinion that “industry holds valuable lessons for the farmer... There is no reason why such principles cannot be adapted to our farm problem. Better cultivation; better seed; better methods of fertilization; studies of soil erosion and how to combat it... all these and more form the basis for giving both the farmer and the consumer more products at less cost.”

BALL, J. S.

The writer discusses efficient use of land, productive and unproductive land, the farmstead, the study of land utilization of 1,703 farms and the influence of land tenure. “The results of this study... serve to call attention to the fact that there are certain portions of any farm which contribute nothing to the farm income, and to suggest various ways through which more or less of such unproductive land may be reclaimed on the average farm.”

BENNETT, H. H.

“Soil impairment and destruction by erosion constitute one of the most important problems confronting American agriculture.” The lowering in value of farm acres in Iowa, Missouri, and Texas through erosion is shown, and examples of land wastage in many States are described and illustrated. The remedy lies in an effective soil conservation program. “To get a thorough-going, far-reaching program into practice is going to require first a tremendous amount of awakening among farmers, land owners, bankers, merchants, and others, as to the seriousness of the problem; and... a vast amount of research and demonstration work under the varying conditions of soil, slope, and climate that characterize this great Nation.”

BILL, E. T.

A description of Herbert Powell’s system of keeping up the soil on his 22 tenant farms in Livingston County, Ill. He rents them on shares, with a 5-year lease, stipulating certain things that must be done by the tenant to keep up the farm. The success of this system is proved by the accountbook record he keeps on each farm.

BLAIR, M. M.
A PICTURE OF FARM TENANCY IN TEXAS AND OKLAHOMA. Farm and Ranch 55: 3, 9. April 1, 1930.

This is the first of a series of three articles on the tenancy problems of Texas and Oklahoma. The present article is concerned with the growth and the evils of tenancy. Special attention is called to the poverty of tenants, increase in soil erosion, general decay of rural communities and rural institutions, and the decline of democracy. “If all of Texas and Oklahoma were now terraced to perfection, the terraces would soon wash away, neglected and left in ruin by transient tenants.” Special interest in land preservation can only be roused by ownership of the land.

BRANDT, KARL.

“Soil, topography and climate are factors operating toward a shift of the center of gravity of cotton culture. The situation would be desperate if the South had to go on as before, producing cotton on eroded soils, but
this is by no means necessary. A shift to mixed farming will make possible not only a utilization of these soils but their gradual repair."

BRIGGS, FRANK A., ed.
WHY I AM INTERESTED IN AGRICULTURE. Farm and Ranch 50: 12. August 1, 1937.
An interview with Albert T. Clifton. When asked why he was interested in agriculture, Clifton replied: "I am interested in agriculture because farmers are my customers... In my opinion the conservation of soil and moisture is our important problem and the Government is justified in making an effort to make the people conscious of the need for immediate action... We need better farm and soil management. We should think less of immediate profit and plan more on profits in later years."

BRINK, WELLINGTON.
The author visited the Wayne Stephenson farm in 1936 and, with the help of a land-use map for 1935, 1936, and 1940, shows the results and expected results of a well-managed farm "founded on statistics and sweat experiments and experience." He stresses the necessity for cooperation of farmers and Government in planned erosion-control measures.

BURGER, E. K.
The Federal Government's huge program of flood protection extending over the next 10 years, to cost $325,000,000, is discussed. The plan is described, and it is pointed out that development follows protection. This large expenditure is destined to produce far-reaching effects throughout the business structure. New territory and new opportunity for growth and expansion are being made.

BUTLER, TAIT.
"The effects of the soil conservation program, following the control of the production of cotton and tobacco, on the production of livestock in the South have aroused much national interest. Outside of the South the impression seems to be that it will mean such an increase in livestock products in the South as to seriously impair the splendid market which the South has furnished for the farm products of other sections. Dr. Butler takes us into the question as it affects the entire future welfare of the South and nation."—Editor.

C., I. N.
Gives several examples of land utilization, with field plans and rotation suggestions which provide good farm-management practices in maintaining and improving the fertility of the soil, and in controlling erosion. The program consists of the use of the following methods: Strip cropping with alternating row crops; use of a good rotation; cover for unprotected land; a cloddy surface soil condition; incorporation into the soil of all crop residues including stubble; and the general use of alfalfa, sweetclover, and native grass, especially on severely eroded fields.

CAPPERS, ARTHUR.
The author discusses the disadvantages of shifting tenants. "Soil erosion and brief tenancy go hand in hand. The tenant who remains on the land only a short time will seldom farm it properly... Both the tenant and the land owner and also the land lose by this system."
CHAMP, F. P.

The writer states that "bankers can and should play an important part in the development and maintenance of a sound soil conservation program. Through their control of a substantial portion of the short-term agricultural credit, and the key positions which they hold in their communities, they can wield a powerful influence to promote soil-building practices on the farm, and a use of the range which will insure watershed protection and sustained forage and timber yields." [1418]

CHARLES, TUDOR.

The author discusses farm practices in Kansas and the use of various crops. "A soil plan for Kansas should result in more home-raised cattle, sheep, horses and mules; fewer long-fed and more grass-fattened cattle and sheep; and a comfortable surplus of hay; more ample pasture; less soil erosion; and lower operating expenses." [1419]

CLARK, NOBLE.

Erosion research is divided into the following categories: (1) A measurement of the amount and character of soil and water losses from different soil types, crops, etc.; (2) attempts to evaluate the effectiveness of present methods of erosion control and to evolve new and better methods; and (3) determination of the economic and governmental issues involved in such questions as the division of costs of erosion control between the landowner and the public. In proposing improved soil-conservation policies in line with these divisions, the author recommends a more coordinated program encouraging the aid of the individual farmer. [1420]

CLEMSON AGRICULTURAL COLLEGE.

"These issues of Agricultural Education are published to emphasize the significance of the slope of land and to help farmers and farm boys plan their farming programs in relation to the slope of the land on their farms." Herein are discussed the relation of the degrees and lengths of slopes to erosion losses, the relation of slope to soil conservation practices, relation of slope to land uses, cropping systems, and tillage practices. The data presented here are in most cases taken from controlled plots which are comparatively small in area. [1421]

"This issue of 'Agricultural Education' is devoted to the description of a technique to be used in appraising the surface features of a farm. An attempt has been made to make the technique understandable by applying it to two farms, one located in the Piedmont region, and the other in the Coastal Plain region of South Carolina . . . The appraising of a farm is a job that calls for training and experience . . . The technique and procedure set forth . . . are for studying such surface features as follows: Soil types; Degree of erosion; Topography; Drainage; Condition of terraces; Present use." [1422]

COHILL, M. H.

"Production can be maintained, farm organizations properly balanced, soil conserved by careful planning." To illustrate this assertion the author gives detailed data on a farm-management plan for a typical farm. [1423]
Cohee, M. H. (1424)
FIELD OPERATION TIME REQUIREMENTS AS AFFECTED BY CONTOUR-STRIP CROPPING IN AN EROSION CONTROL PROGRAM. U. S. Soil Conserv. Serv. SCS-R5-MS-4. 1936. [Mimeographed.]

Data were obtained on 35 farms in the Coon Creek area of Wisconsin during 2 years (1934 and 1935). The study is divided into two parts—(1) the amount of time required to work strip contour fields as compared with the time required to work irregular fields, and (2) the amount of time required to work the crop land of a farm completely reorganized along conservation lines as compared with the time required to work that same farm before it was reorganized, i.e., when it was farmed in the old way.

Cohee, M. H., and Davis, R. H. (1425)

A diagram of the erosion-control program for a representative farm together with maps and tables are shown. Farmer cooperation toward erosion control is discussed. "In time, perhaps, every farmer will of necessity become a 'true agriculturist', as in the meaning of the term in some European countries where each foot of soil is treated with care."

Compton, K. T. (1426)

American agricultural problems are discussed. "The national program of soil conservation now being undertaken through Congressional authorization will be a major step forward—if it is administered wisely for the purpose of soil conservation and not merely as an excuse for gaining other objectives. The argument of the present article merely urges that it be supplemented by equally vigorous and intelligent action in the direction of developing new outlets for agricultural products."

Cornell, F. D., Jr. (1427)

The author sets forth the factual data regarding conditions in the Spencer area. "The plan was to make a study in the area before any effects of the demonstration program had been realized. Such study was then to be repeated after five years."

Cox, J. F. (1428)

The author discusses the important work of county agents in accelerating adoption of better farm practices. A brief survey of the work of the A. A. A. is made.

Craddock, P. G. (1429)

Data for 380 farms in the Banister River soil erosion service area for the farm year 1933 furnish the basis for this report. It is shown that "the yield per acre increased consistently as the amount of erosion decreased... there was an upward trend in the price received for the tobacco as the amount of erosion decreased." There were four important soil types—Cecil, Madison, Appling, and Granville. Appling showed the least erosion, and Granville was a close second. Most serious erosion occurred in Madison soils.

Crickman, C. W. (1430)

The economic position of Corn Belt farmers is considered. "Cornbelt farmers are faced with major immediate and long-time problems of management. One year of severe drought and 2 years of production control under the A. A. A. have brought about significant changes in crop acreages and livestock numbers."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

DAVIS, ARNOLD.

Drawings show how the location and construction of farm roads and trails is of great importance in an erosion-control program for the farm.

DAVIS, C. C.
LOST ACRES. Amer. Mag. 121: 63, illus. February 1936.

A quotation from a pamphlet recently published by the American Bankers Association states: "Soil erosion . . . now menaces the economic and social security of millions of people. Its continuation for another 100 or 150 years may make impossible a self-sustaining agriculture in the United States." The adjustment programs of 1934-35 and results obtained are discussed. "The nation's agricultural plant is getting an overhauling it has badly needed ever since war and depression disrupted sound farm practices."

DIXON, H. M.

"This bulletin is based on a study of the organization and management of 79 farms distributed in five counties in the southern and south-eastern Ozark region of Missouri. Thirty-one of these farms are representative of the conditions of rolling and hilly upland farms; the other 48 are more representative of the conditions on the valley and level-upland farms. Throughout the bulletin these two classes of farms are treated separately. Data are presented on size of farms, distribution of farm area, capital, receipts, and expenses, and the returns in farm income and labor income."

DOBSEY, R. W.
SOIL CONSERVATION AS A FACTOR IN FARM FINANCE. Northwest Sci. 10: 3-5. February 1936.

A study of farm mortgages and mortgage foreclosures based upon soil fertility and soil deterioration from overuse and erosion resulting from intensive farming.

DUCk, R. W.
LIVE STOCK AND DAIRY; SOIL CONSERVATION AND LIVE STOCK. Rural New Yorker 97: 470, illus. May 16, 1936.

States that the new soil conservation program will effect "... profound national changes relative to land tenure and grain crops . . . and will have an equally important influence on all kinds and classes of market livestock." How the new law affects directly or indirectly the raising of beef cattle, dairy cattle, hogs, and sheep is explained.

DULEY, F. L.

Measures for erosion control are suggested such as practical cropping systems, contour cropping, terracing, and gully control. "What we are trying to do is to develop a complete soil erosion or farm management program on each farm"

ELLIOTT, F. F.

Paper read at the twenty-seventh annual meeting of the American Farm Economic Association, Chicago, Ill., December 28, 1936. Discusses the purposes and points of view in conservation; alternate methods of attaining a desirable conservation and adjustment program for agriculture; and the adequacy of the present Soil Conservation Act for attaining such a program.

59893—38——14

An economic survey of our lands is advocated to determine whether they are suitable only for forests; the planting of this land to forests and making it more or less the property of the State or Nation; a policy of tenant remuneration for unexhausted fertilizers and improvements; the education of both owner and tenant to the problem of soil improvement; and a policy for the disposal of city sewage other than by pollution of streams and lakes.

ETHERIDGE, W. C.
GOOD USE OF FARM LAND IN MISSOURI. Mo. Agr. Col. Ext. Cir. 332, 8 pp., illus. 1935.

Procedures for competitive farming through adoption of new ideas are outlined with suggestions for increased use of Korean lespedeza and winter barley. New factors reducing farming costs through annual double cropping with 1-year rotations are described.

GARD, W.

The farmers of the Central States realize too late that the soil so hastily mined should have been husbanded. The dust storms are the result of reckless exploitation. The present problem is to take out of cultivation land which can be farmed only at a loss. Land conservation and reafforestation had been begun in several States before the New Deal Administration. New York in 1931 ratified a State constitutional amendment for appropriation of $19,000,000 for a program of reafforestation. The various steps taken by this administration for conservation of land resources are cited and discussed. The writer concludes by asserting that, in general, land economists have good reason to be hopeful.

GOODRICH, C. L.

"This bulletin is designed to present, by pictures, charts, and brief text, some of the more important and fundamental factors that make for success on the southern farm. The object is to arouse the interest of the farmer in these factors, so essential to success, and induce him to inquire further into the matter, with the idea of improving his own practice and management."

GOODRICH, CARTER, AND OTHERS.

Under chapter V entitled, "The Great Plains", by C. W. Thornthwaite, the following topics are discussed: The physical site; history of settlement including mention of the advancing frontier, dry farming and agricultural mechanization; climatic hazards and crop production, including rainfall records, shifting climatic boundaries; economic implications of crop production, including the influence of climate on crops, income from wheat production in the Great Plains, and agricultural over-expansion and wind erosion. The chapter is concluded with a discussion of population prospects in the Great Plains.

GRAY, L. C., AND OTHERS.

The object of this article is to consider our present situation and future outlook in regard to our resources available for growing the food and raw materials that must be supplied by our crop lands, pastures, and forests." It summarizes American land resources and gives an estimate of future requirements.
HAMLIN, SCOVILIJ. (1444)
THE MENACE OF OVER PRODUCTION; ITS CAUSE, EXTENT, AND CURE. 202 pp.
New York, John Wiley & Sons. 1930.

"This book is extraordinarily timely. It gives us first the facts as to the extent of overproduction—defined primarily as plant capacity in excess of market demands—in many fields, competently summarized by experts. Secondly, it gives us many valuable hints and suggestions for constructive action ... We receive not one student's view ... but the composite view of many able specialists, each dealing with that aspect of industry which he knows as he knows his own profit and loss account. The result is unity in diversity."—Foreword.

HAMMAR, C. H. (1445)
AN APPROACH TO THE GRADING OF LAND FOR PURPOSES OF APPRAISAL. Jour.
Farm Econ. 18: 523-532, illus. August 1936.

The author discusses a system of classification based on a study of the unit soil factors which affect plant growth and mentions the necessity for also taking into account the stability of the grading, a factor which is influenced by deterioration of the land due to erosion.

HARRWEB, D. C. (1446)
LOSSES IN WASTAGE; NATION'S FARM LANDS BEING DESTROYED BY EROSION.
Barron's 14: 3, 6, illus. November 12, 1934.

The national menace of soil erosion is viewed from various angles. "This is not a matter for the farmers alone, nor for the investors who hold mortgages on the land for, as life is dependent upon the soil and values are based upon it, there could be no threat to our national life so great as this."

HOPKINS, J. A., AND GOODSELL, W. D. (1447)
1937.

"The actual experiences of some 400 farm operators, as shown by questionnaires obtained from these farmers in 1934 ... form the basis for this economic study of farm practices." Table 10, page 42, indicates variations in soil-management practices, including use of lime, sod strips, legumes, green-manure crops, and commercial fertilizers. The number of farms on which soil erosion is a problem is also indicated.

HOWARD, I. M. (1448)

In western Oklahoma wind and rain have stripped the fertile topsoil from hundreds of thousands of acres of once productive farm land. Demonstration erosion-control projects have been established in response to demands for them, and farmers are quick to offer their cooperation. Work on individual farms is described.

HOWE, E. J. (1449)

The writer quotes as follows from the Encyclopedia of Social Sciences: "During the 1850's and 1860's there passed into the hands of western railroad promoters and builders a total of 158,293,000 acres of land, ... The quick transfer of land from public to private hands, and ... the extension of transportation facilities, was accompanied by extensive new settlement and a rapid rise in land selling prices." The writer contends that "it was during this period ... that we mortgaged our greatest natural resource, our agricultural lands. That mortgage is now past due." American agriculture is speculative. The reorganization of farm production from a specialty-crop basis to a diversified basis, and farming practices that will conserve present resources are advocated as a means to start payment on the mortgage.
JONES, P. B.

The history of agriculture, types of farming, classification, topography, and reforestation are among the subjects covered.

KEILHOLZ, P. J., ED.

Soils and crops, pages 13-72. Mention is made of the need for information on planning erosion-control measures in Illinois. "One form of information that is almost entirely lacking is that relating to the capacities of different soils to absorb and hold water."

KESTER, HOWARD

REVOLT AMONG THE SHARECROPPERS. 98 pp., illus. New York, Covici Friede. 1936.

"The purpose of this small volume is three-fold. First, to describe a general condition; secondly, to set down the labors of a particular organization [the Southern Tenant Farmers' Union] working in the midst of these conditions; and thirdly, to suggest a way out." It is concerned mainly with conditions in Arkansas. The author suggests that all titles to land be vested in the citizens of the United States. To achieve this a national land authority would be established having the power of eminent domain with the right to purchase land at a fixed sum arrived at by land experts of the authority. It would plan the entire agricultural program of the Nation and mobilize the necessary forces for its execution. The author recommends cooperative farming on a large scale in preference to establishing small independent farmers on land which they will buy over a period of years.

LANDIS, P. H.

Discusses submarginal land purchases from the standpoint of population readjustment, readjustments in local community functions, and social benefits.

LATHAM, B. M.

CHANGES IN CROP ORGANIZATION FOR SOIL CONSERVATION IN THE PIEDMONT AREA OF SOUTH CAROLINA. 11 pp. May 1936. [Mimeographed.]

"In setting forth the results of this study, the cropping system employed in 1935, before the farmers entered into cooperative agreements with S. C. S., is compared with the cropping systems devised for 1936. The source of data were cooperative agreements completed prior to November 21, 1935"

"According to a recent survey of specified school districts in the Piedmont counties by the South Carolina Experiment Station, data were secured which indicate that there is a positive and significant correlation between soil erosion and tax delinquency The following counties were studied: Spartanburg, Chester, Cherokee, Pickens, Anderson, Greenwood, Abbeville, York; Union, Oconee, Fairfield, Saluda, and McCormick In this study no attempt has been made to comment on factors other than erosion which influences tax delinquency as here defined"

LEOPOLD, A.

The writer examines current programs for public land acquisition and for regulation of private land practice from the standpoint of the New Deal's expenditures for conservation designed to include repair of damaged land at public expense and suggests prevention rather than cure of misuse.
LIPMAN, J. G.

"The major source of losses comprise the removal of crops and their products and of animals and their products. No less important are the losses due to erosion, leaching, burning, and the intensive decomposition of organic matter by microorganism." Economic aspects of these losses are considered.

LIVINGSTON, L. F.

"There is no one in the land today who is not touched in some manner by the 'farm problem'..." As one voice in this national debate, speaking in the name of several hundred agricultural engineers, it seems to me pertinent to point out that the term 'farm problem' is a misnomer. We have 6,300,000 farms in America. That means we have 6,300,000 specific farm problems; no two farms and no two farm problems are alike." The author advocates more farm cooperation under a sound business-management basis.

LÖTTERKAMP, LEO.

"Driving steadily toward its July, 1 man-year quota, the Soil Conservation Service today numbers on its rolls nearly 30,000 W. P. A. laborers, most of whom were formerly on relief." The author explains expenditures by the Soil Conservation Service of the emergency relief appropriation.

McDERMID, JEFF.
"GO TO GRASS." Better Crops with Plant Food 19: 3-4, 45-48, illus. February-March 1933.

The author contends that extensive soil surveys reveal a shocking system of private mismanagement and places a serious charge against the men who have been entrusted with the basic wealth of the Nation.

McDONALD, ANGUS.

The author describes a farm in eastern Oklahoma. The operator of this farm was a pioneer in soil conservation work, and his successful methods are fully shown by his son who worked with him and under his direction.

McDOWELL, J. C.

Records of unprofitable farm land in various States are discussed, and the need for every farmer who owns unprofitable land to make a detailed examination of his farm, acre by acre, is stressed.

MILES, H. A.

Inquiry was made of 10,000 Oklahoma farmers in 1936: "How would you organize your farm to conserve soil fertility and control erosion, if you had complete control and were financially able to carry out your plan?" By means of tables the author gives the replies showing indicated potential adjustments in numbers of livestock, by type-of-farming areas, and acreages of a few selected crops and conservation of soil and soil fertility.

MINNEMAN, P. G., AND HILL, E. B.

Presents an analysis of the practices followed and the labor, equipment, and materials used in crop and livestock production on some of the more successful farms in southeastern Michigan. Forty-one tables are shown on seedbed planting, harvesting, and fertility practices.
MINNEMAN, P. G., AND HILL, E. B. (1464)
This bulletin shows the organization of some of the more successful farms and the changes that may be made to adjust the individual farm business to the changed economic conditions. "This discussion is concerned with 'what' and 'how much' to produce rather than with 'how' to conduct the various farm operations."

MYERS, W. I. (1466)
The author explains that the objects of this investigation were (1) to study the principles of farm lay-out and determine their relative importance as an aid to individuals in rearranging their farms to secure the most efficient use of labor and land; (2) to study the utilization of land on the typical farms considered, as a public problem of land utilization, with particular reference to the possibilities of increasing the area of cropland to meet the needs of an increasing population.

The author discusses important factors in planning the farm lay-out and explains why many New York farms need rearranging.

NATIONAL INDUSTRIAL CONFERENCE BOARD. (1468)
THE AGRICULTURAL PROBLEM IN THE UNITED STATES. 157 pp. 1926.
The development of sound, far-sighted national policies in respect to agriculture is stressed as one of the most important problems before the country today. "In the development of such policies and the determination of such questions it is the duty of all groups to take part." It is pointed out that the primary purpose of the National Industrial Conference Board "is to clarify the problem as a whole so as to contribute to a better and more general understanding of it ... and so to provide a common basis for such sound policies as may assure the country a prosperous agriculture as a part of a prosperous national economy." Main chapter headings are: The Importance of the Problem; The Economic Position of Agriculture; Factors in Agricultural Income; and Factors in Agricultural Costs.

NELSON, LOWRY. (1469)
"The conservation of soil is not alone an economic and a technological problem. In the last analysis, it is a social concern." The author surveys the waste of natural resources of a young and rich country with the consequent devastation through deforestation by timber merchants, floods, and soil erosion.

NELSON, PETER. (1470)
The author discusses replies from experiment stations and regional directors to two questions submitted concerning satisfactory systems of soil conservation and the extent of tests made of these systems. "Indications are that physical conservation, that is, prevention of erosion by means of mechanical structures or by means of certain types of plant cover, can be achieved generally. The economics of conservation, on the other hand, is an almost unexplored field."

NICHOLLS, W. D. (1471)
TWO THOUSAND ACRES OF GRASS. Country Gent. 83: 5, illus. February 2, 1918.
One of the biggest farmers of central Kentucky says it pays to graze high-priced lands. The writer describes in detail the management and working of farms in Bourbon County, Ky., and quotes costs and results to prove the success of the methods used.
O'BRIEN, H. R. (1472)
SOMETHING NEW IN FARM LEASES. Country Gent. 84: 10, 33-34. March 15,
1910.
Discusses farm leases which provide for permanent maintenance of the
fertility of the soil. A model farm lease contract drafted in 1918 by L. S.
Robertson of the agricultural extension department of Purdue University
is given.

OKLAHOMA AGRICULTURAL EXPERIMENT STATION. (1473)
FARMER-SUGGESTED CHANGES IN FARM ORGANIZATION, BY OKLAHOMA TYPES-OF-
FARMING AREAS, FOR PURPOSES OF CONSERVING SOIL FERTILITY AND CONTROL-
1936.
A summary of data furnished by 5,346 farmers indicate that if Oklahoma
farmers had complete control of their operations and were financially able
to carry out policies they believe to be best from the standpoint of main-
taining fertility and controlling erosion, they would reduce the acres of
small grain and cotton in all major producing areas and for the State as a
whole, while acres of hay and feed crops would be increased as well as
numbers of livestock.

OLSON, C. R. (1474)
FARM MANAGEMENT AND EROSION CONTROL. Stephenson County Farm
"There is probably no other thing the farmer can do that will pay him
as well to follow as a good soil conservation program. Such a program
is one of the first requirements of good farm management."

OTIS D. H. (1475)
Principles of effective field lay-out for the purpose of saving labor, main-
taining fertility, and increasing production are set forth. A sketch of
farm development in Wisconsin is given.

PROTECTION FOR FARM LAND VALUES. Banking 28: 22-23, Illus. October
1935.
Loans for improved seed labor-saving equipment, quality stock, fertilizers,
control of insects and plant and animal diseases, and harvesting and
marketing of crops "usually fall in the category of safe and desirable farm
loans . . ."

PARKER, E. C. (1477)
FIELD MANAGEMENT AND CROP ROTATION; PLANNING AND ORGANIZING FARMS;
CROP ROTATION SYSTEMS; SOIL AMENDMENT WITH FERTILIZERS; RELATION OF
ANIMAL HUSBANDRY TO SOIL PRODUCTIVITY; AND OTHER IMPORTANT FEATURES
1915.
Agricultural history from early times to the present. Definition and
classification of crops with their effects on soil properties, and other im-
portant features of farm management are discussed. "American agri-
culture has already exhausted and wasted large amounts of the Nation's
original assets of plant food in the soil. We have reached a stage in the
progress and development of our agriculture, where, as a Nation, we must
give greater consideration to the problems of maintaining soil productivity
and less consideration to the problems of subduing virgin lands. There is
no such thing as soil of inexhaustible fertility." A compendium of facts
and statistics is given in the appendix.

PETESEN, G. M., AND GALEBRAITH, J. K. (1478)
THE CONCEPT OF MARGINAL LAND. Jour. Farm Econ. 14: 295-310. April
1932
"The concepts presented in this paper are admittedly of an abstract and
perhaps elusive character. Such, however, is the nature of economic theoriz-
ing and so long as it is to form the point of departure for practical work
in agricultural economics, it must be given thorough going consideration."
Discusses important static and quasi-static factors which determine the
grade of land which will mark the position of the margin of cultivation.
PETERSON, V. S. (1479)
KEEP THE BOARDER ACRES OUT OF YOUR FIELDS. Successful farming 30: 9, 44-45, October 1932.

"An example of how one man is kicking out the boarder acres is found on the farm of Carl Anderson, Washington County, Iowa. He has taken out all unnecessary fence rows, tilled wet and seepy spots, planted trees in large gullies, used various types of dams in smaller ditches, terraced hillslides, and used a wise soil management policy." The author recounts the experiences of other Iowa farmers in saving their soil. Check dams for gully control are emphasized.

POND, G. A., AND CRICKMAN, C. W. (1480)

A study is presented of agriculture in the partially developed counties within the heavy-soils section of the cut-over areas. "In addition to general observations and an interpretation of statistical information periodically available, a detailed study was made of the organization and operation of a group of representative farms in the Askov Community of Pine County. Complete records of the crops and livestock production, the labor, power equipment, and materials used in production, and the financial transactions of each farmer for each year were obtained to serve as a basis for judging the relative desirability of different combinations of crops and livestock under the conditions of this area and for studying the best methods of handling the crop and livestock enterprise in these combinations."

PREScott, C. C. (1481)

"Erosion control must become a vital part of long time planning of land use, if we are to escape the poverty and low economic standards that have befallen older nations on account of destructive acceleration of erosion . . . Our methods and use of the soil will determine the well-being of the present and future standards of living in the land . . . The purpose of the government through the soil erosion service is to help establish a complete well-balanced farm conservation program."

PROCTER, R. E. (1482)

By means of tables the author shows a complete budget for a 100-acre farm listing kinds and requirements of crop and livestock, together with production and disposal.

QUICK, HERBERT. (1483)
A CONSPIRACY TO ROB. Country Gent. 89: 15. May 31, 1924.

Relates the evils of the 1-year farm lease and suggests as a remedy a lease" . . . which should enable the good tenant to lay plans years ahead; to build within reason and have a claim for it; to reclaim and terrace and drain where proper. Rent should never be increased to make the tenant pay on values he himself has created."

RAST, L. E. (1484)
SOIL ROBBING MUST COME TO AN END. South. Cult. 93: 3, 5. January 1, 1935.

This article discusses the damage done and the loss of income to American farmers by soil erosion. Conditions in Georgia are especially considered, the author stating that soil washing and blowing have been major causes of the State's increase in farm mortgages from $28,000,000 in 1910 to more than $101,000,000 in 1930. The program of the Soil Erosion Service is outlined.

REED, E. H. (1485)
FARM MANAGEMENT INFORMATION NEEDED IN FARM PLANNING. Soil Conserv. 2: 260-261, 266. May 1937.

The author suggests that physical, economic, and human factors be considered in farm planning. Since all farms are not identical, it is important to make a study of the individual farm before planning begins.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

REED, E. H. and FALCONER, J. I. (1486)
Report based upon a study of 100 farms located in four Soil Conservation Service demonstration-project areas in Ohio.

ROOSEVELT, F. D. (1487)
Text of a statement made by the President, October 25, 1935. It discusses the two principal objectives of the A. A. A. program which are defined as "... avoiding the danger of a slump back into conditions brought on by our national neglect of agriculture ... [and] to broaden present adjustment operations so as to give farmers increasing incentives for conservation and efficient use of the nation's soil resources." Abandonment of farms because of erosion is described as presenting an economic adjustment problem in the present and a menacing source of food shortage in the future.

ROTH, WALTER J. (1488)
"The objective is to provide sound economic and social research for the activities of the Soil Conservation Service ... the studies will be concerned with both individual farms and with groups of farms."

ROUSE, W. L., AND OTHERS. (1489)
The purpose of this study, made in the summer of 1929, was "to obtain basic information on the present organization and management of the farms and to determine the factors that control the farmer's income. The study is an attempt to determine how those farmers who made the larger incomes did so. The survey method of collecting the information was used. Records were obtained from 234 operators for the year 1928 ... The area was laid out so that the farms are representative for the county."

SAVILLE, R. J. (1490)
"Planning implies guiding economic and social forces in such a manner that adjustments may be facilitated in the dynamic changes inevitable in normal growth ... The final test of plans for immediate agricultural recovery and for the transition to a permanent program must not be confined entirely to farmers, but must embrace the entire population comprising the cotton belt."

SCHICKELE, RAINDR. (1491)
Various signs are pointed out indicating that the United States is manifesting the end of the colonization era and entering the phase of socioeconomic maturity. "Erosion control is an important phase of the general policy of conservation evolving out of this maturing process ... Society can no longer afford to leave unchecked the rapid dissipation of the soil's producing power. Erosion control has become a public issue." Economic and social factors affecting soil conservation are listed.

HIMMEL, JOHN P., and HURD, R. M. (1492)
"The following are the principal economic and social factors which, in general, tend to hinder or assist erosion control: Small farms; corn-hog type of farming; farms operated by tenants; heavy debt burden and high interest rates; large farms; dairy and beef cattle type of farming; farms operated by owners; small debt burden and low interest rates. This bulletin attempts to show how these and other factors are related to erosion control."

Soil erosion is pictured as wastage of valuable collateral. "Water sometimes washes away mortgages as well as farms and banks are left with worthless lands." The author offers a concrete illustration of what banks can do to insure adequate protection for the soil of farms upon which they lend money and discusses terracing as the best protection.

SHALEK, N. S.

The author states that he proposes "to take the processes of land erosion from the point of view of the geologist, and to trace the influence of their actions upon the formation and preservation of the soil. In the treatment of this subject we shall be led into that important but as yet unrecognized branch of national economy which relates to the preservation of the tillage values of various countries." A brief comparison between forest and grass cover under heavy rainfall is made. The need for normal forest growth is stressed, and the irreparable damage done by deforestation in Europe is cited. In highland districts the process of erosion is the most rapid and the results are the most irremediable. Economical and careful systems of tillage are advocated, also that "all areas having a slope of more than fifteen feet in one hundred should, by the rules which the conservator of the soils is disposed to lay down, be devoted to forests . . ." Primary education in soil conservation is urged.

SLATER, ROBERT M.

Presidential address delivered before the twenty-ninth meeting of the American Society of Agronomy, Washington, D. C., November 19, 1936. Proposes attacking land use via the individual farm and comments on the opportunities and responsibilities of agronomists in land-use affairs.

STAPLEDON, R. G.

In his conclusion the author states: "It is early days to be dogmatic regarding the methods of improving hill land; detailed experiments were only started by the Welsh Plant Breeding Station in 1931 . . . Land Improvement in all its aspects is a long range undertaking and demands facilities and organization. Without regional investigation and organization we are not likely to see the long overdue revolution in the farming and management of hill land"

TAYLOR, E. H.

Various economists on the subject of increased production of grass with special reference to surplus production in livestock and dairy industries are quoted. The conclusion is reached that the soil conservation and land-use program should be slowly and carefully developed, with the following important considerations: (1) The landowner himself, whose direct interest is to preserve land fertility; (2) the State or local community with need for taxable wealth in the form of fertile farm lands; (3) the National Government whose duty it is to render guidance and assistance to the man on the land, the State, or local community.

TEXAS AGRICULTURAL AND MECHANICAL COLLEGE EXTENSION SERVICE.

Suggestions to be considered in farm planning are made under such headings as: Selling the Farm Home Market First; Producing a Small Surplus of Food to Sell; Using Care before Planting New Cash Crops; Planting Feed to Sell Through Livestock; Cutting Cost of Production to the Limit; Raising Prices by Producing Quality Goods; Preserving the Land by Terracing and Wise Utilization; and No Two Farms are Alike.
THOMAS, H. L. (1499) PLANNING A CROP ROTATION IN CONNECTION WITH STRIP CROPPING. U. S. Soil Conserv. 1: 4-5. March 1936.

The author outlines and illustrates by a map an erosion-control program on a Caledonia, Minn., farm.

This bulletin includes information on the agricultural history of the county, gross income on farms, land classification and use, soils in State reforestation areas, and adaptation of soils used for the production of special crops.

UNITED STATES BUREAU OF AGRICULTURAL ECONOMICS. (1501) LOOKING AHEAD ON AGRICULTURAL POLICY. AN APPRAISAL OF ECONOMIC AND SOCIAL FACTORS BEARING ON AGRICULTURAL ADJUSTMENTS. U. S. Bur. Agr. Econ. 20 pp., illus. Washington, D. C. 1936. [Mimeographed.]

Prepared by a committee of representatives of the Bureau of Agricultural Economics, the Agricultural Adjustment Administration, the Soil Conservation Service, and the Resettlement Administration. Soil conservation and land utilization, pages 12-14.

The aims of the Soil Conservation Service are discussed, and to illustrate the procedure involved, the steps in making and completing an actual farm plan are described.

Five major phases of endeavor relating to the range territory are cited: (1) Reduction and adjustment of crops; (2) cattle- and sheep-buying programs; (3) the taking over by the Federal Government of privately owned and unappropriated lands; (4) the new Farm Credit Administration functions; and (5) developing storage reservoirs for power, irrigation, and flood-control purposes.

Account of how eastern Tennessee farmers have realized that their land is slipping. Methods to remedy the situation are given.

"By considering a large number of criteria, it is possible to determine which counties are poorest in most significant respects, and which richest. The data presented by counties in the recent official summary of census data and . . . The Market Data Handbook of the United States, U. S. Dept. of Commerce 1929, have been of great service in this respect. . . The following is a summary of some of the more distinctive of these criteria as they apply to the twelve counties considered to be richest and the twelve poorest."

The author mentions briefly studies under way at Iowa State College to determine the social and economic effects of soil erosion. "Though true, it is not enough to say that soil erosion causes social disorganization."
WARREN, G. F.
FARM MANAGEMENT. 590 pp., illus. New York. 1914.
This book is the study of the business principles in farming. "It may be defined as the science of the organization and management of a farm enterprise for the purpose of securing the greatest continuous profit . . . The conclusions in this book are based on investigations . . . on cost accounts, census data, travel and study in different parts of the United States and experience in farming." Chapter 14 deals with cropping systems, and chapter 18 considers the choice of a region with reference to climate (rainfall, evaporation, winds, etc.) and fertility of the soil. The use of soil-maps is advocated.

EDUCATIONAL PHASES OF SOIL CONSERVATION

ANONYMOUS.
CONSERVATION IN LITERATURE. HOW SOME GREAT WRITERS HAVE LOOKED AT THIS UNIVERSAL PROBLEM. Scholastic 29:9. September 26, 1936.
Quotes from Uncle Vanya, by Anton Chekov; Bambi, by Felix Salten; Green Hills of Africa, by Ernest Hemingway; Sticks and Stones, by Lewis Mumford.

"A new and far-reaching educational program for the 300,000 men of the Civilian Conservation Corps has been approved by President Roosevelt and will go into effect at once . . . The purpose of the program is to give every young man and veteran in the 1,466 camps a chance to improve his education and to enhance his prospects for securing permanent employment." This educational program is described in full.

"Note: This paper on Geology and Soil Formation, prepared for Navajo Indian high school students, is an unusual example of how a highly technical subject may be presented in interesting and simple terms." Indian folklore is adapted to modern conditions and soil erosion.

"The Committee has taken what seems to many to be very optimistic ideas of the powers of education. It thinks that educative methods should be tried for a period of five or seven years before compulsion by legislation should be considered." The author doubts the success of these methods as "soil erosion is often the result of the encouragement of hoped-for sordid gain . . . The greatest assistance should come from Planters' Associations if they would constitute themselves as vigilance committees and call the attention of any erring members to soil erosion on their lands. The Report is circulated to all field officers of the Agricultural Department and their attention called to the necessity to do what they can to educate and direct the small holder along lines of soil-conservation."

The essential features of this model, showing the processes of erosion on deforested slopes, are described.

ALLISON, I. S.
The writer comments on an article by Glock (1538) and points out certain hybrids in common use which lend themselves to misinterpretation. He says: "Terms intended for technical use by advanced students and specialists should be no less clear than those intended for general use."
The purpose of this book is primarily that of acquainting the student with the applications of those scientific facts and principles which are of use in planning constructive systems of soil management and in increasing the productive capacities of soils. The table of contents includes the following: Requirements of Crops; Characteristics of Soils; Utilizing Soil Resources; Conserving Soil Resources; and Supplementing Soil Resources.

"The extent to which the surface soil is removed is determined by the character of the soil, the frequency with which cultivated crops are grown, the climatic conditions and the slope of the land... It is possible to take advantage of certain means of conservation by which the soil can be largely held in place and at the same time have its mineral content gradually renewed from the subsoil. It cannot be said, however, that losses by drainage and erosion are always objectionable, in fact quite the opposite is often true..."
slopes.” The model is for the use of pupils in public schools who are taking courses in nature study, elementary agriculture, and physical geography.

Clemson Agricultural College.

“These are non-technical issues of Agricultural Education devoted to procedures and practices for use in planning conservation programs on individual farms. These practices have been established through research and observations by the Soil Conservation Service... The facts and procedures set forth... are highly important in appraising and selecting a farm... These issues of Agricultural Education should prove very useful in teaching part-time and evening class students as well as all-day students in the high schools.”

“Much experiment station data are printed in this issue of Agricultural Education in order that the farmer and farm boy may associate genuine meanings in terms of farming with the different classes of erosion found on individual farms.” Among the contents are description of a soil profile; description and symbols of classes of erosion; some of the more important results of erosion, and effects of erosion on an individual farm.

COLEMAN, O. T., AND MARTIN, T. T.

The object of project 1 as stated is to organize rural boys and girls into groups for the purpose of impressing them with the seriousness of soil-erosion and soil-fertility losses and instructing them in recommended methods for reducing such losses in the future.

COPELAN, J. T.

The purpose of the project discussed in this bulletin is to aid boys in gaining lessons from nature. Symptoms of erosion and erosion losses are described and practical instructions for terrace building given.

COPLIN, R. I.

A terracing school in Lafayette County, Mo., and its development is described.

Cornell University, College of Agriculture.

This leaflet was prepared to help young people better to understand Federal and State programs to conserve the resources of our soil. A suggested list of erosion-control plants, native or hardy, in New York State, which produce food or shelter for wildlife is included.

DAVIS, K. C., ED.

SOUTHERN FIELD-CROP ENTERPRISES INCLUDING SOIL MANAGEMENT. 574 pp., Illus. Chicago, J. P. Lippincott Co. [1937.]

“A revised edition of a book prepared several years ago for vocational teachers of the southern region. Each of the twenty-one enterprises included are treated by specialists in the particular field. New sections on soil have been added. These are entitled: (1) Soils and other plant relationships; (2) Conservation and improvement of soils; (3) Land drainage; (4) Preventing soil erosion—terracing. The soil treatments in all sections of the book have been revised and improved, including suggested rotations, cover crops, green manure, culture, tillage, and soil management for the special crops and regions.”
Dreier, John. (1528)

Local problems were discussed with local people, and their suggestions for improvement and change were weighed. "The outcome was a series of policies and suggested programs which represent the joint work of technical personnel and the practical land operators of the country." The writer concludes: "In a brief summary of the educational work as given here, it is impossible to indicate all the factors of importance which entered into the work... Education, particularly democratic education, consists not of pouring things into people's heads, but of developing their own constructive thinking abilities to the point where they can make some original contribution to human progress."

Ellis, D. C. (1529)

"A description is given of a model designed to illustrate graphically the erosion of hillsides and the destruction of farms in the lower valleys following the complete removal of forests from the hills."—Expt. Sta. Rec. 27: 797. 1912.

Farbman, J. P. (1530)

Because "many farmers and mechanics are born experimenters and have a wealth of information gained from experience with their local conditions", the author maintains that the extension engineer would do well to cultivate their acquaintance.

Fisher, F. A. (1531)

The need for agricultural engineers having the proper viewpoint and training for the Soil Conservation Service is stressed. In both agricultural and engineering colleges a combination of courses, including "ample training in soils and crops, farm management, structural design, surveying, hydraulics, and the construction and operation of farm and certain types of heavy machinery" should be offered.

Gaines, S. H., compiler. (1532)

"This glossary... is designed to serve as a nucleus for bringing about an accurate exchange of thought and ultimately to establish a vernacular for the soil conservationist. The terms in this collection, for the most part, are those which have not had sufficient use in any one branch of agriculture to warrant compilation in glossary form."

Glock, W. S. (1533)

The author explains the need of certain terminology for clarity and precision and from voluminous literature sifts current usage pertaining to soil erosion. He believes the alteration of accepted root words should be discouraged.

Godley, Lloyd. (1534)

Description is given of measures used in soil-erosion control by progressive farmers and Payne County's five terracing schools.

Gregory, J. W. (1535)
GREMORY, M. H.

This book was designed as a short but complete statement of the entire conservation question that might serve for study in "teachers' reading circles, farmers' institutes, women's clubs, the advanced grades in schools, and for general library purposes. Every statement of fact bears the weight of authority, for no facts or figures are given that have not been verified by government reports, reports of scientific societies, etc."

HEIBERG, S. O.

The author finds "in current American forestry literature such terms as raw humus, peat, upland peat, acid humus, torf, duft, and mor, all used for the type of humus layer where the organic matter is unincorporated in the soil proper." The need for standardized terminology of forest humus layers is pointed out.

HOWE, F. B.

"An attractive opportunity is offered a few students in the College of Agriculture, to spend the summer in actual field work . . . against the menace of soil erosion . . . They will be allowed to enroll in CCC camps which are now under the direct supervision of the Soil Conservation Service."

HUTCHESON, T. B.

The writer tries to emphasize the most serious problem of the southern farmer—soil erosion. He stresses the need for educational work in this direction and describes the processes of erosion going on in the Piedmont area and experimental work being done in erosion control at the Virginia Agricultural Experiment Station.

KARRAKER, P. E.

"This circular presents in simple form important features of proper soil management and principles underlying the maintenance and building up of the productivity of soils in Kentucky. Attention is directed to important methods and ways of treating and handling land in Kentucky which, when put into practice, very much increase crop production and largely contribute to a more prosperous and satisfactory agriculture. The subject of soils is not treated in an inclusive way and readers desiring additional information are referred to other sources. The questions at the end of each chapter may be of service when the circular is used as a study course."

KINGSTON, A. C.

"Bankers can be of great assistance in the soil conservation project by helping promote educational work to bring about more constant thought among farmers as to the importance of this activity."

LORD, RUSSELL.

A study and analysis of the attitudes and opinions of various American farmers. Observations are made on wheat and corn growing, cattle raising, goats, dairy products, and the marketing of farm products.

MACKENZIE, A. J.

The economic advantages of a crop rotation system, as compared with continuous cropping has been demonstrated by the Glen School of Agriculture and on a farm in the Ladybrand district. Results of experiments are discussed.
MABTIN, G. E. (1544)
CONTROL OF EROSION IN OKLAHOMA. AgT. Engin. 10: 190. June 1929.
Early attempts at erosion control in Oklahoma are described. Schemes to promote terracing were successful in the South, and "we are attempting to maintain the work in the northern part of the State on an educational basis." Schools of instruction in erosion control for both adults and children are proving of value in the Extension Service work.

"4-H Terracing Club work is intended to familiarize as many as possible of our young farmers with soil conservation and improvement practices . . . The success of erosion control and moisture conservation work depends upon individual ability in planning, constructing and maintaining effective terracing systems upon the farms of Oklahoma."

MOSIER, J. G., AND GUSTAFSON, A. F. (1546)
"This book is written for three purposes: first, as a text-book for agricultural students; second, as a reference book for the practical farmer; and third, as an aid to the land owner who desires information in the personal management of his land." Moisture control is treated in chapters 18-21, and soil erosion in chapter 27.

MYER, D. S. (1547)
The author points out that the county agent performs much of the educational work essential to the soil conservation program. He is called upon to guide the farmer's interest to soil conservation, to acquaint the farmer with the erosion-control demonstrations, and to urge adoption of recommended measures.

OKLAHOMA AGRICULTURAL EXPERIMENT STATION. (1548)
Advocates higher standards of living for farmers. "Agricultural education is important. Training must include the science as well as the art of farming . . . Net loss in the State of Oklahoma from soil erosion alone is probably over $100,000,000 annually . . ."

PAXON, FREDERICO LOGAN. (1549)
Chapters 34 to 59 cover the exploration, development, and settlement of the Great Plains.

PHAGAN, C. V. (1550)
This circular gives building instructions to members of the 4-H Club. "Club members who have a mathematical or engineering turn of mind will find profile leveling one of the most interesting phases of agricultural engineering club work. Some knowledge of profile work is necessary in the solution of many erosion and drainage problems."

PORTER, J. A. (1551)
The 4-H soil conservation project is offered to the youth of Michigan so that they may study for themselves the numerous problems that occur in connection with soil conservation. "Soil conservation means saving and maintaining the present fertility of our soil, thereby leaving something for the future."

"In response to an increasing demand for instruction in soil erosion control, one of the first college courses treating of the subject as an entity was offered at Oregon State College during the 1934-35 winter term . . ."

Curricular data are presented and laboratory work described.

RAYMOND, ANNE.

"The study of soil conservation was initiated in April and May of 1936 in selected city and county schools of Pima, Gila, and Graham Counties. Study charts which would draw attention to fundamental principles in the conservation of land and water were worked out for the use of teachers carrying on the projects. Teaching demonstrations in various places are described.

SARGENT, C. S.

"In this volume I have tried to bring into convenient form for the use of students the information concerning the trees of North America which has been gathered at the Arnold Arboretum during the last thirty years." A map shows the eight regions into which the country is divided according to the prevailing character of the trees. A glossary of technical terms is included.

ScoATES, D.

"These exercises in rope work, farm power, farm buildings and machinery, surveying, tile drains, terracing, irrigation, and roads, are suggested to serve as a guide to the teacher of high school agriculture. Brief notes are given on library and laboratory equipment."—Expt. Sta. Rec. 32: 507. 1915.

SMITH, C. F.

The author proposes the creation of a service in conservation education in the Nation's schools with three requirements: "First, it must have genuine scientific authenticity. Second, it must be organized for school use by professionally trained and experienced curriculum specialists in conformity with state and local curriculum offerings. Third, it must find its way to the pupils through the regular channels provided by the Federal, State and local educational agencies."

"It would seem that while the Federal and State Governments are engaged in the terrific and somewhat disheartening struggle to repair by direct methods the damages which have been done to our forests, lands, streams, and wildlife by ignorance and indifference of our citizens, a small appropriation for education, through which there can quickly be put into the minds of millions of people the challenge to conserve what we have left and to rebuild our lost fortunes, would be the most profitable of all investments." The writer makes a definite estimate of the cost of such a service in the Office of Education—$85,000 a year.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION 221

TEMPLETON, H. G. (1560)
Erosion control work saves Nation's youth. Purdue Agr. 28: 33, 41, illus. February 1934.
A discussion of C. C. C. activity in Indiana on erosion-control projects. Shows how work of this type is valuable to the Nation and the individual C. C. C. enrollee.

THURMOND, M. F. (1561)
Photographs show plaster of paris models of soil erosion and its various control methods, used in an educational exhibit at Dallas, Tex. The author believes that ideas presented in exhibits are more readily grasped by farmers than those contained in written form.

TOLLEY, H. R., AND OTHERS. (1562)
A discussion of rural land-use planning problems. "The problem concerns primarily the major use, i.e., crop-farming, grazing, forestry, wildlife, recreation, etc. As such, the issue is centered in broad problem areas which typically comprise poorer land resources—land areas 'marginal' or 'sub-marginal' for agriculture." Lists of courses for the training of rural land-use planning leaders or directors are given, pp. 20-23. A digest of important legislation of the Seventy-fourth Congress, second session, is presented, pp. 25-28.

UNION OF SOUTH AFRICA DEPARTMENT OF AGRICULTURE. (1563)
Deplores soil erosion as a great evil and notes that a special organizing officer has been appointed to fight it. It is contended that the erosion problem should be tackled in the schools; children should be taught to save their inheritance so that parents may be brought to a realization of their duties and responsibilities in this respect.

UNITED STATES DEPARTMENT OF AGRICULTURE. (1564)
Making a model to show how forests prevent erosion. U. S. Dept. Agrl. Leaflet 58, 3 pp., illus. 1930.
"Directions are presented upon the construction and operation of an educational exhibit."—Expt. Sta. Rec. 63: 447. 1930.

EXTENSION SERVICE. (1565)
A plan for forest, soil, water, and wildlife conservation for members of Kansas 4-H clubs is proposed.

EXTENSION SERVICE. (1566)
The development of terracing schools and the 5-year cooperative program for terracing in Tallapoosa County, Ala., is given together with estimates of construction costs.

EXTENSION SERVICE. (1567)
The curriculum of a Texas terracing school and methods of procedure are presented. Terracing in general is advocated: "The increased value of terraced land is estimated at $8.00 per acre on the average."

EXTENSION SERVICE. (1568)
When the movies come to town; forestry and soil conservation methods are clear in Louisiana. U. S. Ext. Serv. Rev. 7: 75, illus. May 1936.
Tells of soil-improvement films shown in rural districts in Louisiana. The films are obtained from the United States Department of Agriculture, and are designed to emphasize and strengthen the practices recommended by extension agents.
UNITED STATES OFFICE OF EDUCATION.

This handbook is divided into six parts: Part 1 consists of general information on teaching methods and courses; part 2 consists of twelve 1-hour lessons on a general survey of the soil erosion problem; part 3, twelve 1-hour lessons on soils; part 4, twelve 1-hour lessons on agronomy; part 5, soil-erosion engineering; part 6, woodlands.

UNITED STATES SOIL CONSERVATION SERVICE.

“This Emergency Conservation Work Manual includes specific instructions with respect to the work to be done by the Civilian Conservation Corps under the Director of the Soil Erosion Service.” Chapter headings: General Provisions; Administration; Personnel; Work Projects; Fiscal Regulations; Reports from the Field; Supplies and Equipment; Camps and Camp Sites; Fire Protection; Educational Program.

PROCEDURE FOR STARTING A NEW PROJECT. U. S. Soil Conserv. Serv. SCS-AP-1, 33 pp. 1935. [Mimeographed.]

The purpose is to recommend practices so that new soil conservation watershed projects may begin in harmony with those already established. Partial list of contents: Starting the program; the work program; budgeting funds; method of procedure for division of conservation surveys in projects; procedure for developing the agronomic work on new projects; procedure for the development of plans for engineering work on new projects; procedure for setting up the division of erosion control practices on new projects; procedure to be followed in obtaining seedlings, fertilizer, lime, and seeds of all kinds.

TRAINING COURSES FOR NEW EMPLOYEES. U. S. Soil Conserv. Serv. SCS-AP-3, 68 pp. 1935. [Mimeographed.]

Outlines the general nature of the various Soil Conservation Service courses. The different courses described are as follows: Orientation; Soils; Agronomy; Forestry; Woodland and Wildlife Management; Engineering; Farm Planning and Reorganization. A classified bibliography is given for each course.

UNIT COURSE—NUMBER ONE, AN ORIENTATION COURSE IN SOIL CONSERVATION, AND EROSION CONTROL FOR USE IN EMERGENCY CONSERVATION WORK CAMPS. U. S. Soil Conserv. Serv. SCS-AP-8, 64 pp. 1936. [Mimeographed.]

This unit course, calling for 12 lesson periods, deals with soil and moisture conservation from a general standpoint. Subjects treated are: The causes of erosion; types of erosion; control methods; relation of plant life to soil conservation; cropping practices; forest conservation; siltation; gully control; engineering phases; the use of trees and shrubs; vegetative covering; and bad farming practices.

EROSION CONTROL METHODS FOR THE SOUTH CAROLINA PIEDMONT. Soil Erosion Serv. (Spartanburg, S. C.), 64 pp., Illus. 1935. [Mimeographed.]

Intended for educational purposes in erosion control but is not to be taken as specific recommendations for erosion-control practices. Main headings are: Methods to be employed; soil classification; the soil profile; definitions of erosion terms; factors that influence erosion; utilization of eroded soils; land utilization; terracing; water disposal; vegetative plantings of controlled waterways and gullies; reforestation and wood-lot management; miscellaneous phases.

WARREN, G. F.

“In preparing this book, the author has tried to carry out, as far as possible, the recommendations of the committee on methods of teaching agri-
culture of the Association of American Agricultural Colleges and Experiment Stations." In chapter 5 soil conditions are discussed including soil and water conservation, dry-land farming, irrigation, storage reservoirs, drainage. Chapter 6 treats of maintaining fertility in the land and considers the value of green crops as manure.

WOOD, JOHN O.

TRAINEE ON THE NAVAJO. The Land, Today and Tomorrow 1: 19. October 1934.

Describes the training of young Navajo Indians who have been assigned to fieldmen in the various divisions of the Soil Erosion Service.

ENGINEERING IN EROSION CONTROL

ANONYMOUS.

The use of explosives in soil-erosion problems is recommended for clearing areas to be terraced and for ditching through lowlands to provide for the run-off of water, and for the blasting down of gully banks so that check dams and soil-saving dams may be constructed in the gullies.

Roadside drainage ditches, soil-erosion-control ditches and irrigation ditches are all being built with cotton-reinforced-asphalt lining.

Describes the manner in which the natives in the Philippine Islands grow their rice on huge terraces high up in the mountains. "With no tool save a stick, with no power save that of arm and leg", the Igorot has converted whole mountains into giant flights of level spaces, and provided means to irrigate them. The rice terraces follow every curve of the mountain side. A description of the way in which these sementeras (seeded terraces) are constructed and arrangements made for water supply is given. The irrigation practiced by the Igorots is combined with fertilization. The water is run through masses of manure, ash, black alluvial soil, and decayed vegetable matter and carries the soluble portions to the rice fields with it.

"Third World Power Conference and Second Congress on large dams held simultaneously in Washington; Power Conference devotes its entire time to economic questions; technical problems discussed at the Dam Congress."

Advantages of improved roadsides are pointed out. "Erosion is one of the greatest causes of maintenance costs... A rim or berm ditch which is needed in certain cuts to protect the back slope against erosion, will pay many times over through the season for the cost of constructing it... Side ditches properly lined and protected are no longer subject to erosion and the resultant constant repair."

The writer describes and gives instructions on how to build a concrete drop-inlet culvert which guards against washouts and erosion of farm lands.
ANONYMOUS.

Conference on upstream engineering resulted in the conclusion that a drainage basin must be considered as a whole and not solely a part of upstream engineering. The purpose of the conference was "to consolidate engineering information on soils, rainfall and run-off as they relate to flood control and to soil and water conservation."

The writer gives information on how to prevent erosion and gully development with open flumes.

Outlines the set-up and gives costs of cooperative projects, between the National Resources Committee and the States of Minnesota, North Dakota, and South Dakota. The proposed work includes construction of small dams, restoration of natural lake levels, channel improvements, flood control, reduction of stream pollution, and improvement of municipal and rural water supplies.

ALKINS, D., JR.

The author describes a vertical-drop concrete box with retained-earth fill which solves the problem of stream-bed enlargement. "There is considerable economy in building a long culvert barrel and a low retaining wall at the outlet, as an alternative for a short barrel and high retaining wall."

AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS.

A symposium composed of papers presented at a meeting of the Soil and Water Conservation Division of the American Society of Agricultural Engineers at Chicago, December 5, 1935: Terrace Project Planning, by C. L. Hamilton; Erosion Control in Terrace Outlets, by J. C. Wooley; Lakes in Rural Communities, by L. C. Tschudy; The Farm Pond, by W. H. McPheters.

ANDERSON, L.

A brief description of the program to replenish the well supply of water by percolation, put into operation by the Santa Clara Valley Water Conservation District. The detention reservoirs that were constructed and their effect on water levels is discussed.

ARMCO CULVERT MANUFACTURERS ASSOCIATION.

PREVENTING BANK EROSION. In Handook of Culvert and Drainage Practice, pp. 149-159, Illus. 1930.

Practical methods of controlling ditch erosion are described, and the control of transverse gullies is discussed.

AYRES, Q. C.

"This is the 1922 Report of the A. S. A. E. Committee on Soil Erosion." Methods of prevention are discussed in detail, with emphasis on the use of the Mangum terrace and various types of dams. An appendix, showing the present status of soil erosion work in 12 States, is included.
BAGOT, A. G. D. (1591)

Three principles to follow in laying out of drains to prevent soil erosion are discussed. The method of conversion and the advantages of the system in operation are pointed out.

BARTEL, F. O. (1592)

"Perhaps the most fundamental of all of these investigations is the determination of the comparative soil and water losses from terraced, terrace, and wooded areas." Results of experiments with all types of terraces and the costs of terrace construction are covered in detail. A discussion of farm machinery is included.

BEELER, M. N. (1593)
WALKING WATERS. Capper's Farmer, 45: 8, 49, illus. October 1934.

One hundred and sixty-five acres of the best land in Dickens County, Texas, were ruined by a stretch of improved highway. The author describes the rehabilitation of this land through proper land-use practices such as building of level, sirup-pan terraces and damming of road ditches to turn drainage water onto the land through culverts. Other experiments with the sirup-pan system at the Spur branch of the Texas Agricultural Experiment Station are described.

BERTRAND, H. W. R. (1594)

Two methods of conservation are described—one by converting drains into a series of water traps, and the other by "sponge pits."

BOYD, G. R. (1595)
EXTENSION WORK IN AGRICULTURAL ENGINEERING, 1922. U. S. Dept. Agr. Cir. 270, 16 pp., illus. 1924.

"The chief extension activities in rural engineering carried on in 1922 were prevention of soil erosion, the drainage of swamp and wet lands, irrigation of arid or semiarid lands . . ."

BRITO, F. S. de, Jr. (1596)

States that dams, large and small reservoirs, wells, irrigation canals, and drainage ditches are being constructed in Brazil in a widespread program for water conservation.

BRYAN, KIRK, AND POST, GEORGE M. (1597)

"The plan proposes the construction of silt retardation works on the Rio Puerco and its tributaries . . . The general method consists of small check dams built across the arroyos and small washes, and the planting and care of grasses, shrubs, and trees to prevent side erosion . . . In the larger arroyos it is planned to add a second series of checks, after the first series is filled with silt, thus accomplishing the required filling in two lifts . . ."

BURGOYNE, W. M. (1598)

An explanation of waves and currents and their effect on coast lines. Two principal types of shore-protection structures, bulkheads, or sea-walls, and groins and jetties are described. Construction methods are illustrated.
Butcher, A. D. D., and Atkinson, J. D. (1599)

The experiments were started in connection with certain problems of erosion which had arisen at the Sennar Dam controlling the Blue Nile, about 200 miles south of Khartoum. Two main types of control works were selected for experiment—the sluice-dam type and the open-regulator type. “Uniformity of sluice-opening and discharge had been recognized as essential on Egyptian barrages for many years... The Nag Hammadi barrage, only recently completed, had two bays of sluices at a lower level than the rest, and that had been the cause of considerable difficulty and bed-erosion.”

Calkins, Hugh G. (1600)
EROSION IN RELATION TO TRAIL CONSTRUCTION. The Land, Today and Tomorrow 2: 35-38, illus. February 1935.

The author states that “The opening of roads and trails and the establishment of farm lanes and barn-lots raise problems of erosion control which those responsible for their creation must solve...” A few causes of excessive erosion in connection with road and truck-trail construction are given, and several recommendations are made regarding control through drainage devices and practices.

Chamness, T. B. (1601)

Various erosion-control measures, the importance of demonstrational projects, and the relation of engineers to demonstrational programs are discussed.

“The methods employed in the Lower Alps in facings or building up ravines to promote the establishment of vegetation and also to prevent further loss from soil erosion are described.”—Expt. Sta. Rec. 26: 648. 1912.

Cleghorne, J. W. (1603)

The repairing and safeguarding of a large earthen dam embankment that was seriously threatened by floodwaters is described.

The most common difficulties of South African farmers in controlling soil erosion are given in replies to the following questions: (1) Prior to the construction of a dam embankment, how are the bottom widths obtained and indicated on the site? (2) What should be the shape, sizes, and fall of contour banks? (3) How can a sluit, which is extending uphill and laterally, be treated?

Cleghorne, W. S. H. (1605)

Soil-erosion control work carried out on the farm of Senator Oosthuizen in the Cape Province is described. It includes dam building, contour plowing, and reclamation of gullies. The construction of obstruction banks on upright pole and cross-tie bases is shown.

Collins, Dudley (1606)
WHY HIGHWAY ROADSIDE IMPROVEMENT PROJECTS. Miss. Highways 5: 38, 69, April 1936.

Eight factors are presented in support of the need for giving careful attention to highway improvement. The author states that stabilization of slopes reduces erosion; more adequate drainage is provided; the drifting of snow, sand, and dust is in part controlled; traffic hazards are greatly
reduced and the need for guardrail posts decreased; the cost of moving
roadsides is reduced; land and property values are enhanced; land-drainage
claims are lessened; and better public relations are promoted.

CooKE, M. L.

Discusses basic problems of rural life, especially soil erosion, as remediable through cooperative effort and intelligent leadership. Emphasis is placed upon rural electrification as an important factor in control and utilization of headwater streams as a means of soil conservation.

CBAM, C. M.
BEACH EROSION IN SOUTHERN CALIFORNIA. PROTECTIVE STRUCTURES NEEDED TO OFFSET REDUCTION OF STREAM SAND SUPPLY BY CONSERVATION WORKS. Civ. Engin. 6: 808–809, illus. December 1936.

The author maintains that the principal sand-carrying agencies along the southern coast are rivers, and that as a result of the construction of numerous irrigation and flood-control works along these rivers, the supply of beach sand is diminishing.

DOGGETT, DENZIL.
IMPROVED FACILITIES AT CLIFTY FALLS; PICNIC AREAS MADE MORE ACCESSIBLE BY NEW ENTRANCE ROADS; WATER SUPPLY, SANITARY FACILITIES AND OTHER FEATURES IMPROVED. Highway Mag. 27: 79–82, illus. April 1936.

The author describes a road in Clifty Falls Park, Ind., “Corrugated pure iron paved invert culverts were used for cross drainage in anticipation of the excessive scour caused by the erosion of the soft limestone ledges laid bare in the construction work and by materials washed from the hillside above it.”

DEMBELIS, F. R., AND KORNKE, HELMUT.

Describes methods of controlling erosion along roadsides on the watershed project near Coshocton, Ohio. Methods employed are the use of mulch in check plots, brush, and check dams. An itemized estimate of costs totaling $654.64 in protecting 85,300 square feet of road is given.

DU MOND, T. M.

This paper is confined to water erosion. Contour drains, their measurement, and construction are discussed.

DU TOIT, E.

“On a recent visit to the Grootfontein School of Agriculture a study was made of the effects on the vegetation of the erosion control methods by means of contour banking.” Data thus acquired is discussed.

ELLISON, W. D.

Deals with various phases of the subject and discusses the following control methods: Dams, terracing practices, gully control, etc. Three steps in the conservation program are described. Data are given on the following phases of the work: Planning of terrace systems with controlled outlets, terrace design and staking, terrace realignment, diversion ditches, and design of check dams.

ENSINGER, M. E., AND FISHER, F. A.
GULLY EROSION AND ITS CONTROL. Soil Erosion Serv. 37 pp., illus. April 1934. [Mimeographed.]

Main headings are: Causes and types of gullies; types of dams for Illinois region; wire check dams; wire basket net dam; post dam; staked lower center brush dam; two post brush dam; multiple post dam; log dam; loose
rock dam; sod bag dam; diamond sod dams; willow dam; diversion ditches; computing the size of weir notches; plowing in gullies; revegetation; seeding mixtures; and gully prevention.

Ervin, G.

Extension Work in Agricultural Engineering, 1923. U. S. Dept. Agr. Cir. 344, 9 pp., illus. 1925.

"An outstanding feature of extension activities in agricultural engineering in 1923 was the wide range of subjects covered. . . . The year's work shows . . . that agricultural engineering now occupies a place of prominence in rural life comparable with animal husbandry, home economics, agronomy, and other important phases of extension work." Drainage was first among engineering-extension activities, and of equal importance was the prevention of soil washing or erosion through the building of soil-saving dams, contour farming, and the growing of leguminous crops. The accomplishment in rural-engineering extension is indicated in a table compiled from reports of county extension workers.

Evans, G.

In the black soil tract of the Nerbudda Valley in the central Provinces of India a system of rabi cultivation is practiced. Low embankments enclose fields so that the monsoon rainfall is impounded "until sowing time approaches, when it is let out and the fields sown as soon as the land is dry enough." Rice crops in lower fields are irrigated when the banks are cut. The author describes the construction of these banks. The method of cultivation and the conditions essential for the practice of this system, its advantages and disadvantages, are discussed. Wheat and rice are the crops grown.

Forrester, Khyber.

s. o. s.—**Save Our Soil.** Christian Scl. Monitor Weekly Mag. Sec., illus. February 27, 1935.

A heavy rain can destroy a rich farm in 1 day under some conditions. Erosion eats away much of the land, but engineers can prevent it and make water repair its own damage. Sheet erosion and gullying can be fought by building terraces, contour farming, strip cropping, dam building. There is a great future for erosion engineers in the opinion of the author.

Fronzi, L.

The method of water control on hills here described is that of terraces divided by water channels. These are cut in diagonal and parallel directions in order to impede and prolong the passage of the waters, thus preventing the loss of soil and moisture. Aqueducts and brush dams are used for the control and orderly maintenance of the cross channels. The formation is that of a thorn, hence the name "spina" system.

Fry, A. S., and Hickox, G. H.

"Calculation of the flow of floodwater over a railroad embankment was the most important element in a problem which arose after the 1927 flood on the White River in Arkansas. The Missouri Pacific Railroad then proposed to raise its tracks above flood level, which involved flood heights at Newport, Ark., a leveed town of 8,000 population at the north end of the proposed raise." The author discusses various phases of this engineering problem.

Gèze, M.

Describes the methods employed in the Netherlands for arresting and reclaiming the moving mud which borders the Rhine and the Meuse near Rotterdam. The abstract says: "M. Gèze's report is interesting . . . chiefly because it should be possible to imitate the Dutch in several countries in the reclamation of extensive lands."
HAVILAND, P. H.

This article, the second of a continued series on erosion and erosion control in Rhodesia, deals with the construction of storm drains as a control measure.

(1622)

This article briefly describes erosion control by contour ridging on three large tea estates.

HILTON, H. C.

The author classifies stream-improvement work on national-forest areas as: Small stream pools built of logs or rocks designed to increase depth of water in streams; large pools or fish ponds which correspond to artificial lakes; and rearing ponds in which fry are placed before being liberated in streams or lakes of the region. A résumé of this work under the C. C. C. camps is given.

HOWE, G. S.

KEEPING THE FARM AT HOME. Country Gent. 82: 685. April 7, 1917.

Reclaiming of acres that are being wasted is one way of increasing the size of a farm. Concrete and other walls to prevent soil washing, and the use of simple brush dams to stop gullying are advocated. Samples are given of work of this type on a farm in Montgomery County, Ind.

JONES, L. A.

Address given at the annual meeting of the American Society of Agricultural Engineers, Columbus, Ohio, June 23, 1932. The place of the agricultural engineer in soil erosion is discussed.

(1626)

A paper read at the second Southwest Soil and Water Conservation Conference. The object of the program is defined as the development of the most economical type of engineering structures for the control of erosion under local conditions, and the improvement of terracing methods.

JUDD, L., and KELLY, H. J.

The causes of soil erosion and methods for controlling it are discussed. The use of broad-base contour drains or terraces is advocated, and essential points for consideration in their construction are cited. The authors further discuss methods of taking levels for the drains by the use of a home-made "level," the construction of which is described along with the actual construction of contour drains.

KAISER, W. G.

The opposition of the uninformed to what they regard as land reclamation or "the Reclamation Racket," is discussed by the writer. He points out the destructive phases of soil erosion and the necessity of land utilization and quotes a number of authorities on the subject.

KEUTNER, C.

The author discusses measures for combating erosion downstream of dams and weirs provided with aprons, based on recent theoretical and experi-
mental studies; effect of dentated sills and downstream end of apron as observed on German weir installations; effect of riprap and of training walls on prevention of downstream erosion.

KRAMER, E. W., ANDERSON, A. L., and ARTHUR, M. B. (1630)
HANDBOOK OF EROSION CONTROL ENGINEERING ON THE NATIONAL FORESTS.
U. S. Forest Serv. Div. Engin. 89 pp., illus. 1936.

This handbook is designed for use in the national forests and emphasizes the measures which apply to comparatively undeveloped types of land rather than those for agricultural purposes. Headings indicate the scope of the book. They are: The Erosion Problem on National Forests; Erosion Control Measures; Hydraulics of Erosion Control; Gully Structures; Estimated Cost of Obliterating a Gully; Soil-Saving and Debris Dams; Miscellaneous Structures.

LANE, E. W. (1631)

"The design of the All-American Canal, which will divert 15,000 cu ft per sec from the Colorado River, required a thorough study of stable channel shapes. Data from various sources were conflicting and unsuitable for the unusual conditions on this canal. These data were analyzed and conclusions drawn regarding the various factors controlling stable channel shapes and the relation between them." A general discussion followed the reading of this paper.

LEOPOLD, A. (1632)

"The author discusses the factors which lead to the erosion of forest lands, particularly stream valleys and sodded open uplands, and points out the necessity of supplementing a proper system of grazing control by artificial control works, such as crude dams, tree planting, etc."—Expt. Sta. Rec. 45: 46. 1921.

MCALESTER, J. T. (1633)
HYDRAULIC STUDIES OF EROSION CONTROL. Soil Conserv. 1: 10, illus. May 1936.

Describes the work on a field hydraulic laboratory at Gilreath's Shoals on Beaverdam Creek, near Tigerville, S. C. Tests discussed are for the determination of proper designs of dams, baffles, flumes, etc.

MCCORKLE, S. H. (1634)

The program of the Bureau of Agricultural Engineering for land reclamation includes irrigation, drainage, the engineering phases of the control of soil erosion, and land development, including the application of agricultural engineering to the improvement of individual farms.

Discusses various factors in terracing, the use of machinery on terraced land, and check dams for gully control.

MCDONALD, A. B. (1635)
TREACHEROUS BIG MUDDY. Country Gent. 89: 6, 18, illus. November 1, 1924.

An account of how several farms were engulfed by the Missouri River. Dredging and bank revetment, putting in retards made of willow and wire mattresses for catching drift stuff and slowing down the current were found practical. Permeable dikes are recommended for river control.

MCDOWALL, G. W. (1636)

"Within the past few years the Missouri River has encroached rapidly upon the South Dakota shore line for a distance of 3,000 yards above the junction of the Missouri and Big Sioux Rivers." Action as to shore pro-
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

231

tection was delayed, in spite of Government appropriations allotted for the purpose, until conditions became critical during the spring of 1911. It is intended, with the help of a larger appropriation, "to protect the shore by riprappling from Gumbo Point to Sioux Point ... A woven mat, 75 to 80 feet wide, will be used, one side being ballasted with rock and sunk in the stream, the other reaching up over the bank. The bank will then be rock paved over its entire face."

McGaffey, Ernest. (1938)

In describing the relation of soil erosion to highways and public roads the author says—"a very insidious and menacing hazard under which highways in many states labor, is the gradual wearing away of the slopes and hillslides which stretch away below them, or the disintegration of the elevations which rise above them ..." In outlining methods of erosion control for road slopes, he discusses some aspects of drainage, and four methods of control (1) seeded trenches without reinforcement, (2) the same with cut-brush wattles, (3) stakes, brush wattles, and pegs, and (4) dry-laid rock terraces with alternate brush wattles.

McGrew, P. C. (1939)

Data on soil loss are given for Oregon, Washington, and Idaho where the Parshall flume and Ramser silt sampler were used to determine the run-off and soil losses. Various aspects of erosion control are discussed.

McPheters, W. H. (1940)

A paper read at the second Southwest Soil and Water Conservation Conference. Describes the building of baffles or retarders at the Oklahoma Agricultural Experiment Station at Guthrie. Contains a table of material and labor used in their construction and discusses a method of building baffles without forms.

Markham, E. M. (1941)

Experiments were conducted along the banks of the lower Mississippi. The author describes the routine of the work. "The use of heavily reinforced concrete sheets after the manner described is not necessarily confined to bank revetment. They may be employed in any situation around or about the base of a structure to resist undercutting or erosion."

Marsh, H. (1942)

The author proposes measures likely to prevent soil erosion in central India. Old water works of all kinds should be restored, "as every drop of water should be conserved in Central India for the purposes of (a) strengthening the under-ground reservoirs; (b) creating dew, and reducing the aridity of the climate; and (c) increasing the comfort of man and beast." Tanks, wells, and lakes for arresting the flow of rain water should be restored or constructed.

Morse, F. T. (1943)
NEW FORM OF RIVER BANK PROTECTION. Railway Age 66: 1279, illus. May 1919.

The writer describes a jetty which consists of one or more units, recently developed and put into service locally along the Kansas or "Kaw" River in the vicinity of Topeka, Kans. "The advantages of this jetty lie largely in its relatively cheap installation cost and the short time required to place it, as compared with other means of bank protection ... In all of 37 places where jettles of this kind have been installed the river has stopped cutting."

Wire barricades and steep slopes are the subject of this article. The advantages and disadvantages of wire barricades are stated, and reinforced rubble embankments for the reclamation of gullies are described and illustrated.

As practical measures for protecting stream banks against erosion the author recommends the retard method, concrete mattresses, stone mats, pile dikes, and stone baskets. Advice on construction is given.

PROTECTION OF ROADS AND BRIDGES AGAINST STREAM EROSION. Roads and Streets 70: 171-172, illus. May 1930.

Among available measures of protection against stream erosion, the author describes the retard method, concrete mattresses, stone mats, pile dikes, and stone baskets.

"This paper represents an attempt to reduce to general and simple terms those factors which admit of generalization . . . Formulas are developed for studying, in a preliminary manner, the merits of various storages and dam sites . . ."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

UNION OF SOUTH AFRICA, DEPARTMENT OF NATIVE AFFAIRS. (1667)
13 pp., illus. July 6, 1934.

Presents practical data on the control of soil erosion by means of terraces, dry-stone walling, and contour banks.

UNITED STATES BUREAU OF AGRICULTURAL ENGINEERING. (1668)

Announcement is made of an agreement between the Bureau of Agricultural Engineering and the National Resources Committee, for cooperation with the Geological Survey, Bureau of Reclamation, Resettlement Administration, Soil Conservation Service, and the States of Colorado, New Mexico, and Texas, in studies of water-supply needs and uses in the basin of the Rio Grande about Fort Quitman, Tex.

UNITED STATES FOREST SERVICE. (1669)

"The purpose of this handbook is to serve as a guide in carrying on erosion control work in the national forests. It therefore emphasizes the control measures which apply to comparatively undeveloped or forested types of land rather than those for agricultural or cultivated areas. The greater part of the handbook deals with the design and construction of engineering structures which have proven practicable for erosion control work, and with the considerations which affect the choice and use of these structures."

VON TREBRA, R. L. (1670)

Tells how the destructive effects of water are being curbed through a coordinated program of soil conservation. Gully-control work is fully described.

WHITSON, J. (1671)

The author describes the work on an experiment farm near Bethany, Mo., for the study of erosion and its control. Examples of terracing and various types of dams are discussed. Particular mention is made of "bag and bluegrass dams."

WILLOMITZER, ALFRED. (1672)
FORSTLICHE UND FORSTTECHNISCHE ARBEITEN DER WILDBACHVERBAUUNG IM GALGENTOBEL. Osterr. Vrtljhrs. Forstw. 86 (1) : 4-36; 86 (2) : 85-102, illus. 1936.

The author treats the art of building embankments for forest springs and dams for torrents very comprehensively. He gives data on the methods and costs of forest and forest-technical work in the Galgentobel and in conclusion states that his object in describing work on a small scale is to show by facts what can be done in a larger way.

DAMS AND RESERVOIRS

ANONMOUS. (1673)
CONSTRUCTION OF CHECK AND SOIL-SAVING DAMS IS ESSENTIAL TO A COMPLETE EROSION-CONTROL PROGRAM. Ag-Ex News 3: 11-12, illus. January 1934.

"Soil-saving dams are of two types. In one type the run-off is carried around or over the dam by spillways. In the other it is carried through the dam by a pipe or culvert." Instructions for building dams are given in detail.

59893−38−16

A description of erosion-control work in the Pabbi Hills, which form an extension of the Himalayan foothills out into the flat expanse of the Punjab Plain. "Of the various methods which have been used for checking the erosion the original scheme of building low dry stone dikes across the V of the ravine channels and along the foot of unanchored screes, has proved the most useful."

DROUGHT AND ENGINEERING. Science 84 (Sup.): 6. July 10, 1936.

Discusses the importance of engineering in agriculture. States that "one of the unremitting efforts of both federal and state agricultural engineers, in all the West, has been to teach men how to build dams, so that at least a piece of the creek might remain on the farm, to keep the stock alive after the rest of the water has all run by . . . And, incidentally, these dams will not merely save water, they will help to save the land, too, from the gnawing curse of soil erosion."

"Hundreds of small water storage dams constructed as projects of the Works Progress Administration in the western states are receiving their first tests this summer. Designed to prevent soil erosion, to provide convenient and accessible stock-watering facilities in dry periods, and often to provide irrigation facilities for considerable tracts of land, these dams were built to hold back for the summer sufficient of the winter and spring rainfall runoff to prevent recurrence of what have amounted to disastrous conditions in the past."

"Rainfall of 4.7 in. in two hours results in a flood that went over the top of an earth-fill water-supply dam whose spillway crest had been raised 2½ ft. recently to increase reservoir capacity."

Instructions for building permanent and temporary dams are given.

Cites the effective work of two completed flood-detention reservoirs for the Winooski River in northern Vermont as an example of what can be done to reduce flood damage. This "could not have been accomplished at all with a lot of little ponds way up on all the tributary brooks."

Illustration shows retaining wall devised by a Kansas farmer to hold run-off soil in ravines. It is suggested that such a device could well be used on many farms as a supplement to a program designed to first check run-off soil back on the fields.
Anonymous. (1682)
SOIL EROSION PROBLEM MUST BE ATTACKED AT SOURCE, SAYS MUEHLEIS; ADVISES PONDS. Buffalo County Jour. 76: 1, 6, illus. June 25, 1936.
Contains text of article by Gottlieb Muehleisen, soil conservation engineer, Alma, Wis., in which he advocates building of farm ponds for water storage and to control erosion.

SOIL SAVING DAM REPAIRS GULLIES. Reclaim. and Farm Engin. 9: 40, illus. February 1926.
The experience is told of a citizen of Amity, Mo., who, by use of a soil-saving dam costing $90 is saving $6,000. "A soil-saving dam is in reality only the old-style earth dam with a proper outlet provided for water; it also has been called the 'sewer-pipe method' of soil saving." Advice is given for constructing the dam.

Illustration of an engineering structure known as a sausage groin devised on a Clark County, Mo., farm by engineers of the Soil Conservation Service.

Description of a method for withstanding erosive forces which "quells turbulent flow by piping eight small jets of water through dam at bottom of spillway, just enough to maintain 'hydraulic jump'—smooth flow of water away from dam. This method is being used on soil conservation dam near Phoenix, Ariz. Jets eight inches in diameter suffice to smooth out stream below 200-foot spillway."

Aitchison, H. J. (1936)
The author expresses the opinion that in South Africa dams cause erosion rather than prevent it. He illustrates how dam building and anti-soil-erosion work can be combined.

Baker, W. H. (1917)
"This circular describes and illustrates the construction of dams, the purpose of which is to hasten the filling up of washed ditches on farms by preventing the sudden run-off of storm water."—Expt. Sta. Rec. 37: 283. 1917.

Baumann, Paul. (1936)
Gives 10 practical rules for designing check dams.

Brown, C. B. (1929)
"To a large extent water is the life of our country ... we have extensive underground pools and water-bearing stratas which are capable of holding an immense amount of water. It is to keep these underground reservoirs filled that our interest and activity should be centered." Development of floodwater irrigation and construction of small reservoirs is urged.

Campbell, F. B. (1936)
Experience with the Proctor method of soil control on the Sutherland Reservoir indicates some desirable changes for speeding work without loss of efficiency.
The plan and detailed engineering studies of the flood-control and water-conservation project in Ohio are discussed. A map showing 14 tentatively selected reservoir sites accompanies the article.

“Plans and instructions, installation and arrangement, soil saving dams, head control structures. Soil Erosion Serv. (Santa Paula, Calif.) 78 pp., illus. 1934. [Mimeographed.]”

“This pamphlet has been prepared in order that everyone concerned with the installation and arrangement of soil saving and head control structures shall have a clear and concise knowledge of their purpose, construction, and degree of permanence.”

Ponds as a source of water for livestock may be used with success in uplands throughout the State with the possible exceptions of the southern slopes of the Ozark region. However, some modifications in construction will be found necessary to prevent seepage through the pond dam in extreme northwest Missouri and some localized areas of sandy soils.” Gives instructions on the construction of dams and spillways and data on the maintenance of ponds.

The results of studies made in connection with the design of the Mineral Ridge dam of the Mahoning Valley Sanitary District in Ohio are given. Various types of tail-bay designs, with a view to preventing erosion in the lower channel, are illustrated.

The author describes practices employed by the Indiana Department of Conservation in building some 30 small earth dams since 1928.

“This bulletin discusses the character of material used in earthen dams, methods of making a compact embankment and of constructing core walls, the dimensions of reservoir embankments, slope paving, outlet pipes and conduits, waste weirs or overflows, and state supervision of dams and reservoirs ... The Connecticut and Idaho laws relating to dams and reservoirs are given in the Appendix.”—Expt. Sta. Rec. 8: 934. 1896-97.

“This bulletin gives practical information to those who intend to build or are operating farm reservoirs. The chief features of such structures are discussed first, without regard to any particular kind, and afterwards, the various kinds which are adapted to the storage of water on farms are described.”

The author describes the energy-dissipating chamber of the San Joaquin Light & Power Corporation at Fresno, Calif., built as an emergency struc-
ture in connection with a concrete-lined ditch constructed to divert water into a reservoir.

Fox, J. J. (1700)
"The Sacramento river and its tributaries are to northern California what the aorta is to the human anatomy." The project for the damming of the united Sacramento and Pitt Rivers, to be undertaken in the cause of water conservation, is described.

Gillette, H. P. (1701)
In discussing the inventor of the system of check dams, the author says: "His experience in attempting to prevent erosion by torrential streams led him to the conclusion that the greatest mistake by engineers is to direct their entire attention to protecting the banks. Ordinarily no attempt is made to regulate the gradient of the bottom of a stream; but if the bottom is not held in place, undermining of any bank protecting structures is almost certain to occur . . ." The plan involves: (1) Control of the bottom by a series of cheap step dams; (2) control of sides by step dams; and (3) use of posts and wire netting for dam building, and automatic filling in back of the dams with sand and gravel carried by the stream.

Hardenberg, W. A. (1702)
This article treats of modern practices in dam construction through spreading and compacting. Measures for preventing erosion on the face of a dam are discussed.

The author discusses soil-moisture content with regard to stability. Equipment necessary to perform tests for control during construction of earth dams is mentioned and cost of equipment given.

Formulas and directions for construction of spillways for earth dams on large and small watersheds are presented.

Harris, E. G. (1706)
A comparative study is presented of trapezoidal gravity, arched, horizontal-beam, and vertical-beam dams, one of the purposes being to present a method of study and design of the fourth type. Vertical-beam action is considered more logical for arched dams than cantilever action.

Henshaw, George H. (1707)
Proposes and discusses two methods for use on the Mississippi River: (1) The use of solid dams or barriers permeable to water extending from the shore to the channel for the double purpose of directing the latter into its desired course and accumulating sediment at its sides; and (2) a device consisting of a loose-woven permeable fence, made of light and flexible material, such as willow, to supply artificially to the bottom the element of resistance to erosion essential to the ideal river.
Advocates and explains construction of whisker dams. “These dams perform several functions. They are built primarily to slow up the water on its pell-mell course down the gully and thus prevent washing out of the new grass seedlings.”

The author suggests the construction of reservoirs for muddy streams of the Southwest, refuting criticism to the effect that siltation of reservoirs does not justify the cost of construction. “This criticism is not well founded if a life of from three hundred to a thousand years is considered as fairly justifying the construction of the works.” Discusses construction of the Elephant Butte and the Roosevelt dams.

Discusses five types of upstream reservoirs: (1) Natural lakes and their preservation and improvement; (2) pools created in streams; (3) artificial lakes; (4) farm ponds; and (5) underground waters. Cites interest of Iowa Conservation Commission in impounding water and quotes letter from R. W. Oberlin concerning work in Missouri and Iowa in the Big Creek Watershed. Presented at the meeting of the Iowa Engineering Society, March 3, 1937.

Farmers have become discouraged with temporary check dams made of woven wire, or layered brush wired down. Such dams create an overfall which causes their own undermining and destruction.” Table 1 shows the right spillway for the right place, and table 2 shows the type of structure required. “Drop inlets and head spillways lend themselves well to use as highway culverts.”

This paper was presented before the Soil and Water Conservation Division of the American Society of Agricultural Engineers at Chicago, December 4, 1936. "Obviously, models had to be used in the experimental work in place of the prototype, but by interpreting the data according to the laws of..."
hydraulic similitude, it is believed the hydraulic characteristics and be-

haviour of the several types of structures investigated are definitely known
for practical work.”

KIRN, J. A.

On water conservation in Texas, Oklahoma, and Kansas.

KNAPPEN, T. T., AND PHILIPPS, R. R.

465, Illus. March 26, 1936.

“By analyses of model tests the engineers of the Muskingum River
flood-control works are adapting soils of widely different geographical char-
acter to earth-dam construction with a close approach to predetermined
exactness.”

LEE, C. H.

SELECTION OF MATERIALS FOR ROLLED-FILL EARTH DAMS. Amer.

“This paper is confined to a discussion of earth testing as an aid to the
selection of materials. Pertinent fundamental principles of soil technology
as developed from the latest research and practice are drawn upon in a
basis for conclusions. These principles are supplemented by certain re-
search findings in concrete technology.”

LEWIS, M. R.

RESERVOIRS FOR FARM USE. U. S. Dept. Agr. Farmers’ Bull. 1703, 16 pp.,
illus. June 1933.

This bulletin describes the construction and maintenance of farm reser-
voirs used to supply water for irrigation, livestock, and domestic use, and
as swimming pools and fish ponds. Where only a small quantity of water is
to be stored and the required dam is low, the simple instructions given
in this bulletin should enable a farmer to plan and build his own reservoir.

LIPINCOTT, J. B.

Check dams and their construction are discussed with excerpts from va-
rious other published reports on the subject.

LIVINGSTON, L. F.

Combating water shortage by means of dams on streams, or by making
ponds, water holes, or “tanks” is recommended. Instructions for pond
blasting with dynamite are given.

FEDERAL AGENCIES USE DYNAMITE TO BLAST SPRINGS TO PROVIDE WATER FOR

CATTLE ON WESTERN RANGES. E. I. Du Pont de Nemours & Co. Agr. News

“Blasting to check soil erosion may seem far-fetched, yet that is exactly
what the Soil Conservation Service is doing in the John Day range country
of Northern Oregon, according to the U. S. Department of Agriculture.”
Directions for using dynamite are given.

PONDS MUST HAVE DEPTH TO WITHSTAND DROUGHT. E. I. Du Pont de Nemours

Preparedness for future droughts through storing water in ponds is dis-
cussed. Advice on dynamite blasting and specifications for post-hole load-
ing is given. “Ponds up to 40 feet wide can be shot economically and easily
in wet soils.” A table for determining the quantity of dynamite to use in
blasting ponds is shown.

LOWDERMILK, W. C., AND BARNES, F. F.

STOCK PONDS IN THE GREAT PLAINS DROUGHT AREA. Soil Conserv. 2: 44–47,
55, Illus. September 1936.

The authors stress the relationship between soil and water conservation.
They show the necessity for properly designed small reservoirs and farm
ponds to store water during dry periods such as the drought of July 1936 in
the Great Plains. The importance of seepage and evaporation losses and methods of reducing them are discussed.

McPHEEES, W. H.
THE FARM POND. Okla. Agr. Col. Ext. Cir. 175, 7 pp., illus. 1935.

Diagrams for construction of ponds and dams are shown. "A pond is usually filled in by the rain water which falls on the watershed drained by the ravine where the dam is made; however, in many cases it is possible to fill it with water falling on the opposite slope by carrying the water around the hill with terraces. Terrace feeding is an excellent method because the pond will not fill up so quickly with mud. Other methods of securing water for ponds are drain ways from springs and hillside seeps."

THE FARM POND AND ITS USES. ADEQUATE WATER SUPPLY WILL NOT ONLY SERVE THE FARM'S NEEDS, BUT WILL AIDS NATIONAL FLOOD CONTROL PROGRAM. Farm and Ranch 55: 4, 11-12, illus. October 1, 1936.

Illustrations of top and cross section show how dam and spillway for the farm pond are built. Tables give dimensions of the dam and size for spillways along with data on proper location and economic value of farm ponds.

MATTIES, G. H.

Conchas Dam, located on the South Canadian River just inside the border of New Mexico, and adjacent to the Panhandle of Texas, is discussed. Intended primarily for flood control, it will have a generous capacity available for farm irrigation, and incidentally for municipal uses.

MEAD, ELWOOD.

"It is the purpose of this paper to describe some typical reservoirs of the Rocky Mountain States to show how widely they differ from the usual idea that a reservoir requires a lofty dam across a remote and precipitous mountain canyon. The operation of these reservoirs will also be outlined in order to show when they are filled, when the water is used, and the benefits derived from them."

MEERTEN, E. J. VAN

One of the chief methods of combating soil erosion is to dam gullies so as to divert and distribute flood water on the fields. Successful efforts of a farmer in the Cape Province is described.

Instructions are given as to site, foundations, outlet pipe, spillway channel, material, etc.

"A description is given of the standardized waterhole in respect of which the Department of Agriculture and Forestry is prepared to grant financial assistance under the Soil-Erosion Scheme."

METCALF, H. J.

Construction of a dam 32 feet long, 18 feet wide, and 15 feet high across an Iowa farm-land gully is described. "Many of the upland soils have eroded to such an extent that the unproductive subsoil is exposed . . . it is hard to get legumes to grow on these hills that are lacking in plant food and it will take years of work to bring this soil back to productivity."
MILLER, E. E. (1732)
The writer advocates the use of cheap and simple dams of stones, timber, or brush, the planting of trees in the bottom, or on the sides of gullies, with a soil-building grass to grow with them, and the construction of terraces for preventing and checking erosion.

MONSON, O. W. (1733)
This bulletin treats of the development of flood irrigation; selection of reservoir sites with reference to storage capacity, drainage area, suitability of soil, etc.; construction of earth dams; diversion dam building; contour dikes for flood irrigation; contour ditches. In his summary the writer states that “many small storage reservoirs with earth-fill dams built by the farmer’s own labor are in successful operation in several parts of the State. Some of these store water for irrigation, others provide water for livestock on the range.” In an appendix arc listed storage dams, diversion dams, stock reservoirs with the year built, and all particulars.

MUEHLEISEN, G. (1734)
In describing the advantages of this method of erosion control the author says: “The porous dam is not limited in its usefulness to the filling up of gullies and valleys. In the case of valleys subject to occasional floods porous dams can be so designed and installed as to have the effect, not only of holding the main velocity and flow of the stream where desired to avoid the damage to land along the bank, but also to insure the deposit of a layer of silt, thereby enhancing the fertility of the soil by recapturing some of the material eroded farther upstream.”

MURDOCK, H. E., AND FEFOUSON, B. (1735)
Advice on choosing reservoir sites and their construction as well as the building of diversion dams and contour dikes is given. “The first thing is to get the water so that it is available for use; the next is to use it efficiently.”

NAGEL, W. O., AND CLARK, M. W. (1736)
IMPROVEMENT OF FARM PONDS AND WATERSHEDS FOR EROSION CONTROL AND WILDLIFE PRODUCTION. Mo. Agr. Col. Ext. Cir. 361, 11 pp., illus. 1937.
Discusses improvement and protection of existing ponds and the construction of ponds to benefit wildlife on waste areas.

OBERLIN, R. W. (1737)
FARM PONDS PASS CRITICAL TESTS. Soil Conserv. 2: 210-211, illus. March 1937.
The author discusses the storage capacity of ponds as a means for adequate water supply on farms, especially in certain areas throughout the Middle West.

OLMSTED, F. H. (1738)
Referring to the flood damage sustained in Los Angeles County, the author advocates an adequate control policy. “In addition to the retarding dams recommended by me, I also wish to emphasize the need of the construction of a considerable number of rockfill dams 20 to 50 ft. high, by blasting down rocks from overhead cliffs, in this way creating permanent but porous cross-structures in the cañon.”
This article is devoted principally to irrigation dams. Instructions are given for selecting the site for such a dam which, the writer contends, demands experience, discernment, and technical knowledge.

OREGON STATE PLANNING BOARD.

DEVELOPMENT OF WATERING PLACES ON THE OREGON RANGE. Oreg. State Planning Board. 26 pp., illus. January 18, 1937.

A program to provide water for livestock and wildlife on the public domain and national forests of eastern Oregon.

PROCTOR, R. R.

Presents an outline of the fundamentals of the soil compaction control that has been developed and used by the bureau of waterworks and supply of the City of Los Angeles during the past few years. Illustrations show the Chatsworth type percolation cylinder, results of experimental compactions of a particular soil at a wide range of moisture content, and the plasticity needle in operation.

RAMSEY, C. E.

"Technical data on gully control are given to supplement that presented in Farmers' Bulletin 1234 (E. S. R. 47: 19). Detailed drawings of check dams are given, and curves are included for use in the determination of the sizes of culverts through soil-saving dams, and tables for determining the size of notches and spillways in check and large soil-saving dams."—Expt. Sta. Rec. 70: 397. 1934.

Diagrams and tables accompany this article showing hydraulic characteristics and discharge capacities as determined for drop-inlet pipe and box culverts used as outlets for small dams.

The construction of small brush dams is described briefly. The dams are of the type built at the soil-erosion experiment farm near Guthrie, Okla.

RANSOME, FREDERICK L.

Discusses factors to be taken into consideration in selecting a dam site. Some phases of geologic erosion are considered, such as the softening or disintegration of rocks in water.

SLACK, S. B.

Roadside ditch grades and cross sections are discussed. Check dams to reduce velocity of current in loose-soil ditches are encouraged as a means of checking erosion.

SMITH, DWIGHT D., AND WOLFE, EMERSON.

Data on detention reservoirs in the Big Creek watershed of Missouri.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

SOUTH AFRICA DEPARTMENT OF AGRICULTURE AND FORESTRY.

ANTISOIL EROSION AND SMALL DAMS SCHEME. SPECIFICATIONS OF SMALL DAMS: PRELIMINARY INSPECTIONS. S. Africa Dept. Agr. and Forestry Cir. 19, 15 pp., illus. 1936.

Three schemes are outlined. Designs and specifications are given for the construction of embankments and spillways, pitching of earth walls, contours, stone-in-wire work, and masonry. Instructions are given for pegging of dam sites and spillways.

SOUTH DAKOTA STATE PLANNING BOARD.

SUNDERLIN, H. H., AND CLYDE, A. W.

CHECKING OVERFALLS. IOWA AGR. COL. EXT. BULL. 94, 4 pp., illus. May 1922.

"The overfall is that formation at the head of the ditch where the water falls from one level to another." Methods of control are discussed and illustrated.

AND CLYDE, A. W.

FILLING THE LARGE DITCH. IOWA AGR. COL. EXT. BULL. 95, 4 pp., illus. May 1922.

Control methods for the formation and spreading of ditches are discussed. Brush and woven-wire dams and their construction are described and illustrated.

SWAIN, M. S.

The use of concrete in building baffle dams is advised. Formulas for best results and economy are given.

THOMAS, E. J., ROBERTY, J. N., AND MCCOLLY, H. F.

The value of storing run-off water behind small dams is pointed out as a method of water conservation, possible on many farms. They provide water for livestock, decrease damage from rushing flood waters, and make it possible to irrigate small areas. "The proper location, design, construction and protection of these dams increases their usefulness, adds to their life, and insures their safety."

THOMPSOM, E. E.

BUILDING THE RESERVOIR. MONT. FARMER 24: 3, illus. December 1, 1936.

Gives typical plan view of flood irrigation or stock-water-reservoir dam.

TIBBETS, F. H.

The author states that "satisfactory earth dams can be built anywhere using any kind of material ... provided (1) the upstream portion including the cutoff trench extending into the impervious foundation material is made impervious and (2) the rear portion has sufficient bulk and porosity so it will drain off, without sloughing, any water which seeps through the impervious portion ... Five storage dams on water-deposited soils over the shattered and shaken bed rock between the historic San Andreas and Hayward faults in California have earthquake-resisting sections."

TOMSON, F. D.

The author, a Kansas stockman, discusses briefly the advisability of making ponds on stock farms and states that there is need for 10,000 more ponds in Kansas, "not so much with reference to water supply but an erosion preventive."
Tschudy, L. C. (1757)
DAMS IMPOUND STATE'S WATER AGAINST TIME OF DROUGHT. Soil Conserv. 1: 11, 14, illus. September 1935.
A brief description of soil conservation work in North Dakota carried out by the Civilian Conservation Corps under the supervision of the United States Forest Service and the Soil Conservation Service.

Paper presented before Soil and Water Conservation Division of the American Society of Agricultural Engineers, Chicago, December 5, 1935, deals with water and soil conservation policies and problems in the northern portion of Great Plains States. Gives brief picture of needs in rural communities for lakes where grazing land covers thousands of acres, practically all of which are overgrazed. "Overgrazed land blows, and soil losses increase with poor grazing land resulting. Dams spotted at needed places help to result in more efficient use of the grazing land. . . . Dams located in flat bottom land help to develop yearly alfalfa and wild hay supplies. Dams located near cities help to raise the water table and result in public benefit to communities." Author describes the ideal design for small earthen dams used in construction of small lakes.

This paper was presented before the Soil and Water Conservation Division of the American Society of Agricultural Engineers at Chicago, Ill., December 3, 1936, and deals chiefly with the engineering phases of stock-watering reservoirs, flood irrigation, and water-conservation dams.

BRIEF INSTRUCTIONS FOR THE DESIGN AND CONSTRUCTION OF SMALL DAMS FOR EMERGENCY CONSERVATION WORK IN NORTH DAKOTA. U. S. Soil Conserv. Serv. SCS-EP-8, 23 pp., illus. 1935. [Mimeographed.]
The designs and specifications contained in this report are especially suited to work in North Dakota. They "should be used cautiously for work in other states." Data are also given on the protection of earth dams, spillway designs, and the determination of spillway capacity.

United States Bureau of Reclamation. (1761)
Discussion of the important reservoirs of the United States, including data as to location, rivers, construction, and year completed, purpose of water storage, capacity, area, length, average width, shore-line mileage, and projected plans for control of silt deposits by erosion-control operations.

Wadsworth, R. G. (1762)
Description is given of the variable-radius arch with gravity abutments, and straight and curved standard gravity sections employed in Hogan Dam on the Calaveras River.

Warne, W. E. (1763)
Big job of harnessing western waters. Nation's Agr. 11: 4-5, 28, illus. April 1936.
Tells the story of irrigation in the arid West and Southwest, with detailed description of the construction of Boulder Dam in the Colorado River.

Wattermann, E. L., Mavis, F. T., and Soucek, E. (1764)
The purpose of this paper is (1) to discuss briefly some of the hydrologic factors which should be considered in designing impounding reservoirs on
small drainage areas, (2) to present an analysis of stream-flow records collected on Ralston Creek, near Iowa City from 1924-25, (3) to compare this analysis with similar data for eastern streams, and (4) to present tentative recommendations for the design of small impounding reservoirs in the Midwest.

WINSEB, L. M. (1765)

Devastating floods in the Wasatch Mountains of Utah prompted an intensive study of the flood problem to determine to what extent such floods may be eliminated and mountain streams controlled during periods of high water. "The control works adopted are extremely simple. A gravel barrier is constructed across the streambed at a location such that the stream above the barrier may spread over an area several times the normal width of the channel. This results in retardation of the velocity of the water some distance above the barrier and produces a pond of still water immediately above it."

WOOD, IVAN D. (1766)
MORE WAYS TO STOP SOIL WASHING. Successful Farming 23: 15, illus. May 1925.

Describes the construction of rock and concrete dams for gully control. Brush and wire dams are also described.

WYCKOFF, WAYNE W. (1767)

Sets forth principles for designing earth fill dams that are stable of structure and relatively watertight. Includes directions for field and laboratory tests of material, exploration pits to be sunk at a sufficient number of places throughout the foundation site, the construction of cut-off walls, protection of the upstream face of the dam, spillway capacity, and let-out works.

TERRACES AND OUTLETS

ANONYMOUS. (1768)
CHECKING SOIL WASHING. Amer. Fruit Grower 45: 24, 25, illus. September 1925.

This article describes checking of gully and sheet erosion by terraces. Instructions for building terraces and a list of necessary implements are included. Brush dams are also discussed.

(1769)

Illustrations show three forms of control at the terrace outlet. Unless water is controlled at the terrace outlet, much erosion will take place where the water leaves the terrace.

Several Texas farmers, reporting to county agents, showed that proper terracing increased the yields of their crops and lowered the unit cost of production.

(1770)

The experience is related of one Kansas farmer in controlling gullies by terrace and contour methods. Sudan grass, because of its thick root growth, is suggested for holding the soil.
Nine hundred miles of terraces winding through Kansas, Oklahoma, and Texas hills, built to preserve land values for future generations are described. Types of machinery used and the cooperation of the Aetna Life Insurance Co. of Hartford, Conn., are outlined.

If anybody puts on a terracing demonstration in your neighborhood, it will be worth your time to go and watch it. Even though you may be living on a fairly level farm, erosion is one of your enemies, and a knowledge of terracing can help you defend your soil against it... Every farm presents its own terracing problem... The writer discusses in detail all the evils, slopes, gutters, drainage, and various conditions encountered, with directions for the construction of farm terraces and a list of practical "don'ts" for the builder.

A V-terracer developed at Oklahoma Agricultural Experiment Station, by W. H. McPheters, has proved satisfactory for use by farmers. Cost of building the machine is $6 to $10.

Simpson County farmers take care of their terracing needs through community exchange of equipment and labor. Nearly "six years ago farmers realized that terraces alone would save their fertile soil from utter destruction."

The address by C. K. Shedd, United States Bureau of Agricultural Engineering at meeting of American Society of Agricultural Engineers, Estes Park, Colo., June 23, 1936, is summarized. Corn-planting and cultivating machinery on terraced land are discussed.

This article discusses soil erosion in the South and urges terracing as a control measure. Various cropping systems to supplement terracing are recommended.

This article describes a new machine that "will throw up in the rough 10 miles of erosion-checking terraces in one hour."

The author cites an example of erosion control in Peoria, Ill., by pasture terracing. He tells how 5,130 feet of terraces were built in 13 hours at a cost of $43.55.

Inspection after an 8.01-inch rain revealed that farms near Waco, Tex., cooperating with the Soil Conservation Service, suffered no damage.
SOIL EROSION FUGHT WITH A PUBLIC WORKS FUND GRANT OF $5,000,000. Science 78: [Sup. 9]. August 4, 1933.

"Terracing is the means to be used in controlling the erosion. The Government will supply the technical direction and terracing equipment, and the landowners will provide the power and labor." The Department of Agriculture estimates that "75 percent of the cultivated land in the United States is seriously affected by soil erosion. More than 17,000,000 acres of formerly cultivated land have been destroyed by erosion."

ANONYMOUS. (1781)

This article discusses the gullies of Missouri and the success of the Mangum terrace. Simple instructions are given for the construction of soil-saving terraces.

This article describes a terracing machine designed for ditching and grading.

On the economical use of steep hillsides by terrace cultivation.

TERRACE OUTLETS. Capper’s Farmer 47: 49, illus. April 1936.

The writer describes a masonry baffle constructed under supervision of the Soil Erosion Service on W. G. Kennick’s farm in Payne County, Okla. It is one of a series in a shallow channel constructed to receive water from terraces from both sides. The baffles work in the same way that similar structures do in properly constructed roadside ditches. With a baffle of this kind across the water course at intervals, the flow is checked and does not have an opportunity to scour out the gully.

TERRACES BROUGHT JERSEYS. Capper’s Farmer 45: 18, January 1934.

"Mangum terraces enabled S. Tom Caruthers, Fulton County, Ark., to add a profitable dairy project to his farming operations. At an outlay of not more than $1.50 an acre, he constructed terraces and leveled the gullies so that soil washing was stopped and the land cultivated at a profit.

"Terraces will increase crop yields on the average by at least one-fourth and at the same time prevent soil erosion," says a Shackelford County, Tex., farmer.

Estimates the soil losses in Tennessee and stresses the value of terracing as a control measure. Figures on increased land value due to terracing are given.

Data on the income derived from cotton on a tract of 7.57 acres on the Spur Experiment Station in Texas. "This tract of land is a part of a
tract used in the water conservation experiments at the Spur Station, and does not represent normal production for that section, but does show what can be done where the proper use is made of water . . ."

Anonymous.

The level and Mangum types of terraces are described by the author who says, "terraces quickly pay for themselves in increased yields and enhanced value of lands."

It is stated that terracing work is the first step toward a real soil-building program. Work contemplated in Maury County, Tenn., is outlined, with costs and results.

This article discusses terraces as constructed by the Inca Indians of ancient Peru. The writer observes that soil erosion was a contributing factor to their eventual extinction.

Trees on Terraces. Capper’s Farmer 48: 22. April 1937.

The owner of one of the largest apple orchards in Delaware County, Okla., tells why, if he were doing it over, he would lay out a system of terraces that would enable him to plant all of his trees on terraces.

"The sort of terraces, which most ranches need, are simply planned, easily made, and last a good while. They prevent erosion and retard water, putting it into the soil."

Alford, G. H.

Broad-base terraces help bring washed fields back into production, the writer maintains. No trouble is experienced in running cultivators, mowers, binders, or wagons on the terraces. Information on terrace construction and location is given.

American Society of Agricultural Engineers.

A symposium comprising papers presented before the Soil and Water Conservation and Power and Machinery Divisions of the American Society of Agricultural Engineers at Chicago, December 5, 1935: In the Southwest Area, by W. Baird; In the Corn Belt Area, by V. D. Young; In the Great Plains Area, by Raymond R. Drake; In the Pacific Northwest Area, by P. C. McGrew; Factors Affecting Terracing Costs, by G. F. Hoover; Problems in Determining Terracing Costs, by W. A. Clegg; Types of Machines and Selling Policies, by J. W. Carpenter, Jr.

Andrews, H. W.

An example of what building and conserving soil fertility can do for a farm. Before terracing, in 1919, a farm in White County, Tenn., yielded an average of ". . . only ten bushels of corn to the acre. Now the average production is forty bushels."

Ashe, W. W.

Terracing of Farm Lands. N. C. Geol. and Econ. Survey Bull. 17, 38 pp., illus. 1908.

"The subject of terracing of farm lands is one that should be more seriously considered by the farmer of North Carolina, especially those in the
Piedmont section of the State where the farm lands are more subject to erosion . . . Where attempts have been made to use this method and they have not resulted as favorably as expected, it has usually been that sufficient care and attention were not given to the location and construction of the terrace. They have been either too steep, too far apart, or had too much grade on their upper sides. These points in connection with terracing are discussed in detail in Mr. Ashe’s report and it is hoped that this short report at this time will be the means of creating a more general use of terracing in the Piedmont section.”—Preface.

By means of tables and diagrams the author gives a summary and analysis of soil erosion work in Iowa. “The program was carried out on a total of 145 farms in 18 counties . . . Detailed records of the cost of terracing was kept on 72 of these farms and are now available for study.”

At the Tyler Experiment Station, Tex., considerable trouble has been experienced with crops grown on terraced land because of unsuitable equipment. Since on most of this land the rows are parallel to the terraces, this paper is limited to those questions involved in farming parallel to terraces. A two-row tractor planter is described and illustrated.

Data on terrace construction and machinery used on the Texas and Oklahoma Agricultural Experiment Stations are given.

The need of specially designed farm equipment to meet conditions of land already terraced is stressed. A tractor-drawn planter for corn and cotton used at the Tyler, Tex., station, and so far found satisfactory, is described.

Discusses the progress of terracing studies conducted by the United States Bureaus of Agricultural Engineering and Chemistry and Soils at Experiment Substation No. 2, Tyler, Tex.

A summary of a cooperative study on soil erosion by the United States Bureaus of Agricultural Engineering and Chemistry and Soils at Experimental Substation No. 2 at Tyler, Tex. Phases of the subject treated are: Effects of cultivation methods on run-off and erosion from terraced land; erosion and soil-loss studies from watersheds of different characteristics; terrace outlet drops and gully check dams; and operation of machinery on terraced land.

“The progress results of terracing studies on 13 areas are reported which indicate that terrace ridges can be constructed cheaper with a crawler type of tractor and grader than when a wheel tractor is used”—Expt. Sta. Rec. 64: 778. 1931.
This article discusses the advantages of terracing to control erosion and presents data on the construction of the broad falling terrace. A cropping system on terraced land is also suggested.

"This bulletin, prepared in cooperation with this Department, states that the area in which soil erosion is especially active in North Carolina is almost wholly within the Piedmont region, but that a considerable amount of the Western Coastal Plain is subject to erosion, the whole area so affected covering over 10,000,000 acres. Methods discussed for the prevention of erosion are (1) proper cultivation, (2) tile drainage, (3) hillside ditches, and (4) terracing. The falling and level terraces are given the most attention. Useful accessories, including levels and terrace drags, are also described."—Expt. Sta. Rec. 34: 819, 1916.

BENTLEY, M. R.

"We estimate that nearly three million acres have been terraced in Texas. There are still some eighteen million acres of land in cultivation that should be terraced at once. We hope to complete the job in ten years. We also need better cooperation between our highway departments and farmers in the control of gullies, that start from the road drainage ditches."

Among the points discussed with respect to farm terracing are costs, building instructions, instruments used, outlets, cultivation, and maintenance. "Nearly all the cultivated land of Texas is subject to erosion. While gully washing is the most noticeable, doubtless sheet washing is the most damaging. Terracing will check erosion and help to prevent these damaging effects."

Recommends the Mangum terrace as most practical for Oklahoma.

TERRACING THE BLACKLAND THIS SUMMER: CROP SO THAT NECESSARY TERRACING MAY BE DONE LITTLE AT A TIME. Farm and Ranch 50: 2, Illus. June 20, 1931.

Practical data are given on terracing problems in central Texas.

BLEIJ, G. F. T.

"This is a paper presented at the General Dutch Indian Soil Congress, October 1916. Terracing and drainage to prevent erosion of Java hill soils used for the cultivation of tea and coffee are discussed, and the so-called "Kotak" system of terracing practiced is described."—Expt. Sta. Rec. 36: 723, 1917.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BLISS, H. B. (1815)
MILLIONS IN SOIL WASHED ANNUALLY FROM HILLSIDES. Farming 19: 117, October 1921.
“The destructive work of rains can be prevented in a large measure by terracing and damaged lands made cultivable and profitable.” Directions for the construction of terraces are given.

BROWN, HARRY L. (1816)
The terracing program of Georgia has resulted in a definite trend toward saving old areas once abandoned instead of opening new lands. Types of terraces and proper equipment for both the small and the large farm with estimates of costs per acre are discussed.

BUIE, T. S. (1817)
COSTS COME DOWN ON 1,937 MILES OF TERRACES. Soil Conserv. 2: 151, January 1937.
“The 16-percent decrease in terrace-construction costs was based on a total of 1,937 miles of terraces constructed in the Southeastern Region from July 1 to October 31.” This decrease in construction costs is very likely due to increased efficiency.

BURDETT, H. (1818)
In order to plant citrus trees on higher levels which seldom freeze and so eliminate the cost of frost fighting, the terracing of hillsides is urged. “It can be confidently asserted that the terraced hillside is a practical success for citrus culture in California.” Costs and examples of construction are given.

(1819)
Shows that terracing will dispel the erroneous conclusion reached by many observers that because of erosion hillside planting is not practical. Describes terracing in Italy, Spain, and California.

CALDIERI, S. (1820)
“This is a translation by A. Brambilla of an article describing the Italian system of protecting sloping soils against washing and excessive erosion by irrigation and rain water by the use of terraces and ditches.”—Expt. Sta. Rec. 43: 281, 1920.

CARNES, A., AND WILSON, J. B. (1822)
The author cites the case of a farmer in Australia much of whose land was so badly eroded that further cultivation was impossible. Contour banking was carried out on 300 acres and the owner estimates his gain at $15 per acre. “Experience has shown the best system of cultivation is to plough between and in the same direction as the contour banks and to avoid crossing them with cultivation implements.”

CARNES, EARNEST. (1823)
BUILDING TERRACES TO FIT THE ROTATION PROGRAM. Soil Conserv. 1: 11, January 1936.
Gives instructions on terrace construction in South Carolina and enumerates advantages.

"The greatest enemy to fertility in Mississippi is erosion, against which terracing is efficient protection. Make every farm with hill sides a farm with terraces. Properly constructed terraces offer no hindrance to the plow." Instructions are given for construction of terraces, terracing implements, including home-made ones. The reclamation of eroded land is discussed.

CARTER, D. G.

POWER TERRACING MACHINES OPERATED COLLECTIVELY. Agr. Leaders' Digest 17: 10, illus. October 1936.

The cost of terracing in Arkansas approximates $1 per acre under the collective system of using equipment obtained from the Rural Rehabilitation Corporation.

"Practical information is presented on the terracing of farm land in Arkansas."

DE HULBURT, W. C.

"The cost data reported are based upon an analysis of 240 terracing jobs in seven Arkansas counties, where 40-h. p. Diesel tractors operating 10-foot blade terraces are in operation." Operating-cost data are given in tables.

CATES, J. S.

THE MANGUM TERRACE. Country Gent. 84: 5, illus. August 30, 1919.

The South has developed an ideal terracing system, the author says, which it owes to Priestly Mangum of Wake County, N. C. Under this system any sort of farm machinery can be driven over any part of a field. To prevent soil erosion and gullying the author advocates the more efficient use of machinery. Simple methods for making Mangum terraces are described in detail.

THE MANGUM TERRACE IN ITS RELATION TO EFFICIENT FARM MANAGEMENT. U. S. Bur. Plant Indus. Cir. 94, 11 pp., illus. 1912.

"The advantages and construction of the Mangum terrace worked out by P. H. Mangum of Wake Forest, N. C., are briefly described. The advantages of this system are stated to be its adaptation to all types of soil, especially to moderately rolling lands, the possibility of using extensive cultivation machinery and cultivating across the terrace, the saving of labor and land, and the ease of preserving the terrace when once constructed."—Expt. Sta. Rec. 27: 720. 1912.

CHAMBERS, T. B.

The author discusses the utility of various types of terraces and shows that terracing must in many places be coordinated with other erosion-control practices to be effective.

Terraces will remain effective for years, with careful plowing and regular repair work after rains.

CHARLES, E. E.

A detailed description of a hill farm in Kentucky, once the site of a Benedictine monastery. Stone terraces built before the Civil War "have been nearly 100 percent efficient in controlling erosion. . . . No visible signs of active erosion are apparent on the terraced area, whereas nearby unterraced land has been completely destroyed by sheet and gully erosion."
The author points out that much may be learned from the pioneer work on this old farm. "Modern soil conservation engineers might well contemplate the effectiveness of the riprap terrace outlets. Water catapults harmlessly from one bench to another because the outlets are paved with stone."

CHARLES, TUDOE. (1833)
Unsatisfactory outlets are cause of many complaints. Suggestions are given for handling run-off from terraced fields without damage.

CLARK, M. W. (1834)
Design and construction of mechanical structures are discussed, together with advice for repairing old outlets.

CLAYTON, B. S. (1835)
The control of water in order to prevent soil erosion is stressed. Terracing with broad-base sloping terraces is the most satisfactory means of preventing erosion on hill farms. Directions are given for the construction and spacing of these terraces.

CLAYTON, E. S. (1836)
The causes of soil washing and gullying are discussed, and the damage done by sheet washing in the wheat country in New South Wales is described. The broad-base contour drain, or Mangum terrace, is described and illustrated, and experience with it at the Cowra Experiment Farm given. The author concludes by showing the ease with which terraced land is farmed and repaired when necessary.

CLEGHORNE, W. S. H. (1837)
The work here described is part of that done at the Grootfontein School of Agriculture under the aegis of the soil erosion committee. See also "Veld Reclamation at Grootfontein," South African Jour. Sci. 30: 108-111. 1933.

CLEMSON AGRICULTURAL COLLEGE. (1838)
In this bulletin studies and practical recommendations on terracing lands to be planted to new orchards as well as building proper terraces in old orchards are presented.

CLYDE, A. W. (1839)
TERRACING TO REDUCE EROSION. Iowa Agr. Col. Ext. Bull. 172, 8 pp., illus. 1931.
Terraces and their construction are discussed. A general plan for laying out terraces is given, and the tools now on the market for building them are described and illustrated. Methods of cultivation and terrace maintenance are considered.

COLLINS, E. V., AND OTHERS. (1840)
The plan is given of a terracing machine developed at the Iowa Agricultural Experiment Station. "In addition to building terraces, the machine is well adapted to filling small gullies, and to the construction of open ditches and terrace-outlet channels."

"The system of agriculture developed by the ancient Peruvians enabled them to support large populations in places where modern farmers would be helpless." The marvelous terrace agriculture; the artificial construction of the soil on which the crops were grown, not only on terraces but in large areas of reclaimed land in the bottoms of the valleys, are described. "Thousands of the ancient terraces have stood through the centuries, and the soil that the ancient people laid down is still in place." The structure of these terraces is discussed and explained as well as the irrigation methods used by the people of ancient Peru.

"Terrace location by Copeland’s National Principle Terracing System is determined by finding the difference in elevation of adjacent erosion planes and establishing that difference as the measure for locating terrace elevation for the area ... In use, the natural principle terracing system has established the fundamentals of terrace success and has simplified the whole field practice until it becomes a matter of following a routine of simple technique which is readily effective with both farmers and boys."

STANDARDS OF TERRACING. Agr. Engin. 3: 156. September 1922.

"The agricultural terrace is designed for the economical prevention of erosion and for reclaiming lands which have become unprofitable through exposure to the natural and free course of water."

Presents practical information on terracing under Mississippi conditions for preventing soil erosion.

"The terracing pointers presented herein were derived from the experiences of the writer in solving soil erosion-control problems with the farmers and county agricultural agents of Mississippi, since 1919"

Describes the terracing of farm lands in Texas under the supervision of the County agent. The article gives some data on the increased value of terraced land. Accompanied by a table showing the number of acres terraced each year in Texas from 1916 to 1931.

Experiments at the Spur, Tex., station show that run-off could be materially reduced through the use of "level terraces" as opposed to those having slopes. Figures show the increased yield of cotton from areas with level terraces.

This article presents data on the construction and approximate costs of asphalt terrace outlets.

PROTECTING TERRACE OUTLETS. Capper’s Farmer 45: 32. April 1934.

"Fifteen thousand feet of terraces in one year is quite an accomplishment on a 200-acre farm." On a farm in Coffey County, Kans., experi-
ments in terrace-outlet building were made to get comparative costs. These are described.

A system of interrupted contour banks for the control of soil erosion is described, with an airview photograph of these contour banks to illustrate the work done. "The author is convinced of the effectiveness and practicability of the system if reasonably applied and correctly constructed."

The author gives general rules for the construction and laying off of terraces, with special emphasis on broad-side terraces.

The writer describes tests made at the Kansas Agricultural Experiment Station at Manhattan on small terraced and unterraced plats for soil and water conservation.

"The loss of soil by erosion is serious in Kansas because a large proportion of rainfall comes in dashing rains." The authors present effective methods of lessening soil erosion: (1) Planning a cropping system so that the land will be covered as much of the time as is practical; (2) stopping new gullies with straw, brush, or other types of soil-saving dams; (3) contour plowing and planting; and (4) terracing.

"A little time spent in the saving of land is worth many dollars paid for more land." The progressive deterioration of a farm from soil erosion, and its subsequent reclamation through newer agricultural methods and the use of terraces, is related.

"The purpose of this memorandum is to make a few suggestions that may be helpful in designing terrace outlet ditches and developing the vegetative control phase of the work in E. C. W. erosion camps . . ."

"Our methods of controlling erosion in terrace outlets are of two types: (1) Control with a low-growing perennial grass having an extensive root system, and which provides a permanent vegetal cover; and (2) control with mechanical works." Outlet ditches and check dams are shown in diagrams.

Presents practical data on the construction of Mangum terraces. Instructions in laying off and forming the terraces are given and a detailed description of the construction of a leveling instrument is included.

Whether rain water shall be absorbed by the soil or run off the surface of the land is dependent on the intensity of the rainfall, the slope of the
land and its type, the nature of the surface, the class of vegetables, etc. The problem discussed is that of conserving all the water possible in arid regions. In a study of floods and flood control, the control of watersheds, and the prevention and reclamation of guilles, various methods of holding and using rainfall on slopes are discussed in detail and illustrated. Among them are terracing and contour furrowing. The Testaferrata system of hillside cultivation and irrigation, based on the one established by Leonardo da Vinci, is described at length. The denudation of forest lands is deplored.

Ezell, P. B. (1859)
The county farm agent of Newberry County, S. C., describes work done for 94 farmers.

Farrington, F. N. (1860)
"Saving the soil of Tallapoosa County [Alabama] is the key thought that has been brought about by very carefully planning a country-wide educational program on soil conservation." This program is outlined in detail. The author states that 126 farmers have terraced 6,500 acres of land at an average cost of $1.69 an acre.

Felsinger, E. O. (1861)
"Methods of draining and terracing hill lands, planted to rubber, to prevent erosion are described and diagrammatically illustrated."—Expt. Sta. Rec. 64: 777, 1931.

Finnell, H. H. (1862)
"The results of investigations conducted at the Oklahoma Panhandle Experiment Station are reported. The use of terracing to utilize 2.33 in. of run-off water annually, which when held on terraces has a penetrating efficiency of 34.5 percent, increased the annual supply of soil water from 3.58 to 4.38 in."—Expt. Sta. Rec. 63: 878. 1930.

"This bulletin embodies a summary of general observations previously reported (E. S. R. 66: 181) and a preliminary report on the results of different terracing spaces observed over the period 1920-33 . . ."—Expt. Sta. Rec. 71: 397. 1934.

"Experiments are briefly reported which showed that when the initial moisture supply is great and the seasonal rainfall normal or better, large yields may be expected on both unterraced and terraced lands and the increase obtained from terrace-saved water is relatively smaller. Further experiments showed that there is apparently some wasteful duplication of effort where terracing and fallowing are practiced simultaneously . . ."—Expt. Sta. Rec. 63: 276. 1930.

"This is the third progress report of these experiments (E. S. R., 61, p. 77; 63, pp. 276, 878). In general, it has been shown that terraces must be built close enough together to prevent excessive accumulations of water
at any one place in the field during heavy rains. Impounding more water in a particular area than the crop occupying that space can effectively utilize results in waste which markedly decreases the efficiency of the terrace system. In run-off studies it was found that the percentage was largely affected by the character of cover or crop on the land, the least run-off being observed where grass was growing..."—Expt. Sta. Rec. 66: 181, 1932.

FINNEE, H. H. (1866)
"The results of experiments at Goodwell, Okla. on the use of terracing for soil moisture conservation are briefly presented and discussed..."—Expt. Sta. Rec. 61: 77. 1929.

FLETCHER, L. J. (1867)
"Complete standardization in size or type of terracers is not only impossible but undesirable. Field requirements vary too much to allow such a procedure." The various field conditions found and differing types of outlets are discussed briefly.

Foster, R. L. (1868)
Outline of drainage laws and erosion control in Arkansas. The author finds that 2 million acres have been drained in recent years by the establishment of local drainage districts, and that county agents have laid out terraces for over 30,000 acres. Advises enlisting the services of an engineer or expert in locating terrace lines.

Discusses cooperative work in erosion control, designing and laying out of terraces, construction of terraces, protection of outlets, the use of large structures in terrace projects, and terracing of orchard lands.

Gantz, H. L. (1870)
SAVING THE "VEGETABLE CAP": THE SOUTHWEST IS DEVELOPING A CONSCIOUSNESS OF SOIL STEWARDSHIP. Farm and Ranch 50: 1, 3, illus. June 27, 1931.
"Terracing in the Southwest is sounding the death knell of erosion... It is one of the devices of mankind to enforce ways of dealing with the 'vegetable cap' of the earth in order to preserve the source of life." The author discusses soil erosion losses in Texas and Oklahoma and shows that the increase in terracing in both States has proved the most effective means of control.

Glass, J. S., and Eier, H. F. (1871)
"Loss of soil fertility, failure to adhere to a soil-management schedule, and mismanagement of rolling farm lands lead rapidly to an erosion-control problem... The use of the broadbase terrace in the control of erosion on these areas will be the basis for the present discussion... Terracing prevents the accumulation of miniature streams from flowing down the slopes and handles as individual problems the drainage from small watersheds." The equipment necessary and the construction of terraces are described and illustrated.

Greene, S. W. (1872)
"Closely spaced terraces built on contour lines of pastures prevent run-off and increase the yield of forage by conserving the rainfall" was the conclusion reached through experiments at the McNelll Experiment Station, Miss.
A soil-improvement program in Jackson County, Ala., is described. "In this time of economic stress our terracing programs have been invaluable."

Presents estimates of costs of constructing full terraces, platform terraces, deep and shallow catch pits, and full terraces with buttresses every 15 feet.

The relatively new field of erosion-control work involves problems dealing with the sciences of hydraulics, hydrology, construction, soils, and other subjects related to soil and water conservation. The development of proper design and construction data with regard to outlets and waterways are described. The results of intensive studies at Spartanburg, S. C., and in Texas are presented.

"Heretofore, terrace planning has consisted primarily of the details involved in planning a terrace system preparatory to the construction work . . . The other aspect which has more recently been recognized deals with terrace project planning activities preparatory to the actual field planning or staking of a terrace and outlet system." The author describes in detail the newer planning methods.

Two boys discover the usefulness of terracing at a Soil Conservation Service demonstration project in South Carolina and apply their lesson advantageously on their parents' farm.

The author gives an account of the advantages gained from terracing his farm with the home-made McPeters terracer, the cost of material being only $6.

The author recommends terracing as a major erosion preventative in Indiana. The different types of terraces are considered and their utility under varying conditions discussed.
Hill, H. O.

Erosion control at the terrace outlet. "In order to investigate the holding capacities of different vegetative coverings under various velocities, ditches have been designed which will give a velocity of 1 to 15 feet per second. All vegetative ditches are inspected after each run-off to determine the maximum depth of water, apparent erosion, condition of channel, condition of vegetation, and other important factors. From these data the actual maximum velocity that each ditch section attained is computed after every inspection. The data are then compiled and a frequency curve drawn showing the relation between silting and erosion at different velocities as developed in the ditches."

Hillman, V. R.

Hodgkin, Carlyle.

Description is given of terracing operations of farmers' cooperative soil-improvement association in Gage County, Nebr., including organization, cost, equipment used, and type of terraces used for moisture conservation and erosion control.

Holland, T. H.

Contour terracing is described in detail. Conclusions as to the checking of soil erosion and retention of rainwater on slopes of various angles are given.

Hollman, A. T.

PROBLEMS INVOLVED IN DEVELOPING TERRACING MACHINERY. Agr. Engin. 12: 45. February 1931.

The author bases his comments on experiments made in North Carolina.

Hughes, O. E.

TERRACING FARM LANDS. N. C. Agr. Col. Ext. Cir. 173, 19 pp., illus. 1935.

The author discusses miscellaneous terracing factors and gives 10 rules for successful terracing. "The Mangum terrace is the best known means of controlling erosion on North Carolina farms. Gullying can be controlled by using soil-saving dams."

The order of procedure in terracing a field is divided into four parts: Preliminary work; laying off terraces; construction; and maintenance.
The author discusses these proceedings with the aid of diagrams, tables, and photographs of actual construction work.

ILLINOIS AGRICULTURAL EXPERIMENT STATION.

"Experiments by F. P. Hanson on the control of soil erosion have shown that terraces give satisfactory service when properly built and used."—Expt. Sta. Rec. 54: 381. 1926.

Briefly describes methods of terracing in Illinois as suggested from a study by the Bureau of Agricultural Engineering.

INDIANA AGRICULTURAL EXPERIMENT STATION.

A brief discussion of terracing on the Paoli field.

JACKSON, H. R.

Henderson County, Ky., has a record in terracing and the use of marl.

JOHNSON, D. C.

"The terrace outlet ... is entitled to be classified as one of the most important structures with which we have to deal." The important features are discussed, and conditions for which the terrace outlet structures are designed are listed.

JOHNSON, G. I.

Figures are used to show results of improper terrace maintenance, and instructions are given for spacing terrace rows, correct plowing, and outlet protection.

JONES, LEWIS A.

A description of experiments on drainage in the vicinity of the Alabama River. The author discusses the value of Mangum terraces on the hilly lands of Alabama and illustrates their nature and use.

(1898) *SAVING FARM LAND FROM EROSION, WITH COUNTY ROAD MACHINERY.* Amer. City 45: 13. September 1931.

"The Legislatures of Texas and Oklahoma recently passed laws authorizing county officials to permit landowners to use county road machinery such as tractors and graders, to construct terraces on their properties when the machines are not in use on road work. In Texas, the farmer pays a reasonable rental for the machinery, while in Oklahoma he is required to pay only its operating cost." Approximate costs are given for Texas.

KNOX, J. S.

Compares the narrow-base terrace with the broad-base and recommends the latter. Drainage outlets are also discussed.

Describes the laying out and construction of broad-base terraces. Factors considered are: width of terraces; amount of fall; implements necessary for construction; nature of land to be terraced; topography, etc.; and...
cropping practices to aid terracing. States that terraces have been constructed for as low as 65 cents an acre when tractors and road machines were used.

LANDON, I. K. (1911)
Studies at the Coon Creek project in Wisconsin showing how flat-bottomed waterways prove that terrace outlets may be economical and still prove efficient.

LATHAM, A. M. (1902)
ONE TERRACED FARM AN OBJECT LESSON. Prog. Farmer (Eastern Ed.) 32: 1001. October 20, 1917.
The author relates his experiences in terracing on a hillside farm in Texas.

LEAVITT, E. T. (1903)
Recommends the use of the Mangum or broad-base terrace in erosion control. Average costs per acre are given.

LEBRON, L. C., AND M. L. NICHOLS. (1904)
"Practical information on terracing for the prevention of soil erosion under Alabama conditions is presented."—Expt. Sta. Rec. 56: 316. 1927.

LEHMANN, E. W. (1905)
"The problem of soil erosion is a problem of surface drainage, the solution of which is dependent largely on the conservation and control of flow of surface water . . . Run-off and erosion are also dependent on topography, soil, and cultural practices on the land." The value of terracing to prevent soil washing, as proved in an early experiment by the Illinois Agricultural Experiment Station, is discussed, and the advantages of Mangum or broad-base terraces on sloping ground are illustrated.

LEHMANN, E. W. (1906)
TERRACING TO PREVENT EROSION. Agr. Engin. 2: 86-88. April 1921.
The author emphasizes certain practices for erosion control in the South, with particular reference to the soil problems of Missouri. Some types of terraces used in Europe are described as most applicable to various land slopes in the United States.

LEHMANN, E. W. (1907)
The author discusses forms of erosion, farm practices that cause erosion, and methods of preventing erosion. Terracing is the most important of these methods of prevention. Various types of terrace most applicable to land of various slopes with the manner of construction are described. Cost and maintenance of terraces are discussed.

LEHMANN, E. W. (1908)
The author discusses briefly the value of the Mangum terrace in erosion control. Local conditions in Illinois are considered, the experiences of farmers in Wabash, Richland, Saline, and Christian Counties being described.

AND DULEY, F. L. (1909)
"On rolling lands erosion is the soil's worst enemy. The Mangum Terrace is a means of checking this loss of soil caused by washing during heavy rains. It is a simple device for holding the soil of the farm in place,
thereby maintaining the fertility and making it possible to improve the soil by proper cropping methods.” A plan of terraces on fields adapted to them with proper outlets is described. A simple home-made level is illustrated, and directions for the construction and maintenance of the terraces are given.

LEHMANN, E. H., AND HANSON, F. P. (1910)
SAVING SOIL BY USE OF MANGUM TERRACES. Ill. Agr. Expt. Sta. Cir. 290, 19 pp., illus. 1924.

AND HAY, R. C. (1911)

Some general facts about erosion and terracing. Planning the terrace system and terrace outlets are among the subjects covered. “Maintenance of a fertile, productive soil is the first requirement of a prosperous and permanent agriculture.” Sheet and gully erosion have proved controllable through terracing and vegetative cover. Instructions on how to build terraces are diagrammatically presented.

LEMERT, H. W., AND ZINGG, A. W. (1912)

“Heretofore there has been no practical method whereby one terrace could be easily and quickly compared with another.” This article describes a quick, practical method for measuring terrace ridge and channel cross sections with a degree of accuracy sufficient for all practical field purposes.

LEPLAE, E. (1913)

A description of the types of implements used in the construction of terraces are given, with costs.

LIVINGSTON, L. B. (1914)

“This article, dealing with the removal of lateral-rooted stumps, is for the information of those concerned with the work of terracing fields in Northern and Western States.”

LONGSDORF, L. L. (1915)
GOOD OUTLETS GO WITH GOOD FARM TERRACES. Agr. Leaders’ Digest 17: 11. March 1936.

Three types of terrace outlets are described—pasture sod, flat-bottom draw, and turn-row channel, at the Kansas Soil Erosion Service project west of Mankato.

LYLE, S. P. (1916)

The value of terracing in preventing soil erosion is pointed out.

“In this brief mimeographed contribution, the importance of terracing in connection with the development of a sound land-use program is presented.”—Expt. Sta. Rec. 72: 701. 1935.

Address before the Illinois Farm Advisors’ Summer Conference, June 13, 1933. Discusses the advantages and disadvantages of different types of terraces and gives estimates on the value of terracing per acre. Machinery on terraced land is also given some attention.
LYNDE, H. M.
The author gives a detailed description of terrace building with directions as to width and height, grade, distance apart, length, and outlets. He asserts that no better or cheaper means of control of soil erosion has ever been devised.

(1920)

The construction of Mangum terraces, outlets, location, width and height, crossing gullies, is specifically described. Tables for distance between terraces and fall and length are given. The writer concludes: "A poorly constructed terrace does more harm than no terrace at all."

MCADAMS, A. J.
This frame is simple to operate and is sufficiently accurate for the majority of terracing locations. The construction is described and illustrated.

MCALISTER, J. T.
MAINTAINING THE BROAD BASE TERRACE. S. C. Agr. Engin. Inform. Cir. 4, 8 pp., illus. 1931. [Mimeographed.]
Practical instructions on the location and laying out of terraces are given. The conversion of narrow-ridge terraces into broad-base terraces is treated, and a discussion given on terrace cultivation.

MCPHETERS, W. H.
RAFFLES FOR TERRACE OUTLET CONTROL. Okla. Agr. Col. Ext. Cir. 328, 14 pp., illus. 1935.
A structure placed in the terrace-outlet ditch to protect the ditch from being washed out into a gorge is described. The use and importance of the baffle are discussed as well as the proper location.

HOW I WOULD TERRACE MY FARM. Farmer-Stockman 50: 3, illus. February 15, 1937.
Describes the construction of terraces and contour furrows and the implements necessary for this work.

(1925)

Discusses new terracer versus old type V-drag, size of terracer, tools needed, bills of material, making the terracer, and how to build terraces.

(1926)

Methods for taking care of terrace water are discussed. The author is seeking the best and cheapest method of protecting the ditches that are to carry the water from the terrace. A detailed description of baffles and their construction is given.

MARTIN, G. E.
"The chief promotional agency of the Oklahoma extension service is the permanent demonstration... Upon the quality of the cooperation depends the final success of the demonstration... it is still one of the big problems of erosion control." Statistics on numbers of people trained in terracing work, and a plan for promoting terracing in Payne County, Okla., are presented.

(1928)

TERRACING IN OKLAHOMA. Okla. Agr. Col. Ext. Cir. 218, 23 pp., illus. 1928.
"This circular points out the benefits of terracing to landowners and operators, and describes a method of terracing whereby it is thought these benefits may be secured."—Expt. Sta. Rec. 59: 478. 1928.
A terrace system is designed to reduce the quantity of runoff passing over a given area and to reduce the speed of the runoff. Types of terraces, terracing equipment and costs, the use of the farm level, maintenance of terraces, etc., are discussed.

The author takes issue with terraces made of ridges growing weeds, grass, and bushes. "You cannot start a gully without this concentration of the water, and the terrace banks are one of the most efficient means for gathering this head of water to break over and start the gully. I have often told the Southern farmers that their terracing is simply a relic of bad plowing and poor farming." Deep plowing is suggested.

By means of charts and calculations based on the Manning formula, the writer gives plans of sodded terrace-outlet channels.

Terraces will prevent much of the enormous losses from erosion. They are not difficult to make; they may be constructed at times when other work on the farm is not pressing. Equipment is usually available and only home labor is needed. The writer, an experienced engineer, tells how it is done.

The author gives directions for laying out a system of broad terraces—a combination of the hillside ditch and the true terrace—for the control of water on hill lands. It is believed that this system is of particular value in the cotton-growing states where large areas are badly in need of some method of preventing the land from washing away."—Expt. Sta. Rec. 26:

Experiments with terraces and contour rows on a cotton farm in Texas brought about the following results: From rows running with the slow

Rolling lands that wash during heavy rains should be terraced. Discusses terracing on sandy or clayey soils, and illustrates an inexpensive farm level for laying off terraces, and a device for throwing up terrace embankments.

The author describes different types of terraces for controlling water and preventing erosion on cultivated hillsides. A convenient device for throwing up terrace embankments is illustrated and explained, its total cost not over $2.
Investigation of means of preventing loss of water and soil from the dry-farm area resulted in the construction of dikes to hold water on the land until it had time to soak in, thus conserving moisture and preventing soil washing. Directions on dike construction are given.

"Rusk County, Tex., is working on a long-time program to control surface erosion. With the help of the soil conservation program and the county commissioners' court, they are making headway toward their goal . . ."

The author refers to various Kansas farmers who solved their individual soil-loss problems with terraces. A farm bureau extension program for the State also is described.

The author contends that good terraces will stop soil washing and help to reduce the South's greatest farm loss. He gives 16 rules for laying off, making, and maintaining the Mangum terrace.

Observations of studies to indicate trends in engineering practice and thought are presented. The favorable influence of cooperative terracing associations on erosion control is shown. The author describes studies made by himself and others at Meridian, Miss., in South Carolina, and in Alabama.

Models of tractors and types of terraces used in Alabama are shown.

Practical terracing hints are given to check sheet erosion and gullying.

A paper read at the second Southwest Soil and Water Conservation Conference. Describes briefly the terracing experiments of the Bureau of Public Roads at the Temple, Tex., station.

Specific directions for the construction of terraces on cultivated land as a means of soil-erosion control are given. The author asserts that these terraces get better as they get older, the cost rarely exceeding $2 an acre.
Causes of erosion are laid to heavy rains, open winters, absence of humus or cover crops, disregard for laying-off of rows, shallow plowing, and poor methods of handling water. The extent of losses through soil erosion on the lands of Texas cannot be estimated." The importance of good tillage is stressed, and some general principles of terracing are stated with instructions for building.

This bulletin gives general information on methods of terracing best adapted to Texas soils. The use of a soil-saving dam and homemade equipment for terracing is also discussed ... A terracing table showing vertical fall between terraces, distances between terraces, and fall along terraces for different soils is given."—Expt. Sta. Bee. 42: 888. 1919.

The author tells what conditions call for the laying out of the level terrace and lists factors that necessitate graded terraces. Construction hints for both types are given.

"A system of water conservation has been developed and practiced in recent years, in the vicinity of Miles City, particularly, that is destined to play an important part in the rehabilitation of agriculture in areas of insufficient precipitation for ordinary dry farming as practiced in the past. It has given such astonishing results during the drought years that it can safely be considered to have passed the experimental stage. It is a system of terracing that holds the water on the ground until it soaks in and is really quite simple. Dikes are constructed following the contours of the ground, placed at intervals from 0.5 foot to 1.0 foot vertically, depending on the slope of the ground. The diking is the secret of the phenomenal success of the system and they are simple and easy to build."

The authors advocate the use of Mangum terraces and contour furrows in forest nurseries of the Philippines for preventing soil erosion. "Simple and relatively inexpensive methods of laying out low terraces or ridges and furrows of suitable dimensions almost on the contour at appropriate intervals will entirely prevent soil erosion even on relatively steep slopes and even where the land must be stirred frequently in the handling of cultures." Some typical forest nurseries in China and the Philippines are illustrated.

Information is given on checking soil erosion in Oklahoma. "Short terraces are to be preferred. Ordinarily they should not be more than 1,200 feet in length, under most conditions. There are some good terraces one-half mile in length, but in such cases the slope is not great and the absorption power of the soil is high." The construction and laying out of terraces are explained.
PETERSON, V. S. (1954)
INSURE YOUR SOIL. Successful Farming 30: 5, 40, 41, illus. September 1932.
A discussion of terracing for erosion control in the Midwest and Southwest. As a supplementary method the author advises: "Before starting to terrace consider the cropping program to be followed and the possibility of the rearrangement of the fields for more efficient production." The various steps in the laying out and construction of terraces are explained.

PHAGAN, C. V. (1955)
TERRACING IN OKLAHOMA. Okla. Agr. Col. Ext. Cir. 218, 32 pp., illus. 1935.
Discusses the evils of erosion, kinds of erosion and methods of control, history and progress of terracing in Oklahoma, the real value of terraces, building and maintenance of terraces, and cultivation of terraced fields.

PHILLIPS, J. V. (1956)
Specific recommendations for various types of terraces are made. A scale for target settings in 25-foot intervals for laying off terraces is presented in tabular form.

PITKIN, W. B. (1957)
MOUNTAIN AGRICULTURE. Science (Sup.) 62: 12-14. September 18, 1925.
Describes the value of terracing in erosion control. The author claims that proper terracing will check soil washing on slopes with as high as a 40° pitch and cites the work of Virginia and Carolina farmers.

QUESENBERRY, G. R. (1958)
"From 5,000 to 7,000 acres of land have been terraced and contoured in several counties in New Mexico because of the obvious difference in crop production that terracing makes."

RAMSEY, C. E. (1959)
"The terracing experiments on the various Federal soil erosion experimental farms are planned so as to answer important questionable matters relating to the best terrace design and practices." The author gives detailed information as to the use and value of terraces with other important data as to spacing, grading, and the terracing of steep slopes. Control measures on the Guthrie, Okla., Federal soil-erosion experimental farm, and a tractor planter in use, are illustrated.

"This is a revision of and supersedes Farmers' Bulletin 1386 ... It presents practical information on methods of preventing erosion, the design and construction of the Mangum terrace, and the construction of other types of terraces."—Expt. Sta. Rec. 66: 78. 1932.

"Erosion is caused chiefly by the direct action of heavy rains beating upon the ground ... If most of the rain water penetrated the ground upon which it falls, erosion would be greatly reduced." Hence the need for treatment and management of the land so that water flow and run-off may be retarded. New and improved machinery, more particularly adapted to this end, is needed. Various implements are illustrated.

The bench terrace and the Mangum, or broad-based terrace, are described and their construction and usage discussed. Diagrams show the making and working of terraces and of a new home-made implement widely used in Texas for throwing up terraces.
Ramsay, C. E. (1963)
The broad-base ridge terrace, the Mangum terrace, and its principle and design, are discussed in this article. "That terracing is regarded as important and essential to the maintenance of land values in Texas and Louisiana is exemplified by the fact that the Federal Land Banks of Houston and New Orleans require that land subject to soil washing be terraced before granting loans."

"This bulletin is based upon the results of surveys, observation, and a study of terraced fields in the best terraced sections of the country, and deals with terracing as a means of preventing the erosion of hillside land, describing the different types of terraces, pointing out the applicability of each to the various kinds of soil and topography and discussing the principles of terrace design . . ."—Expt. Sta. Rec. 37: 87. 1917.

"These experiments are intended primarily to obtain information on the proper spacing, grade, height, cross section, and limiting lengths of terraces for any particular soil or land slope. Studies are also being conducted on the methods of constructing and maintaining terraces; the improvement of machinery for building terraces and farming terraced land; the proper size, location, and control of terrace outlet ditches, and improved methods of farming terraced land." Tables are given showing run-off and soil losses from terraced and unterraced land at the Guthrie, Okla., Tyler, Tex., Pullman, Wash., Bethany, Mo., and La Crosse, Wis., experiment stations. Various terracing operations are illustrated.

Results of investigation of erosion problems and control by terracing are based on data obtained from 10 soil erosion experiment farms in the West and Southwest.

A discussion of some of the outstanding causes for terrace failures.

"The results of experiments by the Bureau of Agricultural Engineering are briefly summarized indicating the effectiveness of proper terracing in controlling sheet erosion. Terraces are equally effective in controlling and preventing the development of gullies. It has been observed that terracing generally improves fields for the operation of farm machinery by making the ground surface smoother."—Expt. Sta. Rec. 72: 111. 1935.

"Systems of terracing farm lands to prevent erosion are described, including the bench and the narrow, and broad-base ridge types. The methods employed in building terraces and their subsequent care are outlined. A more technical treatment of the subject has been presented in a previous publication."—Expt. Sta. Rec. 37: 87.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

RAMSER, C. E. (1970)
This bulletin describes causes and forms of erosion, methods of preventing erosion, the Mangum and the level terrace, terrace outlets, laying off and building of terraces, their care and cultivation.

This article presents the results of terracing in the Southern States. Engineering phases of soil conservation, with instructions for terrace building, are described.

REYNOLDS, M. R. (1972)
Broad terraces turned a gullied waste into a cornfield. In this article the writer discusses terracing and other methods for reducing soil washing. A home-made drag for throwing up terraces is illustrated. The author concludes that it is better to have too many terraces than too few.

RICHARDSON, T. C. (1973)
Gives a description of the demonstration which was held near Dallas, Tex. “Fourteen terracing rigs were on the field and terraces were built with every type of earth-moving implement from disk plows to giant road graders.”

“It is the purpose of this paper to present an analysis of the theoretical considerations, experimental results and conclusions from these experiments in order that the agricultural engineer working on terrace design... may have a working basis for selection of terrace channel gradient.” These studies were conducted at the Guthrie, Okla., experiment station.

ROBERTS, G., KELLEY, J. B., AND WELCH, E. G. (1975)
Information is presented on preventing erosion of Kentucky soils by means of terracing and soil-saving dams.

ROBERT, R. H. (1976)
The author presents some general data on the construction of contour ridges for erosion control.

The purpose of this paper is to present briefly instructions on contour ridging in Rhodesia and to give an itemized estimate of costs. The paper also suggests two crops, Sunn hemp and maize, for ridge planting.

ROE, H. B. (1977)
Instructions are given for building terraces. Terracing equipment is described.

ROTAN, JOHN H. (1978)
“A summary of last year's work in terracing in the Hill Country [of Texas] where average fall of land is much greater than in more level sections, proves the value of the level terrace beyond a doubt.” The author cites many local instances of the durability of the level terrace.
Samsel, L. G.
LOW COST TERRACE BUILDING. Farm Machinery and Equipment 1780: 12, illus. April 15, 1932.
The use of a wheat-land plow in terracing costs little and is speedy. This is the proved opinion of Professor Nichols of the Alabama Polytechnic Institute. Various other advantages to be gained are discussed.

Scoates, D.
SAVE THE SOIL YOU'VE GOT. Country Gent. 94: 12, 142, illus. February 1922.
In Texas terraces are being built that keep land and rainfall on the farm. Water can be impounded in reservoirs and put back on the land by irrigation, but better still is it "to hold a large percent of it on the land on which it falls in the form of rain." The author emphasizes the necessity for a thorough knowledge and study of terracing. Illustrations of methods and a terracing table are included.

Seitz, C. E.
BUILD TERRACES TO EFFECTIVELY CONTROL EROSION. Tobacco Grower 1: 11, illus. May 1933.
Briefly outlines the advantages of erosion control by terracing. In Texas an analysis of 200 foreclosed farms showed that 70 percent were definitely classified as badly eroded. This could have been averted by proper terracing. Costs are given at $2 to $2.50 an acre.

Shedd, C. K.
The author states: "I have observed enough examples of successful terracing to be firmly convinced that this practice can be adapted to Corn Belt conditions." He goes on to outline briefly some methods of attacking the problem of terrace design.

Flexibility in machines for terraced fields is essential on steep slopes.

TERRACING FARM LANDS. Mo. Agr. Expt. Sta. Cir. 248, 10 pp., illus. 1930.
This paper gives practical information on farm terracing. Instructions cover the location of terrace lines; the proper distance between terraces; the surveying the terrace line; construction of terraces; their grade and length; terrace maintenance; cultivation of terraced land.

Shipman, R. C.
PROPER TERRACING. Purdue Agr. 31: 117. June 1937.
Data are presented on the improvement of terrace outlets, the location of terraces, spacing between terraces and terrace width, terrace lengths, and grades of channel.

Short, A. K.
The necessity for terracing rolling lands is insisted upon by the Houston Federal Land Bank when making loans to farmers, to "insure the permanency of soil fertility during the life of the loans."

Smith, H. P.
"Machines used in Texas to build terraces vary in size and cost, from the small walking plow costing not more than $25, to the 60-horsepower track-laying type tractor hauling a large road machine having a 12-foot blade ... costing in the neighborhood of $7,000." Various implements are described and illustrated: terracers, disk harrows, ditchers, graders.

Spillman, W. J.
On page 10 of this bulletin the control of soil washing by terracing is briefly discussed.
Spry, M. J. VAN DER (1990)
The author urges that the vegetal covering be saved to prevent soil erosion. Terracing in the Mangum or bench way and contour plowing will affect the concentration of rain water and retard its velocity.

Terracing and maintenance are made easy for the farmer by low cost and efficiency of individual farm outfits. The author gives figures on some recent demonstrations.

Steele, W. A. (1992)
TERRACING AS EASY AS PLOWING. Farmers are using their own individual equipment at a big saving. Farm Machinery and Equipment No. 1842, pp. 12-13, illus. June 15, 1937.
Advantages of individual farm equipment are compared with those of "large outfits costing thousands of dollars." Terracing cost figures are included.

An account, among other things, of experiments in stone terracing and contour planting of both rubber and tea.

The writer describes the construction of soil-saving terraces, with plow and grader, on a 35-acre field in Iowa.

"The principle of the terrace is to hold back the hillside water in such amounts that it will not do damage to the surface soil. In the southern states the terrace has been doing effective work for a long number of years." The bench or step terrace, the ridge terrace, and construction methods are described and illustrated.

Tapson, C. (1996)
Suggestions on the best methods of operating ditchers in the construction of contour ridges are offered.

Texas Agricultural Extension Service. (1997)
Eight reasons for terracing farms and suggested terracing methods are presented. "An investment of $2.50 per acre in terraces frequently yields an annual dividend of $10.00 per acre."

CONTOUR TERRACING IN HEVEA PLANTING. India Rubber World 73: 71-72, illus. November 1, 1925.
A system of soil and moisture conservation applied to the cultivation of rubber trees on hilly land is described and illustrated.

The terracing program of Seminole County, Okla., is outlined.

--- (2000)
The writer sketches the development and results of intensive terrace campaigns in three Arkansas counties.

"The story of marvelous benefits from terracing land is an old one in Texas." Describes the agricultural rehabilitation of farms in east Texas.

"Features of land terracing to prevent soil erosion, as practiced in Argentina, are discussed."—Expt. Sta. Rept. 43: 481. 1920.

"The sink hole, as the name implies, is formed by the sinking of a small area of land which has been undermined . . . The large gullies which cannot be controlled by vegetation can be controlled by the use of diversion ditches or dikes around the gully which empty into the sink holes . . ."

General policies of county farmer associations incorporated for the purpose of acquiring power-terracing equipment is discussed. "In order to cover expenses, the analysis of operating costs for 1935 indicated that a terracing association must keep its outfit working at least 105 working days during the year." The average cost of protecting an acre of land with terraces was found to be $1.44 during 1935.

Cooperative terracing associations in Virginia have brought the cost of terracing down to an average of $1.44 per acre.

The author describes a plow rigged up with a saw blade, a practice followed successfully in Walton County, Fla., in making terraces. Instructions for use are included.

Results obtained from tests of terracing machines are here presented in response to a general inquiry as to the most economical size of power-terracing unit. The tests were made in Alabama.

Terraces to conserve moisture and check orchard erosion are prescribed.
Brief instructions and practical hints on the construction of bench and ridge terraces are given. The topographical features calling for each type are described.

TIPS ON TERRACING. Nebr. Farmer 73: 3-4, illus. September 12, 1931.
This article presents data on the advantages of terracing in erosion control. The author states that terracing costs have shown a tendency to vary and quotes comparative costs per acre for Nebraska.

"Widespread adoption of the practice of terracing farm lands indicates that the practice is here to stay." Methods and equipment for construction of terraces has therefore become of primary importance. Experiments made at the University of Missouri with a number of terracing machines are described and illustrated.

Describes a terrace-outlet structure which was made of rubble masonry laid up in concrete mortar and plastered. As an extra precaution against seepage, the earth was cut to shape for the structure and a coating of road oil applied before concrete was started. A flume carrying the water down the 45° slope was built of rubble masonry and plastered smooth. Paper presented at a symposium on engineering phases of soil erosion control. Soil and Water Conservation Division of the American Society of Agricultural Engineers, Chicago, December 5, 1935.

The terracing frame described in this article was designed to simplify the process of spacing and laying out and checking terraces, so that the farmer could do this work without so much personal service.

FLOOD CONTROL AND RELATED SUBJECTS

Abstracts of papers delivered at the flood-control symposium of the American Society of Civil Engineers' meeting held in Pittsburgh, January 20, 1937. They are as follows: Resumé of the Drainage Basin Study Report, by Abel Wolman; The National Drainage Basin Study, by F. H. Fowler; Water Plan for the Red River of the North, by W. W. Horner; The Rio Grande Joint Investigation, by H. H. Barrows; and Collecting and Publishing Hydrologic Data, by Thorndike Saville.

Highlights of conference held February 3, 1937, are cited. Endorsement given to H. R. 3686, which would authorize Congress to appropriate $150,000 for building reservoirs and buying land is discussed. The responsibility would be placed on the Government "to establish the Ohio Valley Authority which would coordinate all flood-control activities, buy lands, call on the Forest Service, the Soil Conservation Service, and other branches of the government."

Report of national water policy committee of the American Society of Civil Engineers. Hydrologic data, water supply and pollution, and flood control are discussed.

"The intention of the Water Resources Committee is to develop methods by which flood control activity may go ahead while collateral objectives of other agencies of the Government in emergency flood control areas, such as conservation, reforestation, etc., proceed as expeditiously as possible."

Refers to a conference on upstream engineering, called by the President to meet in Washington in September 1936. Ridicules forestry and land-management projects for the control of floods and drought prevention.

H. H. Bennett is quoted as follows: "Our work the last two years, in 141 watersheds throughout the country, indicates that the volume of run-off water can be reduced 20 to 25 percent through the use of erosion-control methods. This is the margin, in most cases, between mere high water and destructive floods . . . Coordination of efforts in cultivation methods, in reforestation, and in the design of control structures, are necessary factors for a successful erosion control practice."

This paper calls attention to the divergent views of the Ohio Chamber of Commerce to those agreed upon at the Ohio Valley Flood Control Conference of February 3, 1937, relative to flood control.

Announces that problems of upstream engineering in relation to flood control and land conservation will be discussed at a conference of experts from the United States and foreign countries in Washington, on September 22 and 23. Members of the committee are H. H. Bennett, Chief of the Soil Conservation Service; Morris L. Cooke, Administrator of the Rural Electrification Administration, and F. A. Silcox, Chief of the Forest Service. A letter from President Franklin D. Roosevelt, on the need for coordination "of land-use principles with existing knowledge of downstream engineering methods in Federal planning for flood control and land conservation", was made public.
Anonymous.

The building of small dams to hold rain water where it falls is advocated. In Callahan County, Tex., a dam-building machine has been invented which is speedy and economical.

Summarizes the proceedings of the American and Pennsylvania Forestry Associations meeting held September 9-11 in Eagles Mere, Pa. “The need of a more intensive educational program in all phases of conservation was recognized by the conference, and a program enlisting the active interest of states, counties, communities, and individuals was urged.” The C. C. C. program was endorsed, the program of the United States Forest Service was discussed by speakers, and the need for research in wildlife protection and restoration was stressed.

Discusses the new provision added to the flood-control bill, which places the Soil Conservation Service of the Department of Agriculture in charge of waterflow retardation and soil-erosion prevention on watersheds. A brief history of the flood-control bill is given.

Comment on the “omnibus” flood-control bill, passed by the House in 1935 and rewritten by the Senate in 1936, to include the provision that the Soil Conservation Service and the Corps of Engineers shall study and report upon flood control projects.

The writer discusses the topography of the Rio Grande delta district with reference to irrigation and flood control. Details of costs and benefits are given, as well as descriptions of bank protection and inlet controls.

The writer quotes largely from an article by J. Russell Smith in the Century Magazine, in which it is contended that the rain can be kept where it falls in little water pockets or field reservoirs. Examples of places where this has been done very successfully are given and illustrated. Large reservoirs and levees are futile for flood cure; the water-pocket system could be practiced on slopes or on level ground at a great saving.

IMPORTANT FACTORS IN FLOOD CONTROL. Agr. Engin. 8: 100. June 1927.

The need for a well-established policy of flood prevention is stressed. Among the recommendations of the Department of Agriculture are: “The general reduction of soil erosion to prevent rapid run-off and the clogging of streams; largely increased efforts by the states and Federal Government and private owners for cooperative forest fire control; largely increased programs for public forests or tributary tree planting on denuded forest lands...”
ANONYMOUS.

Quotes H. H. Bennett and Paul B. Sears concerning serious floods in the United States as the result of bad agricultural methods, and advocates Federal public-works project as the proper agency for flood-control operations.

MISSISSIPPI FLOODS. Forester 3: 57-58. May 1897.

The writer points out the need of reforestation along headwaters but believes the difficulty to be more a matter of silt and mud than of water. "Certainly the construction and care of levees will always be a necessity. Forests would not only regulate and hold back the waters, but would accomplish something which is more important: They would prevent erosion, and thus materially decrease the amount of silt."

The Tennessee river experiment—III. River canalization planning by the Tennessee Valley Authority involves many physical and economic problems, including the relation of dam locations and the coordination of operating schedules to the needs of navigation, flood protection, and power production.

A discussion of 1936 floods and flood control.

An editorial discussing floods as the result of misuse of soils and mis-management of lands, with suggestions for research studies in watersheds problems and watershed forestation.

TO PLAN FOR CONTROL OF FLOODS, EROSION, AND WATER POLLUTION. Amer. City 51: 5. April 1936.

A description is given of the national water plan, to be submitted to President Roosevelt before December 1, 1936, by the National Resources Committee. Also lists the several Federal agencies concerned with water problems, i.e., control of floods, erosion, and water pollution, uses of water for domestic purposes, irrigation and power, and drainage of waterlogged and overflowed lands.

THE PROBLEM OF FLOOD CONTROL. Plan Topics 2: 6-7, 14, illus. February 1937.

"Tennessee has shared in the movement to establish an Inter-state Commission on the Ohio Basin, for the express purpose of evolving flood prevention measures in the Ohio system." The meetings at Columbus and Indianapolis are discussed.

The Tennessee Valley experiment—V: With a large amount of construction accomplished, the T. V. A. to date has not demonstrated that returns will justify its expenditures, and its experience throws little light on how river development is best carried on.

SEVERE EROSION IN LATERAL STREAMS CHECKED BY THE ERIE. Ry. Age 100: 206-209, illus. February 1, 1936.

Describes the effectiveness of flow-retard works of the Erie Railway Co. in controlling flooded lateral streams in New York State. From 1932 the construction of spillways was carried on, the principal aim being to produce noneroding flow in the streams, even at flood stage. Flood conditions proved this check-dam system to be highly effective in retarding flood torrents and
at the same time in depositing rock and silt in the concrete flume at a point below the railroad, saving tracks and bridges from serious damage.

Indicates the relation between flood control and soil conservation in the Mississippi and Missouri River Valleys and maintains that the levee system of the War Department is inadequate. Gives a program of control embodying the construction of spillways, diversion dams, and weirs.

Summary of papers presented at fifty-fifth annual convention of the New England Water Works Association, in New York City, September 22, 1936. "Public health aspects and hydrology of the 1936 floods received major attention at four-day convention in New York City devoted to water works problems."

A review of conditions preceding the 1937 floods with map showing rainfall and table giving flood discharges at gaging stations of United States Geological Survey.

The Tennessee Valley experiment—II: Water phases of the T. V. A. studies are outlined, including mention of Tennessee River flow data, multipurpose reservoirs, distribution of storage, reservoir allocations, analysis of flood problem, and flood estimation. "To save wasted flow for summer supply and to prevent destructive floods of the Tennessee the engineers had to forecast water supply variations, compare different regulation plans, and decide on best storage."

The President is credited with having done more to advance the work contemplated by the Weeks Act of 1911 than any other President, not by asking Congress for direct appropriations but by allocations of emergency funds already appropriated. Legislation and expenditures on flood control are discussed.

"At Ithaca, N. Y., studies of erosion caused by one severe storm [July 7 and 8, 1935] show clearly that erosion is governed by type of soil, vegetative cover, and steepness of slope."

Weather conditions which preceded the 1936 flood of the Potomac, Shenandoah, Susquehanna, Monongahela, Ohio, Connecticut, and Merrimac Rivers and their tributaries are described; and flood protection by reservoirs, dams, and retarding basins advocated. Basic flood control "must begin behind the lines of dikes and levees and even behind the flood protection fortifications of dams and storage reservoirs. The Nation's only real flood safety lies in a Nation-wide program of crop adaptation, rotation and reforestation calculated to hold American topsoil, particularly that of hilly and mountainous regions, where it belongs and to give it the utmost degree of porosity."

"Numerous rapid and heavy local downpours of rain during the first 2 weeks in August produced an extraordinary number of washing floods in
the mountain sections of Utah." The erosion caused by these floods was tremendous and is fully described.

Alward, J. W. and Burdick, C. B. (2052)

"The aim of this book has been to outline briefly the general flood problem in all its many phases, to show what remedies can be applied, and to point out the way to the selection of the proper works." Chapter VII deals with flood prevention by water storage.

American Society of Civil Engineers. (2053)

"The activities of the Committee on flood protection data, during 1935, have been centered on acting in an advisory capacity to the Water Planning Committee of the National Resources Board in connection with the compilation and analyses of flood data undertaken with an allotment of funds disbursed by the Public Works Administration. The data were compiled, analyzed and prepared by the Water Resources Branch of the United States Geological Survey ... and have recently appeared in published form as U. S. Geological Survey Water Supply Paper 771, entitled: 'Floods in the United States, Magnitude and Frequency.' " Recommendations as regards future flood-data compilations are listed. This article discusses the recommendations set forth in the progress report of the Committee on Flood Protection Data.

In the discussion by C. R. Pettit, pages 970-972, it is stated that "there are three independent methods of determining probable 100-yr. flood values: (1) The width formula, which does not require a river record at an individual station but the coefficient in the formula must be determined from adequate records of a group of rivers; (2) the Foster method (or some other similar method), which is based on a record at an individual station covering at least 35 years; and (3) the unit-graph method which is based on a careful study of an especially selected storm and its run-off." In the discussion by J. C. Hoyt and C. S. Jarvis, pages 1096-1099, the following statement is made: "Technical studies may be directed along two lines: (1) The collection of physical and other data; and (2) analyses and discussions based on these data ..." The Sacramento flood-control project is discussed.

In the discussion by C. H. Eifert in Proceedings 63, pages 406-408, February 1937, the centralization or combination of all Government agencies that have to do with meteorological or hydrological records is suggested.

Andrew, H. J. (2055)

A brief review of the causes of floods in the Willamette Valley. They are described as (1) unusually heavy precipitation, (2) the rapid melting of snow on the western slopes of the Cascades, and (3) the unusual high
stage of the Columbia River which was 9 feet above normal at the time. Tables show the stages of water at several gaging stations and the dates and maximum levels of other floods.

ANTHONY, HAROLD G. (2056)

The author contrasts results of proper erosion-control measures at Plum Creek, Tex., during torrential rains and flood waters with noncontrol results. He quotes the project manager of the area comprising Caldwell and Hays Counties. "Cover crops, well-planned rotations, and contour cultivation are all integral phases of our program." It is further suggested that all land in a watershed area should be under intelligent erosion-control management to lessen flood hazards.

AHTHONY, HAROLD G. (2056)

EBO8I0N DEFENSES WITHSTAND POUNDING OF RECORD RAINS. Soil Conserv. 2: 41-43, 57, illus. September 1936.

The author contrasts results of proper erosion-control measures at Plum Creek, Tex., during torrential rains and flood waters with noncontrol results. He quotes the project manager of the area comprising Caldwell and Hays Counties. "Cover crops, well-planned rotations, and contour cultivation are all integral phases of our program." It is further suggested that all land in a watershed area should be under intelligent erosion-control management to lessen flood hazards.

AYRES, H. B. (2057)

Various phases of mountain torrents are commented on, and resultant damage is estimated. "The value of the retarding effect of forest debris is a factor very difficult to determine." Mountainers, who are close observers of such matters, say that where the ground is well covered by brush, leaves, and humus, and where roots make the soil porous, water is greatly retarded causing more of it to soak into the earth, while on cleared land, especially old pastures, where the earth is compacted clay, water runs off rapidly.

BAILEY, B. W., and Croft, A. R. (2058)

"The purpose of this publication is to show the relation of the contour-trench system of flood and erosion control to the broader aspects of upstream engineering applicable to the Intermountain region, to describe the system in detail, and to give instructions for its application in the field, including methods of analyzing problem areas." Not examined.

—, FORSLING, C. L., and BECKRAFT, R. J. (2059)

"The studies reported in this publication were conducted by the Intermountain Forest and Range Experiment Station in cooperation with the Utah Experiment Station and the geology department of the Utah State Agricultural College. The purpose is to present geologic evidence of flood damage and to point out that the recent floods in northern Utah constitute abnormal run-off and accelerated erosion, thereby marking a radical change from the normal rate of gradation of the present geologic epoch and climate. Evidence also is presented tending to show that this condition can be attributed chiefly to the depletion of the plant cover on the watersheds of the drainages involved."—Expt. Sta. Rec. 72: 541. 1935.

— (2060)

The trenching of slopes, building of gully dams, and planting of vegetation on the steep sides of the Wasatch Mountains in Utah by the C. C. C. is described.

BARNES, W. C. (2061)

STORY OF MANTI; A STUDY IN CAUSE AND EFFECT. Amer. Forestry 16: 532-534, illus. September 1910.

The history of pioneer Mormons who staked out 6,000 acres of land in Utah which they named Manti. "Then came the herds of sheep and cattle, and the hills were swept bare. Then followed the floods. They asked the government to set aside the mountains about them for a national forest... This was carried out and the results were marvelous. There are some who will affect to scoff at these facts, but if they will go to Manti and study them they will find it hard work to convince those Manti farmers that the removal of the protective soil cover on their watershed had nothing to do with the floods."
Barrows, H. H.

The writer contends that existing knowledge is not sufficient to hold either deforestation or soil erosion primarily responsible for major floods. "The prevention of floods in most drainage areas appears to be impossible by any means, for men cannot control precipitation . . . a coordinated, unified national water policy is needed, not an unrelated flood policy, not a collection of unrelated policies applicable respectively to individual types of problems associated with the control and use of water." The Flood Control Act approved June 22, 1936, is criticized.

Bates, C. G.

"Is the far-flung effort to chain the mighty Mississippi to its channel floor just one more mistake of a blundering, destructive civilization?" In seeking an answer to this question, the author, who has spent over 20 years in studying stream and soil erosion influences, "asked the streams" that feed the great river. From their testimony he has written this article—a challenge to the present program of spending millions for flood control and nothing for flood prevention."—Editor.

Beman, L. T.

The author takes the view that flood control is largely a problem of engineering rather than one of reforestation.

Bennett, H. H.

"Conservation farming practices developed primarily for the prevention and control of soil erosion have given positive indications of wider usefulness. By slowing down the run-off of rain water in order to curb erosion, the farmer automatically reduces the volume and velocity of water which might otherwise contribute to floods." Protective soil-building crop rotations, contour strip cropping and tillage, terraces, check dams, and grassed waterways are advocated.

RELATION OF SOIL EROSION TO FLOOD CONTROL AND SITLING. U. S. Soil Conserv. Serv. 11 pp. 1937. [Mimeographed.]

An address before the National Rivers and Harbors Congress, Washington, D. C., April 26, 1937. The author observes that the Omnibus Flood Control Act of 1936 . . . has paved the way for a scientifically sound and thoroughly practical flood-control program encompassing not only the construction of levees, dams and other defenses along our major streams but also preventive treatment on lands whence flood waters come." The program under the act is described, and a general discussion of flood causes, their relation to soil conservation, and the effects of sedimentation are discussed.

SOIL CONSERVATION AND FLOOD CONTROL. U. S. Soil Conserv. Serv. SCS-MP-11, 14 pp. 1936. [Mimeographed.]

An address given before the Connecticut Engineering Congress, Bridgeport, Conn., July 25, 1936. The author states that erosion control and
upstream flood control are practically synonymous and gives reasons. Research work on rainfall measurements at various experiment stations is discussed. The author also shows that the Flood Control Act recognizes the necessity of the cooperative efforts of soil-conservation programs.

Bennett, H. H.

The author maintains that the most effective form of flood levee is a blotterlike vegetative covering of farm lands. "Vegetation retards run-off water, binds the soil in place against the wash of rain and the drifting of wind, and preserves the top layer of productive and absorbent soil."

Blake, E. E.

The author discusses a study by the Interstate Commission, covering nine States on flood problems of the Arkansas and Red River Basins. "We found levees not practicable and that river straightening was a criminal error. It therefore became a matter of cutting down flood flow instead of fighting its apex." The organization and financial schemes are outlined.

Bock, C. A.

Recommendation is made to prevent the creation or growth of flood dangers by local action directed by a State water-resources board. "Steps can be taken at little or no cost to check the growth of hazards—publicity, administrative control and long-range planning are essential elements."

Brandenburg, F. H.

Account of high water in several of the important tributaries of the Colorado River in June 1912. "The damage done was principally to bridges, roads, headgates of ditches, and by erosion, and in the aggregate it was considerable."

Broossmann, Charles.

"In general the problem seems to resolve itself into three main phases: to hold the water back in the upper reaches of the watershed; to get it away as rapidly as possible in the lower streams; and building levees or retaining walls for the protection of cities to the compromise height made necessary by this work." Presented before the Indiana section, American Waterworks Association, March 1937. Not examined.

Brown, C. H.

Discusses problems involved in a study of American water resources as revealed by a review of the early work of the Mississippi Valley Committee, and policies formulated for flood-control projects to be financed in part by the Public Works Administration.

Brown, J. C.

"In the Preface is stated the exigence existing in the Cape of Good Hope and by inference existing elsewhere, for the adoption of measures similar
to what have been adopted in France to avert the destructive effects of floods and inundations." Part I is a résumé of Surell's study of Alpine torrents in which are discussed remedial measures taken by the Government of France to prevent the destructive consequences of torrents. In conclusion there is given an account of the inundation of Toulouse (p. 329) and of Hankey (p. 337), and Fort Elizabeth in South Africa, as illustrative of a phase of torrents, common to many lands, which afforestation may meet. The author contends that conservation and the extension of forests, coppice woods, shrubbery, and herbage will be beneficial and profitable.

This article discusses three phases of the work—economical bank protection to stabilize the levee system and improve the channel conditions for navigation, storage reservoirs, and increased channel capacity by the elimination of bends.

Floods in western North Carolina with consequent landslides and destruction of croplands, buildings, and bridges are described. Fire prevention and the rehabilitation of forest cover are urged as the means of saving the river valleys from utter destruction.

Chieta, Albert. (2079) Flood control work in Italy. Soil Conserv. 1: 15, Illus. May 1936.

Describes a supplementary control method by catch basins but observes that Italian engineers are chiefly relying on the reforestation of denuded mountain slopes for a solution.

Describes the origin of floods, run-off, vegetable cover, forests, stream channels, forecasts, prevention, protection, and notable flood problems of the United States taking in the following localities: Pittsburgh, Dayton, Columbus, eastern Washington, and Colorado. A discussion is given, pages 201-253.

"During the week beginning Wednesday, March 18, 1936, the Connecticut valley experienced the worst flood in its recorded history. Land damage was general throughout the valley and unusually severe in many sharply limited localities. One such locality, in the town of Hatfield on the west..."
bank of Connecticut River five miles northeast of Northampton, Mass., suffered such extreme and unusual erosion that the phenomenon merits brief description.”

Cooke, M. L. (2084)
A discussion of flood conditions in the United States. Suggests that, for proper flood control, drainage basins must be considered as a whole and erosion must be checked from the ridges downward across the slopes of the valleys.

The author contends that “in order to minimize floods, and at the same time receive the maximum benefits from our water resources, it is essential that we hold as much water as possible on the land where it falls and, by various practices, promote its infiltration to ground-water storage.” Also recommends surface storage by means of farm ponds, reservoirs, etc.

Croy, A. R. (2086)
The author presents a study of 1936 floods and reports as to their causes and effects. A considerable portion of the article includes his field notes regarding rainfall and its action. “The most effective preventative measures are those directed at preventing flood water from accumulation by restoring plant cover on the critical areas or by using mechanical devices in headwaters until an adequate plant cover can be established.”

Crombie, G. A. (2087)
In a letter to the editor the author encourages the reintroduction of the beaver on an extensive scale because of its importance in dam building and flood control.

Culbertson, G. (2088)
A short description of the flood and damage caused by it to cultivated land. “Two or three excessive rainfalls of this period added greatly to the destructive erosion of the steep hillsides, where unprotected by forest growth or other vegetation.” The lesson taught by the excessive rainfall is that adequate protection against disastrous soil loss lies in reafforestation on steep slopes.

Currie, J. H. (2089)
The author discusses progress of the central valley water plan for constructing dams in the Sacramento River and various other locations in the San Joaquin Valley for redistribution of water and control of floods.

Davis, R. H. (2090)
“We must not overlook the fact that floods occurred before settlement and use of the land. Therefore downstream installations have a very definite function and must be permanently depended upon as an important phase of flood control work.”

DeBerard, W. W., and Richardson, H. W. (2091)
The authors, on a tour of the flood areas, record the approaching flood of January 1937 and give data relative to flood stages and river discharges.

Dick, W. H. (2092)
The author believes there is but one practical, workable plan that will solve the water problem. Among the points involved are: “Withholding
water in reservoirs before it assumes flood proportions; impounding water in reservoirs for irrigation and for the making of uniform flow in the streams, thus raising the water table in the land which will solve the water supply problem, the sewerage disposal problem and the drought problem so far as it can be solved for cultivated lands; construction of dams for the navigation of streams wherever practicable; preventing the quick run-off of water from the land, which will to a large extent prevent erosion, and the restoration of forests by reforestation.

DONALISON, R. W.

The area in Hampshire County, Mass., which suffered most from flood waters, has been mapped in detail showing the nature and extent of damage done. "The remarkable way in which soil was saved from erosion by fields in sod or protected by roots of cover crops planted late in the summer, in contrast to tilled land left unprotected, is sufficient evidence to warrant more farmers adopting this policy in the future."

EATON, A. C.

January 1930.

In searching for causes of floods the author says: "The forester may blame the cutting of our timber for floods, and doubtless the cutting and burning of large tracts does affect the distribution of the run-off to the streams but it is questionable how much the forests affect the peak of a flood caused by a really big rain." Detention reservoirs and storage basins of New England are discussed. Dredging of channels, building of jetties, dikes, levees, bank protection, and other forms of improvement are admitted to have been effective to a certain point "But complete flood control of the Mississippi River is too much in the luxury class even if physically possible. Each flood control problem is a specific problem and must be analyzed carefully to obtain the correct balance between flood occurrence, stream control, storage values, channel improvements, and property damages."

EATON, E. C.

"The flood and erosion control problem treated in this paper occur in highly developed areas where there is a relatively low seasonal run-off; these areas, however, are subject to brief, although violent, torrential storms, that result in floods of exceptionally high intensity. When fires denude the sparse vegetation from steep mountain slopes the flood intensities increase and added debris hazards occur, due to erosion. Basic precipitation and run-off records are given in this paper, as are engineering methods of constructing hydrographs of expected floods, and the regulations needed for control. Similarly, measurements of erosion quantities are presented with suggested solutions of control and a method of avoiding unnecessary capital expenditures in advance of requirements. The incidental conservation of flood waters for domestic use and for irrigation is discussed."

"In the discussion by Kotok and Kraebel, pp. 423-428, data are given on run-off from large unburned watersheds in California as well as erosion rates and run-off in chaparral watersheds 1934-35. It is stated that "as a means of reducing sheet erosion from burned watersheds, the Forest Service has adopted from agriculture the idea of sowing a quick cover crop and has found the lowly mustard to be the plant best suited to the purpose."

Baker. Territory referred to is Los Angeles County, Calif. "Basic precipitation and run-off records are given in this paper, as are engineering methods of constructing hydrographs of expected floods, and the regulation needed for control. Similarly, measurements of erosion quantities are presented with suggested solutions of control and a method of avoiding unnecessary capital expenditures in advance of requirements. The incidental conservation of flood waters for domestic use and for irrigation is discussed."

ECCENTIOT SOCIAL OF AMERICA. SCIENTIFIC ASPECTS OF FLOOD CONTROL. Sci. Press v. 84, No. 3, 47 pp., illus. 1936.

"They show severe rainfall augmented by heavy snow run-off, aggregating unprecedented amounts, with resulting tremendous flood flows and heights that dwarf any previous known record for this section."—Editor's note.

The objectives of the Flood Control Act are defined, and two major flood-control plans are described. Reforestation is considered as an important control factor.

"Most of the discussion of flood prevention on the Mississippi overlooks one of the most important factors in the situation . . . hundreds of millions in damage are done by these flood waters on the tributaries of their origin, frequently several hundreds of miles from the Mississippi River, and no flood-control program will be complete that ignores this fact." The writer presents a comprehensive survey of these tributary rivers and says that their valleys, like that of the Mississippi, need flood protection.

Discussion and calculation of the net effect of forest litter on run-off in the Ohio Basin during flood stage. "The writer wishes to emphasize the matter of the water content of the soil or its absorptive capacity by an illustration from the Miami Valley." The relative run-off of two storms is described and discussed.

The author discusses the principle of uniform discharge through uniform slope and channel width applied to the Mississippi and states that control may be attained through revetment, levees, delta reservoirs, and possibly channel shortening.

"This work deals with the surface drainage and underdrainage of agricultural land, affected by excessive water due to precipitation or irrigation; the protection of lands against flood and tide waters; and the methods of spreading assessments for the apportionment of the cost of the several classes of improvements to the areas benefited. It emphasizes fundamental theories
and principles of design and, though intended primarily as a textbook for a
college course in drainage, it has been planned to be useful to engineers
interested in land drainage and the protection of overflow lands."

FASSIG, P. (2104)

"Much of the flood damage done in the Pittsburgh district is traceable to
the filling placed over the river banks in and near Pittsburgh ... What
would appear too small for a self-respecting citizen, is indulged in by our
large corporations and railroads." Facts as to the contraction of river chan-
nels through the encroaching on rivers and streams, and the need for a rea-
nsonable drainage basin for every locality are stressed. Land thefts should
be stopped.

FOLLANSBEE, R., AND HOODGES, P. V. (2105)
SOME FLOODS IN THE ROCKY MOUNTAIN REGION. U. S. Geol. Survey Water-

"In 1923 severe floods occurred on the larger streams in Wyoming and a
number of cloudburst floods on small streams in Wyoming and especially in
Colorado. An investigation of the principal floods in each State was made,
and the results are given in this paper, together with descriptions of two
Colorado floods of 1922. In addition a study was made of all cloudburst
floods to determine the areas chiefly subject to them."

FOSTER, E. B. (2106)
DATA REQUIRED FOR FLOOD PREDICTION. Engin. News-Rec. 118: 103. January 21,
1937.

The belief is expressed that "in order to predict the spring flood or its pos-
sibilities, accurate information must be had of the snow cover on the water-
shed. This information must be obtained by snow surveys throughout the
winter and should consist of data on the depth of snow cover and the water
content. The winter temperatures and the depth of snow will reveal the
capacity of the snow to hold water and the water content will indicate the
quantity of runoff to be expected."

FRANKENFIELD, H. C. (2107)
1927.

Statistics on loss to farmers from floods during the 15 years preceding 1926
are presented.

FLOODS OF 1927 IN MISSISSIPPI VALLEY COST FARMERS MILLIONS. U. S. Dept.

Flood losses of 1927 to farmers and planters and the causes are discussed.

FREEMAN, J. R. (2109)
May 1922.

The author discusses the concentration of floods, reforestation, river train-
ing for flood control, and ancient Chinese flood protection. The problems of
the Yellow River delta are discussed with special reference to some note-
worthy outbreaks of this river, characteristics of its silt, and a possible
method of river training. The flood problems of the Yang-Tze and Huai
Rivers are dealt with at some length, and the development and work of the
Chihli River Improvement commission is described. Accompanied by numer-
ous diagrams and maps.

ember 17, 1927.

In this letter to the editor, a description of a flood-protection dike for
Westfield, Mass., and its durability under recent flood conditions are dis-
cussed. The need of a flood survey of the dams and water channels of
Rhode Island is stressed.

"Floods and erosion will continue unless the lands are reclothed in permanent vegetation . . . so that the soil will be held in place, absorption increased, and run-off from the slopes slowed down." The writer cites the primary requirements for a Federal unemployment relief program and discusses flood- and erosion-control measures particularly adapted to southwestern conditions. He makes various suggestions for lines of work to be followed in such a relief program.

The authors discuss the origin of floods and various control methods. A summarized table of the acreage and proportionate extent of general types of erosion by land-use classes for the Salt Creek project in Ohio is given, page 8.

Discusses forest soil and stream flow in relation to flood control. "Constant protection of the watersheds against fires and depletion will perpetuate our superb mountain waterways and provide a large measure of insurance against destructive floods." The importance of forest floor, deep with spongy soil, is pointed out.

"The problem of rehabilitation so far as the farmers are concerned has an urgency that cannot be overemphasized." The writer observes that "the damage to land by the flood is a relatively small item . . . In the main the tillable land is unhurt. There is a universal deposit of silt which may do more good than harm. There is comparatively little evidence of washing . . . By far the largest items of damage are in buildings, furniture, and feed . . . The next largest [are] livestock fences and equipment."

Levee construction along the Mississippi River is the first requisite of a sound and effective national flood-control program, with secondary lines of levees having large drainage ditches. "The question of forest preservation and reforestation enters into flood control discussions . . . as forests prevent erosion, and thereby aid very materially in eliminating sand bars and other obstructions which block the channel of the rivers below . . ."

On pages 3-5 the Connecticut Valley flood of 1936 is discussed and control measures outlined for reducing the height of floods: (a) Those upstream, the effect of which is to retard the run-off of precipitation on the watershed. (b) Those downstream from the point of flooding to the ocean, whose object is to keep the channel clear of obstructions and assure the most rapid outlet for the flood waters."

The writer believes that the United States Weather Bureau can be of help where the run-off from a large area is concerned, but that much remains to be learned before the small storm of intense precipitation can be forecast. Experience of the Weather Bureau shows that it is possible to fore-
cast the amount of flood flow in large rivers with reasonable accuracy but that it is not yet possible to predict where unusual concentration of the precipitation will occur or what the total precipitation will be.

Grunsky, C. E.

Guffey, Joseph F.

Senator Guffey, of Pennsylvania, in a radio address, said: "Unless we control floods, and control soil erosion at the same time, the Nation faces physical and social bankruptcy." He referred to the work of the T. V. A. and to the flood control program of the Administration, the Soil Conservation Service, and the effectiveness of the measures taken by the Department of Agriculture and other agencies.

Hall, W. L., and Maxwell, Hu.

The writers discuss the tendency toward increased floods, and the cause of increased flood conditions: precipitation, evaporation, temperature, topography and geology, natural and artificial reservoirs, soil, ground cover, and a comparative study of watershed conditions.

Harmon, James.

Marxian dialectical materialism as applied to flood control and soil conservation. Deposes that modern American capitalism is responsible for floods and erosion, "... the plunder of the natural resources of the country by the ruling class ..." States that the programs of the Soil Conservation Service and the Tennessee Valley Authority are ineffective. Proposes no specific control measures other than the election of "... powerful progressive legislative blocs or a Farmer-Labor Party that would enact the necessary legislation and safeguards which would enable the toilers and the technicians to carry to fruition their programs against the wishes of the all-powerful industrial masters of the great utilities and mass production industry trusts."

Harris, W. H.

The May Flood (1901) in the Southern Appalachian Region the Catawba River Valley, N. C. Forestry and Irrig. 8 (3) 105-109 illus. 1902.

The change in characteristics of the Catawba River floods is pointed out compared with those of earlier times. "The whole secret of the bad effects and extent of the flood lies in the deforestation in the western part of the State. The establishment by the National Government of forest reservations appears to be the only solution.”

Hatt, W. K.

"This report contains a full presentation of the history of floods in Indiana, a summary of the causes of floods, a collection of available data of rainfall, river discharge and topography, a discussion of flood protection works and a discussion of the principles of legislation to provide for flood relief."—Foreword.
HAZEN, A.

A study of flood frequencies and magnitudes is presented. “Study of floods and flood flows brings home the fact that there is no such thing as a maximum flood. Instead there is a succession of floods of ever-varying sizes.” In conclusion the author states: “The surprising thing is that each time a flood occurs so many intelligent people take it as an act of God rather than something that grew out of their own acts (or perhaps of their fathers’) and fail to see that it could have been anticipated and much of the damage prevented . . .” Possible flood insurance is discussed.

HERBERT, P. A.

The major problem “can only be solved by erosion experts, foresters, and land economists. Billions of dollars have been spent in this country for flood control and flood relief but still our floods are becoming more frequent and more destructive. Clearly, there is something wrong with our control efforts.”

HIRS, B.

The author surveys the disastrous Mississippi floods from the geological viewpoint and takes issue against the general belief that floods are largely man-made. The history is sketched of the Mississippi and other rivers of the central part of the continent which “created all the land which is now Louisiana, most of the States of Arkansas and Mississippi and parts of Missouri, Kentucky, Tennessee, and East Texas . . . To advocate erosion control and reforestation as correlated palliatives in flood control can do no harm; to offer them in lieu of genuine protective engineering as is sometimes done is dangerous nonsense.”

HILLMAN, E. C.

In this paper are given the results of studies to determine the extent of alterations on unprotected flood-level areas due to the elimination of flooding by channel improvement or bypassing, with the object of reducing flood levels locally, and embankment systems with the object of excluding flood waters from certain areas. The author's conclusion states that it has been shown (1) That the effect of by-passing on flood-levels below the by-pass is nil; (2) That the effects of eliminating storage-capacity depends upon:—(a) The size of the storage-reservoir in relation to the flow in the river; (b) The shape of the flood-hydrograph. In general, the effects will consist of an acceleration of the 'flood-wave', and a slight increase of the peak flood-level in the river below the area from which floods have been excluded . . .” A discussion of the paper is included.

HOLMES, J. A.

“One of the tasks which faced the Mississippi River commission in its flood-control study of the lower Mississippi Valley was the determination of the effect of retention reservoirs on floods, both local and general. Although conducted primarily for flood-control purposes, the study also touched incidentally upon the improvement of navigation, irrigation, and drainage conditions.” The results of findings are discussed.

HOYT, J. C.

Abnormal weather conditions during the past year were reflected in unprecedented floods and a repetition of severe droughts. Average flow of streams was normal, but ground-water levels were generally lower in the
West, but without water shortage in storage reservoirs. An estimate of flood flows of 1936 in the northeastern part of the United States is given by means of tables. The author states that "large portions of the drainage area in which the floods occurred were well protected with vegetation in the form of forest and brush lands. The floods persisted, however, on these as well as on barren and agricultural areas. With the large quantity of water available for run-off it is difficult to see that changes in forest or vegetative covering since pioneer days were responsible for 1936 floods exceeding those which had previously occurred."

Ives, R. L. (2130)
Observations of three major types of floods—sheet floods, stream floods, and playa floods—are presented. "Any or all of these may result from a single downpour, the type of flood being determined by the type of precipitation, the topography on which it falls, and the amount of precipitation on a given area in a given time. Definite storm paths were observed, and local convection currents, confined to the valley, or a part of it, were noted as important factors in secondary storms."

Jacobs, Joseph. (2131)
Suggests extensive flood-control surveys and investigations to be used in formulating a definite plan of procedure involving a payment plan whereby local, State, and Federal interests may be assessed on the basis of benefits conferred.

Jaqua, J. H. (2132)
Account of these floods with data as to stages predicted and stages attained.

Jarvis, C. S., and Others. (2133)
This paper consists of descriptive, general, and historical notes; methods for estimating floods; examples of procedure for analyzing flood flows; records of floods on selected rivers; a study of methods of estimating flood flows applied to the Tennessee River; the reliability of statistical methods in the determination of flood frequencies; hydrologic conditions as affecting the results of the application of methods of frequency analysis to flood records; determination of flood flow by unit-hydrograph method; bibliography relating to flood flow, intense rainfall, and frequencies. "The objective has been to review the technique and procedure of estimating expected floods and to compile, in a form suited for ready reference, flood statistics for streams where long-time records are available. The results of the study here presented are a substantial contribution to this end."

Kansas State Planning Board. (2134)
"Erosion by water is doing the greatest damage agriculturally in the northern and eastern parts of the State. In 40 years of cultivation, the productivity of the lands in northeast Kansas has declined more than 20%." The author states that 97 destructive floods in 80 years have brought an estimated damage of approximately $150,000,000. Plans for flood control and drought mitigation through improved methods of water control and land use are among the points discussed in this program of water conservation.

Keller, Martin M. (2135)
CONSERVATION WORK TESTED IN GILMORE CREEK FLOOD. Save our Soil 1: 3. May 1936.
Terrific rainstorm demonstrates value of S. C. S. work in preventing soil erosion. Project manager comments on storm results.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

KELLE, C. (2136)
The way in which various floods of the Mississippi River from 1912 to 1927 has influenced the construction of storage reservoirs to prevent floods is discussed. The plan of the War Department for creating a reservoir by means of a dam with large sluiceway capacity is outlined.

KLEIN, JACK. (2137)
Discusses activities of the Pomona Valley Protective Association in water conservation and flood control on projects in southern California.

KNAPP, BRADFORD. (2138)
Reforestation and the retention of vegetative cover are cited as being of major importance in flood control.

KRAEHEL, C. J. (2139)
The origin of southern California's 1934 flood catastrophe is traced to pre-swept mountain slopes. Burned slopes and watersheds are illustrated.

KUTZ, C. W. (2140)
This is an extended abstract of the work of the commission and gives the general character of the plan for improving flood conditions along the Mississippi River which the corps of engineers prepared for presentation to Congress.

LEIGHTON, M. O. (2141)
Floods are increasing, judging by river-discharge records in the United States. Diagrams illustrate individual floods with annual rainfall data. A comparison between the number and depth of flood-producing rains and the number of flood days made on the Tennessee Basin above Chattanooga, pages 22-24, is discussed and illustrated by tables. Flood damage and the storage of floodwaters are discussed, pages 24-27.

LEMKE, WILLIAM. (2142)
FLOOD CONTROL BY WATER CONSERVATION. Cong. Rec. v. 80, pp. 4420-4422. March 26, 1936.
Attention is called to H. R. 533, a bill introduced during the last session of Congress. 'This bill provides for a practical solution of our ever-recurring flood problems. It at the same time conserves and makes use of the waters for the people of this Nation.' Irrigation, reclamation, electric power, soil erosion, silt, climate, and employment were all considered and discussed with respect to the bill. "When this bill becomes a law there will arise a midland empire on the eastern slope of the Rocky Mountains . . . It will give a new frontier to our national aims . . . It will harness the rivers and streams at their source and use them for the good of mankind . . .

LOS ANGELES COUNTY BOARD OF ENGINEERS—FLOOD CONTROL. (2143)
REPORTS—TO THE BOARD OF SUPERVISORS, LOS ANGELES COUNTY, CALIF., 1915. 390 pp., Illus. 1915.
A remedial program, made necessary by the destructive flood of February 1914, is suggested which must include: (1) Conservation of storm waters through reforestation and retarding work in the mountains; (2) spreading of storm waters on the gravel deposits at the mouths of the canyons; and (3) acquisition of official channels for the principal streams on the lower levels and the permanent rectification and protection of these channels. Check dams in Haines Canyon and an experimental reservoir and dam in Clearwater Canyon are described, discussed, and illustrated, pages 226-226. Comparisons with European check-dam work and technical data are discussed, pages 296-301.
LOVE, S. K.
Information is given with respect to the silt loads and corresponding denudation over a drainage basin resulting from the Potomac River flood of April 1937.

LOWDERMILK, W. C.
Flood problems of the Yellow River in North China are reviewed based on investigations undertaken at the University of Nanking. "The floods of North China are intimately related to the erosion of the extensive loess deposits. The building of dykes alone is not sufficient to bring about a lasting solution to the control of floods. Something must be done to reduce the wide spread erosion in the loess uplands along with dyke construction in the plains of deposition." Recommendations are made for planting willows, poplars, black locust, and native catalpa in the bottoms of gullies and on the talus slopes. The author concludes: "Fill the gullies with trees rather than plant the hills with trees."

McLOUD, N. C.
"Trees have come to play an important part in the protection of Mississippi River embankments from destructive erosion and the prevention of disastrous floods.... For this use the trees are woven into mattresses of enormous proportions... Revetment work involves the use of the willow mats in conjunction with concrete paving.... this mat is known as the continuous woven-willow type.... These willows, hugging the face of the submerged embankment, have proven effective in preventing the undermining action of the current.... The author maintains that "the clearing of the forests has materially affected the distribution of the annual rainfall of the tributary regions.... The flood troubles of the Mississippi Valley give added force to the arguments for reforestation on a widespread scale."

McPHERTERS, W. H.
SOIL CONSERVATION AS AN AID TO FLOOD CONTROL. Agr. Engin. 11: 339-341, illus. October 1930.
Floods in Oklahoma, with consequent destruction of soil, are reviewed. The author advises that "along with any land reclamation program should go a farm pond-building program.... The argument may be advanced that after these ponds are all filled with water they will do no good." Ponds would keep immense quantities of water from reaching streams that now flood the bottom lands, destroying millions of dollars' worth of crops and property each year. An article of similar title appears in Prof. Engin. 16: 20-22. February 1931.

MAITTS, C. B., Jr.
The flood of March 1936 and the damage caused by soil loss is discussed. Measures employed by the Soil Conservation Service are cited. "Cultivating on the contour of a slope, running crops in strips between other strips of thick growing erosion-resisting grasses... are some of the ways that the problem of erosion is met on slopes in cultivation."

MARTIN, ROBERT E.
Describes the work of the Civilian Conservation Corps in erosion control and other projects.

MAXWELL, G. H.
Shows how the conservation of flood waters in the Prairie States is essential to the full success of the shelterbelt project of land reconstruction.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

The part agricultural practices may have played in producing floods and the value of vegetative cover.

"Studies recently carried out near Holly Springs, Mississippi, by the Southern Forest Experiment Station of the U. S. Forest Service indicate that floods are due not so much to quantity of rainfall as to the type of land on which the rain falls . . . These recent studies on the uplands of the Tallahatchie watershed have special significance because they were carried out at the very time when the Tallahatchie, Coldwater, and other rivers were pouring their swollen torrents over the upper Yazoo delta in an unprecedented flood . . ." These experiments and their results are described. The author says that "in considering methods of flood prevention and control . . . the great natural reservoir, the soil, has seldom been considered."

"A task of unprecedented magnitude, flood control requires that every possible method be studied, including headwater and soil control. It should be treated as part of integrated river control for all purposes."

The author points out that the T. V. A. program also will reduce soil erosion. He discusses the control of the Tennessee River and adjacent rivers with a series of dams, reservoirs, and lakes, and how such an enterprise will help prevent disastrous floods and aid inland navigation. He discusses fully the power problem, how and through whom it is to be distributed.

MORRIS, SAMUEL B. (2155) VALUE OF WATERSHED COVER IN FLOOD CONTROL. Jour. Forestry 33: 748-750. August 1935.
This paper, presented at the annual meeting of the California section of the Society of American Foresters, December 7, 1934, says in part: "I should emphasize the fact that the greatest value of watershed cover to flood control is in retention of the soil, and diminishing the rate of erosion into the streams"

A record of rivers and floods, with tables of flood stages. "Warnings of the overflows were issued well in advance and resulted in large savings in movable property and livestock."

Check dams built of stone so placed across the channel that the water collects in a basin behind the dam are advocated. Halnes Canyon and the Sunland drainage basin, together with storms and floods of 1914 to 1916, are discussed.

Report to the legislature on Senate Concurrent Resolution No. 27. This report discusses at some length the California watershed policy, which includes factors affecting and influencing stream flow and erosion, methods necessary to prevent further erosion, erosion areas and meteorological con-
ditions, erosion processes and the effect of erosion on soil, grazing and
erosion, fire and erosion, hydraulic mining and smelter areas, lumbering and
erosion, erosion control and plan of action necessary to prevent further
erosion.

MURPHY, E. C.
DESTRUCTIVE FLOODS IN THE UNITED STATES IN 1903. U. S. Geol. Survey
Water-Supply and Irrig. Paper 96, 81 pp., illus. 1904.
“The year 1903 will long be remembered for its extreme local variations
from normal climatic conditions.” The Heppner, Oreg., flood, the South
Carolina flood, and the early floods in the Mississippi Valley as well as
those of 1903 are described and tabular data on rainfall and high water
given. The Kansas floods, with hydrographic data, are discussed. Methods
for preventing damage by future floods are considered with reference to
surface and ground storage, artificial storage, rapid removal of water, and
levees.

MUSGRAVE, M. E.
DISTRIBUTION AND UTILIZATION OF FLOOD WATERS ON NAVAJO LANDS.
The relation of the flood waters of the Navajo lands to the Boulder Dam
is shown. The effects of collecting and distributing these waters are far
reaching; the deposit carried by them is now being spread on adjoining
lands instead of washing down into the Colorado, thus helping to preserve
one of the greatest irrigation projects in the country.

NEW HAMPSHIRE FLOOD RECONSTRUCTION COUNCIL.
REPORT OF THE NEW HAMPSHIRE FLOOD RECONSTRUCTION COUNCIL ON THE FLOOD
OF MARCH 1938. 80 pp., illus. 1936. [Processed.]
Section 1 deals with the nature and causes of flood, forestation and soil
conservation being cited as major control factors; section 2, relief and pub-
lic health; section 3, flood damage to industries and farms; section 4,
damage to public property; section 5, Federal cooperation; section 6, public
finance problems; section 7, flood-control planning; section 8, recreational
service; section 9, mobilization for future disasters; section 10, the New
 Hampshire Flood Reconstruction Council.

OOSTHUIZEN, E. A.
SOIL EROSION.—TRAINING BANKS FOR DIVERTING FLOOD WATERS. Farming in
The chief causes of erosion are stated to be drought, overstocking, and
tracks, and the chief promoter is water. In combating erosion careful study
of the topography of the area concerned must be made, and also of the
maximum quantity of water which may be expected in times of great flood. In reasonably flat country it may be possible to control the flow of water by means of training banks, and then to distribute the water by contour-bank systems. Silt traps with spillways are considered and illustrated.

OWENS, G. T. (2166)
A plan is submitted for a reservoir system in the Mississippi Valley, to retain rainfall as nearly as possible where it falls, and to permit excess rainfall to enter the Mississippi gradually in such quantities as to prevent floods in the lower basin and erosion in the entire upper valley.

PACK, F. J. (2167)
On August 13, 1923, several localities in northern Utah were visited by the most devastating floods known in local history. “The extreme intensity of the flood was the result largely of certain local conditions within the canyons . . . The manner in which the rock debris was transported during this phase of the flood constitutes one of the most unusual aspects of the entire period of flooding.” A detailed description of the flood and its actions is presented.

PATRICK, A. L. (2168)
AGRICULTURE’S NEW APPROACH TO FLOOD CONTROL. Soil Conserv. 2: 245-246, 266. May 1937.
The Omnibus Flood Control Act (Public, 738—74th Cong.), which Congress passed on June 22, 1936, authorized a coordinated land and water program for flood control. “The act authorized $10,000,000 to be appropriated in equal amounts by the Departments of War and Agriculture for carrying out any examinations and surveys provided for in the act.”

PETTIS, C. R. (2169)
The author discusses “a method of determining the probable 100-year floods based on the width of a drainage area and on rainfall statistics modified to improve it both practically and theoretically.”

PETTIS, C. R. (2170)
A NEW THEORY OF RIVER FLOOD FLOW, PRESENTING A PRACTICAL FORMULA FOR COMPUTING MAXIMUM FLOOD DISCHARGE. 61 pp. 1927.
“No extravagant claim is made for the new theory set forth in this book nor for the formula based upon that theory but, within its limited scope, the formula gives results which agree so closely with the observed discharges of a large number of streams, that the author is prompted to offer it as a contribution to the pressing national problem of flood control.”

A study is presented in which the relation of rainfall to flood run-off is reduced to a simple mathematical basis, so that the general principles can be understood by one who is familiar with the current literature on the subject. The probable 100-year flood, or the probable maximum discharge to be expected on the average once in each period of 100 years, is used as the basis of the discussion.

PILLSBURY, G. B. (2172)
Outline of scope and status of work undertaken by the corps of engineers in accordance with authorization of the Flood Control Act of 1936. It is pointed out that responsibility for making surveys and preparing plans for flood-control projects was placed upon the Army engineers for the execution of a country-wide series of projects authorized at an ultimate cost of over $300,000,000.

"Condensed from "The Washington Post" for February 8," 1937. The time to stop a flood is before it begins. "There is no mystery about what is required. We need to stop forest devastation at the headquarters, and for that we must control the logging and the fires. We need to replant or protect the natural regrowth on lands better suited to the forest than the plow . . . We need to return many acres to soil-conserving and soil-protecting crops. We need to prevent over-grazing. We need terraces, and planting for soil protection . . . We must control and repair erosion that is already under way."

PRESIDENT'S COMMITTEE ON WATER FLOW.

"Message from the President of the United States transmitting a preliminary report on a comprehensive plan for the improvement and development of the rivers of the United States with a view of giving the Congress information for the guidance of legislation which will provide for the maximum amount of flood control, navigation, irrigation, and development of hydro-electric power." This report is divided into 10 parts: Part 2, on Organization and Policies, discusses, on pages 34-47, the soil-erosion problem and outlines the work of the Soil Erosion Service; part 3 reviews soil-erosion conditions for the Atlantic region, pages 120-126; part 4 considers erosion in the Gulf region, pages 164-172; and part 5 discusses the erosion problem in the eastern Mississippi region, pages 191-194.

PURCELL, F. X.

The cause of Muskingum River floods and details of flood-control-project organization and work are given, with description of design of dams used in project.

REED, C. D.

"Little has been published on the subject of flood conditions and fluctuations of river stages in the upper Missouri River. It is therefore hoped that this short article, treating of some phases of the subject, may be interesting to those who are now trying to revive navigation . . . who are engaged in bank protection and other works of construction along the stream, and to the many farmers who venture to till the broad acres of unusually fertile land subject to occasional overflow that lie adjacent to the river through several States."

ROCKIE, W. A.

Discusses the cooperative work of the Bureaus of Chemistry and Soils, and Agricultural Engineering, and the Forest Service in the control of soil erosion in Iowa. The author concludes that forest and soil conservation will do more to prevent floods than anything else.

RORITY, JAMES.

The author went to T. V. A. headquarters at Knoxville, Tenn., to seek the answers to two questions: Is a real solution of the problem of flood control possible? How much would it cost, and would it be worth the price? Stresses need for scientific as well as engineering attack on the problem.

ROSE, M. A.

Describes various projects in operation to control Mississippi River floods, including the spillway beginning at the mouth of the river to take excessive floods from New Orleans to Lake Ponchartrain, the Atchafalaya floodway, the projected Eudora floodway, and the Boeuf floodway project.
ROTH, WALTER J. (2180)
"A phase of the cost of floods . . . is the loss of fertility and productive capacity because of erosion on tilled farm lands through soil removal from higher areas with subsequent redeposition on lower areas and in channels, ditches, lakes, and reservoirs." Soil- and water-conservation practices and their relative costs are reviewed by the author.

ROTHROCK, J. T. (2181)
The author says in part that "it is quite within the power and knowledge of man to diminish the frequency and severity of such floods. Anything which interferes with the flow of water in the main stream, or raises the general level of that main stream is an aid in production of floods." The effect of dams and masses of logs and removal of timber from headwaters of streams are pointed out as the cause of destructive freshets.

SACKETT, R. L. (2182)
The principal factors affecting the flood discharge of rivers are discussed and various formulas proposed to express maximum flood flow, together with available data on floods in the Ohio River Valley.

SCHULZ, E. H. (2183)
"Since the Mississippi has no natural reservoirs, it is not surprising that there should be great variations in stage and flow . . ." The history of the levee system in relation to the flood of 1927 is cited together with work and costs under Federal charge. Suggested remedies are control of drainage, contour plowing, reforestation, additional levee heights, dredging, reservoirs, storage basins, outlets, diversions, and spillways.

SCIENCE NEWS SERVICE. (2184)
Flood-control problems discussed at the summer meeting of Ecological Society of America, by scientific workers in forestry, soil conservation, and engineering. The speakers were unanimous in the opinion that flood-control problems cannot be met with engineering construction alone, but that the "ultimate effective efforts must be put forth far upstream, where the 'little waters' are . . . there man may restore and protect that vegetative cover which forms nature's own great reservoirs and settling basins, dams, revetments, and levees."

SEARS, P. B. (2185)
"Modern civilization must design its own landscape no less than its cities if it is to survive . . . The general principles of preventing flood damage are well understood, but great need remains for fundamental studies on climate and soil, and particularly the social sciences. The problem is really one in human ecology."

SHERMAN, C. E. (2186)
The great storm of March 1913, causing rains in every State but three, is cited with description of flood-retarding measures since built in the Miami, Muskingum, and Scioto-Sandusky districts to prevent repetition of disaster.
Silcox, F. A.

The author refers to the Omnibus Flood Control Act, approved June 22, 1936, which recognizes biological control as coordinate with engineering control of floods. The history of the Mississippi's disastrous known floods is traced back to 1542. Erosion within the Ohio watershed is discussed.

Lowdermilk, W. C., and Cooke, Morris L.

This symposium was sponsored by the Ecological Society of America and the American Association for the Advancement of Science. It contains the following articles: Forests and Flood Control, by F. A. Silcox; Agricultural Land Use and Flood Control, by W. C. Lowdermilk; and On the Relations of Engineering Science to Flood Control, by Morris L. Cooke. The relation of erosion control to flood control is shown.

Spencer, J. H.

The causes of the flood and the damage it caused are discussed.

Stewart, Robert.

The author attributes the recurrent Mississippi River floods to deforestation and soil erosion. “There is a single condition effective over the whole drainage area of the Mississippi which is vitally different now from what existed 125 years ago, and is fundamentally the basic cause contributing to the flood situation on the Mississippi River today. Land in the Mississippi drainage area is now largely under cultivation, whereas then it was under sod. For example, in Iowa and Illinois, 85 percent of the entire area is now improved farm land. As a result, soil erosion is taking place at an alarming rate . . .”

Strong, P. N.

“A word is not amiss concerning the efforts to tie in soil conservation and reforestation with flood control. The writer has nothing but enthusiasm for the two projects. He believes that they are at least as important for the welfare of the country as is flood control, and should be diligently prosecuted. But it simply will not do to advance them as effective flood control measures . . . If we want the real answer to the question: ‘Why do floods get bigger?’ We must look to the law of probability, which tells us that the longer the country lives the more it will run up against those super floods whose infrequent occurrence span many generations in their cycle.”

Taylor, N. R.

“This paper will be devoted to a discussion of some of the causes that modify stream flow in the Great Central Valley of California and to the tabulation of such river and rainfall data as are available in connection with flood periods, with notes on various floods that have occurred since 1849, more especially those in the Sacramento watershed.”

[Thornthwaite, C. W.]

Todd, O. J.

The Yellow River, 2,700 miles long, is a great mud-carrying stream in the summer. Earth dikes which keep the river in place are constructed
by hand labor. Ancient Chinese methods of dike building with willow branches and kaoliang stalks bound together with hempen rope are described. With the materials used—stone, earth, kaoliang stalks, hemp, and willow withes—the oriental engineer sets nature to combat nature and the cost is low.

UNITED STATES CONGRESS.

CONTROL OF FLOODS IN ALLUVIAL VALLEY OF MISSISSIPPI RIVER. U. S. Cong. 71st, 3rd sess., House Doc. 798, 3 v. 1931.

Volume 1 contains the report of the Chief of Engineers, United States Army, and 12 annexes; volume 2 contains 8 annexes; annex No. 20 is the report submitted by the Department of Agriculture. Volume 3 consists of maps of the plans to accompany the report of the Chief of Engineers.

UNITED STATES CONGRESS, SENATE COMMITTEE ON COMMERCE.

FLOOD CONTROL IN THE LOWER MISSISSIPPI VALLEY. Hearings...on S. 3531.

UNITED STATES DEPARTMENT OF AGRICULTURE.

THE LAND IN FLOOD CONTROL. 36 pp. April 1937. [Mimeographed.]

A preliminary statement on the responsibility of the United States Department of Agriculture under the Omnibus Flood Control Act of 1936.

UNITED STATES FOREST SERVICE.

HELPING TO CONTROL FLOODS AT THEIR SOURCE. 5 pts. [Washington, D. C.] 1937. [Mimeographed.]

UNITED STATES SOIL CONSERVATION SERVICE.

Water behavior, watershed control, proper treatment and management of land, rainfall statistics and their value were subjects discussed by specialists at upstream engineering conference. At the final session Morris L. Cooke said: "If we are to save our lands and make better use of our waters, we must work out a national procedure which utilizes local autonomy as part of a coordinated national body politic." State compacts, State and regional planning boards, and authorities such as Tennessee Valley Authority are cited as possible answers to the problem of coordination. Includes letter from President Roosevelt to Secretary of Agriculture Wallace authorizing upstream engineering conference.

UTAH SPECIAL FLOOD COMMISSION.

TORRENTIAL FLOODS IN NORTHERN UTAH, 1930. Utah Agr. Expt. Sta. Cir. 92, 51 pp., illus. 1931.

"The Commission concludes that the many floods in the State [Utah] in 1930 were due to: a. Uncommonly heavy rainfall, b. Topography and geological conditions favorable to sudden runoff and a large quantity of flood debris, c. Scant vegetation on portions of the watersheds of the canyons..." Elimination of grading for a period of years, fire prevention, revegetation of the critical areas of watersheds, and erection of control works at the mouths of canyons that have flooded are among the relief measures advocated.

VON HERRMANN, C. F.

"The floods were so extensive that a satisfactory general view can only be obtained by summarizing the main features in each river district." A table...
is given of the highest river stages in March 1912, as compared with highest stages previously recorded.

VOORHIS, H. J.

The San Dimas Experimental Forest is an area of 17,000 acres in southern California. "This area is set aside for research purposes from the Angeles National Forest because the conditions of cover, topography, and soil are typical of the San Gabriel Mountain Area. The purpose of this experimental area is to study the relationship between forest vegetation and water to determine accurately the facts as to the influence of chaparral cover on streamflow, particularly the effect upon flood flows and upon low-water flows. Other features of this work are to determine the consumptive use of water by native vegetation and the value of this vegetative cover in preventing erosion."

WALDRON, B. L.

"The excessive rains of September 25, 27, and 28, and October 1, ... caused a flood in the North and South Fabius and in North and South Rivers that did a great amount of damage in the valleys of those rivers and the Mississippi bottom lands across from Quincy, Ill. ... There was no special damage from erosion or deposit . . ."

WALLACE, HENRY A.

FLOOD CONTROL AT THE GRASS ROOTS. 8 pp. April 27, 1936. [Mimeographed.]

An address before the National Rivers and Harbors Congress, Washington, D. C., April 27, 1936. Discusses the relation of soil and water conservation to flood control and describes the research work of various agricultural experiment stations.

WALSH, O. E.

"The works for navigation have had the incidental result of preventing the erosion of good agricultural land, and have therefore been of tremendous value to property owners in the alluvial valley."

WELLS, E. I.

After the unusual flood which occurred at Boise on July 24, 1913, the writer walked over the greater part of the watershed and found that the erosion was greatest about 4 miles above the mouth of Hull's Gulch. Water-flow measurements were taken, and data concerning them are given.

WEYBRIGHT, VICTOR.

"Discusses causes of disastrous floods and control methods. Weather studies are recommended, with the construction of dams and forestation in headwater areas." Not examined.

WHITTINOTON, M.

Includes address to be given at the thirty-first annual convention of the National Rivers and Harbors Congress in Washington, D. C., on the same day. The policy of conservation of the soil and of reforestation are favored. Methods of control, the need of research into flood problems by engineers, flood control along the lower Mississippi River, reservoirs and their costs, planning and a national policy, were all considered in this address.
WHITTINGTON, M. (2209)
Address given at St. Louis on March 12, 1937. The Flood Control Act of 1936 is discussed. "If all the projects provided for in the Act of 1936 had been completed, the flood of 1937 in the Ohio Valley would not have been prevented; the losses and damages would have been reduced. . . . All of the works authorized by the Act of 1936 are necessary in the enlarged program that must be adopted to prevent a recurrence of the 1936-37 flood in the Ohio Valley." The speaker exposes and corrects many fallacies as to the causes and remedies for floods. He also considers the question of authorities, in particular the Tennessee Valley Authority.

WINSOR, L. M. (2210)
"The barrier system of flood and gravel control developed in these investigations appears to have a broad range of application. The success of the barrier system is dependent upon the amount of reasonably smooth surface over which the flood stream may spread before it reaches the stilling pool above the barrier." Examples of this system as used in Utah are presented.

WINTERS, N. E. (2211)
In describing the results of field experiments on the soil erosion experiment station at Guthrie, Okla., the author finds that the very nature of erosion control makes it a primary step in flood control.

WOODS, A. F. (2212)
General article on flood and erosion control, dealing most specifically with the plan for river-bank-erosion control, conceived by Mark W. Woods, of Lincoln, Nebr., which employs the use of the Bignall pile.

WRIGHT, JAMES O. (2213)
This bulletin describes the existing situation in the Neosho Valley and outlines in detail a feasible plan for protective relief, based upon extensive field surveys. The use of properly located levees for confining flood waters to the vicinity of the main stream channel is recommended. General specifications for building levees with costs and detailed maps for different sections are discussed.

ZON, RAPHAEL. (2214)
The author reports findings of the Lake States Forest Experiment Station which "contribute tangible knowledge of the part which cleared pastures and grazed and ungrazed woodlots play in preventing run-off and erosion on steep slopes." Bluegrass sod is believed to be capable of preventing run-off and erosion.

FOREST COVER IN SOIL AND WATER CONSERVATION

ANONYMOUS. (2215)
F. H. Newell of the United States Geological Survey, is quoted: "... rapid erosion among the mountains has been due to cutting and burning the timber and brush, and the overgrazing of the lands thrown open to the passage of cattle by the destruction of thickets and underbrush. Thus not only is the state losing one of its most valuable resources in timber, the material needed by the farmer and the miner, but also the soil valuable
In one locality is being carried away to become a nuisance in another." The writer urges cooperation among the citizens, the State, and the United States for the preservation of forests.

Anonymous.

This post was found by soil conservation workers on a Jackson County farm. The value of black locusts in all erosion-control work is great. "They will grow on denuded areas, on gully banks, and . . . very effectively prevent the washing away of soil." Its qualities as a supplier of nitrogen are also stressed.

Discusses forest-planting program for 1936 and 1937, with notes on varieties to be planted, areas to be planted, and special plantings for watershed-erosion control and for wildlife protection. The number of trees allotted to the different States is given.

The writer discusses and quotes excerpts from papers given at a conference called by President Theodore Roosevelt May 13-15, 1908, to consider conservation of natural resources. "Every step of the progress of mankind is marked by the discovery and use of natural resources previously unused. But the time has come to inquire seriously what will happen when our forests are gone . . . when the soils shall have been further impoverished, and washed into the streams, polluting the rivers, denuding the fields and obstructing navigation. We are on the verge of a timber famine in this country . . ." A plea is made for legislation providing for the wise utilization of forests and conservation of water resources.

Quoting from a lecture by J. T. Rothrock, the writer points out that one-sixth of the State of Pennsylvania is unproductive, depopulated, and fast going into a desert condition. "Not only is the soil which we have denuded of timber in great part unfit for any other crop than timber, but owing to neglect, it is fast being further impoverished by the fires and floods which are allowed to sweep over it without adequate restraint. If there is one fact that we may consider as proven in the latest utterance of science it is that forests do aid in conserving the rainfall, and in so far maintain the even flow of water in our streams and springs."

Pittsburgh flood commission report is discussed. "The report has a valuable appendix on 'The Forest Conditions on the Allegheny and Monongahela River Basins,' giving the conditions of the forests and humus on the watersheds of these streams, and showing the effects they exert on the runoff and erosion. In summing up it states that there is a constant deterioration of the soil, humus and forest growth. Erosion seems to be confined almost entirely to cleared land . . ."

"It seems well-nigh impossible to awaken the people of this country to the danger that threatens our prosperity through our continual indifference to the forestry question." The elements are turning abandoned land into a desert, the writer claims.

The object of an extensive survey, started by the Forest Service, as to the location and area of forests needed on the Mississippi watershed as a part
of flood prevention and control is to bring out on this enormous drainage basin the area or watersheds where, on account of rainfall, character of soil, topography, etc., forest cover has an important protective value.

The author discusses excerpts from Floods and Their Causes (Lippincott's Magazine, August 1889), in which it is stated "decadence is chiefly due to the devastation of river-floods, caused by the agency of man . . . by the disappearance of arboreal vegetation, and especially by the destruction of the land-protecting highland forests." A plea for protection of forests is made.

This article deals mainly with forest conservation in India, where lumber exploitation has in many sections so denuded the highlands and slopes that excessive erosion and gradual silting up of rivers are now a national problem. The methods of control used by the forest department of the India Government are discussed.

The writer discusses the changed flow from a watershed at Wallace, Idaho, resulting from forest fires. "In view of the situation, the Forest Service has undertaken to reforest the denuded watershed. The experts of the department, however, point out that the planting will probably have no immediate effect, yet it should influence run-off as soon as forest conditions are restored, and re-establish eventually a more stable streamflow."

A gully on a southern homestead is pictured and its start traced to the removal of trees once covering the slope. "Reforestation is an effective means of controlling run-off water and of reclaiming land which has been ruined by gullies and washes."

The report of an investigation of the Mill Creek watershed in Pennsylvania for the conservation of available water supply and prevention of alternate floods and droughts is given. The writer cites two important objects attainable by applying improved forest methods: "A more uniform flow of water will result from such management, and the supply will not be affected, as it is at present, by the washing and erosion from denuded areas . . . By the proper management of this forest it can eventually be made a source of considerable income, without lessening its value as a cover."

"There are many things in nature which withdraw themselves for the present from exact investigation and measurement, and yet we can by mere reasoning arrive at a conception of the truth, although we cannot prove it. The influence of forests on floods is one of these things." Destruction of forest cover causes increased surface run-off.

The writer discusses the paper of J. R. Sage, chief of the Iowa Weather and Crop Service. "North America is the best-watered of all the grand divisions of the globe, and this was the cause of immense forests with which the pioneers in settlement found much of the country covered. There will never be a season where the United States shall fail to produce sufficient food for the people." He advises the preservation of forests and continued tree planting. "He holds that if one-fifth of the land were devoted to timber
growth there would be a greater yield of crops on the remaining four-fifths, and prophesies that in the coming era of intensive farming, forests and woodland will be important factors."

ANONYMOUS.

INFLUENCE OF FORESTS ON WATER RUNOFF. Forest Leaves 8: 167. October 1902.

It is estimated that forest-covered soil retains 25 percent more of the annual precipitation than does similar nonforested soil.

Four photographs comprise this article illustrating the effectiveness of locust trees in preventing erosion at the Sherman Stooksbury project in Union County, Tenn.

A comment on the legislation which provides for the Civilian Conservation Camps and its costs. The writer contends that communities, rather than the Federal Government, should have shouldered the responsibility of training the youth of the country.

Exposition of the destruction of forest land in the greed for banana extension. "The restoration of fertility to the soil presents a more impossible point than the maintenance thereof through the careful observance of ordinary commonplace practices."

H. M. Chittenden's paper on the relation of forests to stream flow. Amer. Soc. Civ. Engin. (Proc. September 1908) is reprinted, and some of his claims are challenged by the author who doubts the importance of forest influence on stream flow to the extent generally believed.

The black locust is found to be extremely useful in reforestation and soil-erosion control because of its fibrous, spreading root system in holding soil, and its ability to thrive in dry or poor, sandy soil. The author points out its susceptibility to borers.

SINKING MONEY INTO DEAD FOREST LAND. Business Week, p. 52. October 24, 1936.

"There are few things more vital for the future of America than the preservation of her forests, and there could hardly be a more irrational way of trying to preserve American forests than the way of the National Forest Reservation Commission. For the commission, instead of putting its money into live forest land, is putting it into land that is dead, and that has practically no chance of being brought back to life . . . We ought to stop buying such land and begin putting out money into virgin timber . . . We would be doing something to save American forests and to promote flood control, soil enrichment, the conservation of wild life, scenic beauty and the magnificent joy of outdoor recreation."

600,000,000 TREES FOR EROSION CONTROL. Amer. Forests 41: 603. October 1935.

"Approximately 600,000,000 trees and shrubs will be produced by nurseries of the Soil Conservation Service . . . A large share will be used in the reforestation and afforestation phases of erosion-control work on farm and grazing lands."

"Thousands of tons of top soil are being sent into the Pacific Ocean every year through the ruining instead of the working of the soil." Defines the relation of forestry to soil conservation. "Foresters can entrench their profession in no better way than by showing the public that forest practices such as fire protection and tree planting are vital to the continued prosperity of our country."

STOPPING WASH IN DITCHES. Wallaces' Farmer, 57: 228, illus. April 16, 1932.

The use of cottonwood, willow, and black locust trees as control measures for ditches and gullies is advocated. Gives detailed instructions for planting trees or cuttings of all three species. A diagram shows how to plant wide ditches.

Describes and gives methods of planting for erosion control the following trees: Black locust (Robinia pseudoacacia), honeylocust (Gleditsia triacanthos), bois d'arc (Toxylon pomiferum) and Russian mulberry (Morus alba tatarica). Includes drawings of leaves and fruits.

Describes catalpa, green ash, hackberry, cedar elm, and other elms, as to habitat, growth, uses, and value in control of erosion.

TREES VS. SOIL EROSION. Timberman, 28: 35. October 1937.

The results of studies on the effect of forest growth in the prevention of erosion in Tennessee and Iowa are presented. "It was found that the average run-off of surface water during the periods of heaviest rains was some 50 percent greater on the watershed with the least timber"

The writer discusses lectures by Joseph T. Rothrock and John Gifford on The Relations of Forests to the Surface of the Country and Damage from Forest Fires in New Jersey in 1895, respectively. "Dr. Rothrock said it was a well-established fact that forest lands hold four-fifths of all the water which falls upon them, distributing it gradually upon the soil. In cleared land, on the other hand, four-fifths of the water runs off and only one-fifth goes to the soil." The importance of trees is stressed. Having outlined causes and effects of forest fires, Gifford advocated measures for future protection as, single lines of trees planted along railroads and large tracts of wood intersected by cleared spaces the width of a road.

AHEERN, G. P.

Short accounts on forestry in each State are brought together in this volume. "The first attempt, so far as the writer knows, to piece together by States an up-to-date story, largely on official data, concerning the forest and wood supply in the entire country . . . Not one acre out of eight of our original forest remains, and the percentage of this remnant devastated each year is greater than ever before . . . We cannot get on without wood, and forests are needed not merely to supply timber and to make forest industries permanent, but to protect streams and soils and wildlife. . . . The immediate and urgent job is to stop forest devastation and start restocking in 125 million acres of remaining commercial forests in private ownership." A program to restore and preserve America's forest wealth is presented.
Andrews, F. M. (2245)

Data are presented and literature is cited on special studies made to ascertain to what extent the flow of various streams is dependent on forests and surface conditions in general. "Notwithstanding the presence of other factors which may help to produce or prevent floods, the fact remains that deforestation is by far the greatest cause of floods . . ."

Appalachian Forest Research Council.

Among the subjects covered at this meeting were the following: Forest Management in North Georgia, by L. I. Barrett; Coastal Plains Studies, by A. L. MacKinney; Forest Biology, by T. D. Burleigh; Streamflow and Erosion, by C. R. Hursh, with comments by H. H. Bennett and E. D. Burchard; Research and the Administration of Southern Appalachian National Forests, by J. C. Kitcher; and, General Review of Progress of Investigations by the Appalachian Forest Experiment Station, by E. H. Frothingham.

Ashe, W. W. (2247)

"The influence of the forests in protecting reservoirs used for power purposes varies in different regions with the differences in soil, surface, and precipitation. In this bulletin those regions in which this influence is most important . . . are pointed out, also the value of forest cover and the financial limitations in its employment to prolong the utility of a reservoir are discussed."

Auten, J. T. (2248)

"The key to success in any program of forest restoration and continuous successful management depends on a detailed knowledge of forest soil." The author discusses the three-layer system of virgin forest soils and, with illustrations, shows the results of faulty agriculture, which "has lost the American people an empire . . . Reforestation will solve the erosion and water conservation problems on hill land, but that reforestation cannot be done 'hit or miss' . . . Along with this soil saving must go research in forest soil and a delving into the simple A-B-C soil alphabet which will lay the groundwork for replacement of the forests, not only to provide needed lumber but to make our hill soil safe for all time."

Effect of Forest Burning and Pasturing in the Ozarks on the Water Absorption of Forest Soils. U. S. Dept. Agr., Cent. States Forestry Expt. Sta. Note 16 (Col.-Ohio) 5 pp., illus. 1934.

"The importance of forests in building and retaining soil porosity and water-absorbing capacity can hardly be overestimated. In many regions, failure of springs and streams, lowering of ground water levels, and serious incrase of soil erosion are caused by removing forests from non-agricultural land, or by destroying the effectiveness of forest cover through repeated years of excessive grazing." The author presents test results made on soils in Arkansas and Illinois.

Ayres, H. B., and Ashe, W. W. (2250)

"The portion of the Appalachian region under consideration extends from Virginia southwestward, and comprises parts of North and South Carolina, Tennessee, and Georgia, between the Piedmont Plateau on the southeast and the Appalachian Valley on the northwest . . . Except along the crests of the ridges, one can hardly travel a quarter of a mile in an undisturbed portion of the forests without finding pure, cool water. These waters filter through moss and leaves a short distance, then follow the clean, stony bed of the brook down the mountains . . . Variation in stream flow has been notably increased by the clearing away of the forest near the sources of the streams."
AYRES, R. W.

The story is told of Jack Talbot, the pioneer, who deliberately burned off the soil cover 50 years ago in the belief that pasture would be improved. "His idea resulted in floods that cost $5,000,000." Photographs of rock check dams, firebreaks, and truck-trail construction accompany the article. Figures on cost of forest cutting and tons of soil wasted are given.

BAIRD, R. W.

"In middle Tennessee, fifty years ago, there were 'lasting' springs on every farm. Since the timber has been cut off many of these 'lasting' springs have become 'wet weather' springs." Forest growths serve to retain the rainfall and thus feed the springs and maintain more volume of water in brooks, creeks, and rivers, for longer periods of time. The need is emphasized for study and care of young forest growth, planting and seeding of trees on all land not needed for farm crops. Forests are necessary to good health and streams that have their sources in the woodlands have the purest water for drinking and other purposes.

BAKER, W. M.

An account of the work of the Central States Forest Experiment Station at Columbus, Ohio. Among the studies undertaken there is the determination of the use of forest cover for the conservation of soil, water, and wildlife resources.

Baldwin, H. L., and Brooks, C. F.

"The purpose of this report is to summarize the facts concerning the present influence of forests on floods in New England and especially in New Hampshire." Discusses rainfall interception by trees, snowfall interception, obstruction of run-off, causes of snow melting, critical areas on which melting and run-off are severe, and results to be expected from planting.

Literature cited, pages 21-23.

Baker, W. M., and Shirley, H. L.

The purpose of this paper is to bring out what practical steps have been taken in European countries and what has so far been done in the United States toward assuring supplies of forest tree seed from known sources and of desirable character. A brief orientation of the subject is given, followed by an account of how seed origin is controlled in other countries.

Bates, C. G.

The condition of hilly southwestern Wisconsin and adjacent Minnesota is pointed out by comparing various measures with the standards set up by the Wagon Wheel Gap stream-flow experiment in Colorado. Despite considerable differences in climate and marked differences in soil conditions, it is shown that forest and other vegetation take care of the water situation about equally well in the two areas and that it is only when bared soils enter into the picture that serious consequences are felt.

The author describes the work of the Fremont Forest Experiment Station on Mount Manitou. "A thousand willow cuttings were planted each spring from 1910 to 1916 in the moist bottom of the ravine where there
was an underflow . . . Although large volumes of water came down this ravine in 1922 and 1923, no gravel has been carried out of it. Instead, it is slowly being filled.”

BAUER, H. L.

“As the chief vegetative cover of the watersheds of southern California, chaparral is of great economic importance in that it lowers the loss of water through surface run-off, increases the flow of clear water in streams, and decreases the probability of serious floods and erosion. The investigation herein reported is concerned primarily with the moisture relations in a representative area of California coastal chaparral.”—Introduction.

BENNETT, H. H.
The author makes a survey of nature’s most destructive force—water, and by photographs of land devastation such as canyons, gullies, and ravines, shows its effect on soil. “The creation of the great system of National Forests in the West affords partial protection at least against the destructive wrath of many of the more important rivers.”

The author discusses some national aspects of the soil-erosion problem and describes the ravages of soil wastage in various parts of the country. He comments on the results of a soil-erosion survey of the central part of the Appalachian system. “Annually our farmers are losing at least $200,000,000, by erosion. The actual loss to the Nation is far greater than this; it is incalculable . . .” Data on terracing are given, and reforestation is cited as an important remedial factor.

Overwash of deep blankets of coarse sand and gravel was brought under control by the planting of Scotch pines to prevent the sand from drifting. “That Vermont’s hills for the most part were securely anchored with trees and herbaceous growth, ferns, and moss, and blanketed over with a sponge-like covering of forest litter, with a highly absorptive layer of forest-mold beneath, explains why only a part instead of all the meadow lands of the flooded valleys were covered with erosional-debris of inert sand, gravel and stones.”

BERTHOUD, E. L.
Mountain slopes have been denuded of trees by miners and by destructive fires. This denudation “has furrowed with ravines and covered with sand and loose rock acres of good soil.” Need of forest legislation, advisability of forest culture, and restricted sheep grazing are treated.

BIRCH, T. W.
The history of British forests and forest laws is divided into four distinct periods: (1) Destruction; (2) private enterprise; (3) enquiry—all of which led to (4) state action. A report, commonly referred to as the Acland report furnished the starting point for state entry into afforestation on a large scale. Three reasons, chiefly economic, are given for the present policy, but it is said that “two other aspects of afforestation are worthy of mention, namely rain run-off and enclosure. The first of these is not a question of soil erosion, so frequently associated with deforestation, for the areas under consideration often bear a peaty turf, and erosion is negligible. It is concerned with floods, which periodically are a source
of expense and anxiety in some thickly populated districts... The afforestation of well-chosen districts may well regularize run-off, and decrease the liability of these rivers to flood."

BODE, I. T. (2264)

How tree planting fits in, what to plant, sources of material, how to plant, and the use of supplementary methods in erosion control tree planting are discussed and illustrated.

BREGGER, J. T. (2265)

The author points out that black walnut, aside from being a good nut and lumber producer, is excellent for steep, severely eroded land and rocky slopes unfit for cultivation or pasture. Hickory trees are also recommended for thin soils and places too dry for black walnut.

BROOKS, C. F., AND BALDWIN, H. I. (2266)

"No policy of flood control can neglect to take into account the effect of forests in reducing the amount of water, in the form of rain, or snow, that reaches the ground, in reducing the rate of release of water from melting snow, in promoting infiltration, and in obstructing the rate of runoff and conserving soil."

BRUKER, M. B. (2267)
HERE ARE FORESTS; THEIR RELATION TO HUMAN PROGRESS IN THE AGE OF POWER. 27 pp., illus. U. S. Forest Serv. 1936.

This article was prepared for the third World Power Conference. "One-third of the United States is forest land. Along the road toward higher civilization we have come beyond the Age of Steam into the Age of Electricity. We have a rising population which makes steadily increasing demands on the limited sources from which electric power now comes. Can our forests increase the supply?" The author answers in part: "By protecting the watersheds and by producing fuel, the forests can help keep the American 'grid' straining full forever." The relation of electric power to trees is pointed out through silting causing dams to become useless. Trees planted along water courses for holding the soil in place will prevent this.

BURGER, H. (2268)

The author writes of forest-conservation methods in Switzerland and his inspection of the Rappengraben and Sperbelgraben watersheds, scene of the stream-flow experiments of the Swiss Forest Experiment Station. "Only a vigorous and well-kept forest, made up of the proper species of tree, can lessen the fear of flood and only a well-kept forest can insure keeping the earth in a correct condition to conduct large volumes of quickly sinking water to the underground reservoirs which feed our rivers in times of drought or frost, work the mills, the sawmills, the factories and the electric power plants."

The foreword is by A. C. Ringland.

BURRE, EDWARD. (2269)

Describes the basin and its local soil and forest conditions, gives precipitation and run-off data, and discusses climatic and general flood conditions. The author concludes that the frequency of floods has not been decreased by reforestation or increased by deforestation.
BUTLER, O. M.,

AMERICAN CONSERVATION IN PICTURE AND IN STORY. 144 pp., illus. Washington, D. C. 1935. [Published by The American Forestry Association.]

Partial contents: An Historical Survey of Forests and the Part They Played in Pre-historic and Present-day America; The Story of Lumbering; The Dawn of Conservation; The Growth of State Forestry; Indian Forests; Problems of Water and Conservation of the Soil; The Civilian Conservation Corps; Conservation and the Lumbering Code.

CABIANCA, S.

"A summary of investigations by others hearing on the subject is presented under the headings of evolution of land reliefs, retention of water by the soil, evaporation, control of run-off and stream flow, and erosion. A list of 20 references is included."—Expt. Sta. Rec. 67: 607. 1932.

CALIFORNIA FOREST AND RANGE EXPERIMENT STATION.

Outlines experiments to be conducted and the methods of attack. "The investigations to be conducted on the forests have, in general, a two-fold purpose; first, to make a quantitative determination of the relation of chaparral vegetation to the yields of usable water from mountain watersheds and of its function in reducing erosion; second, to develop methods of management or treatment of the vegetation in order to obtain a maximum yield of usable water with a minimum amount of erosion."

CALVIN, Ross.

A description of the flood of Silver City, N. Mex., in 1895 and its results. Denudation of woodlands and overgrazing, the author states, were among the chief causes of the increasing frequency of floods. The benefits of Federal control over forest reserves are shown.

CARY, Austin.

The writer has witnessed the development of forestry through 40 years of service and reviews its steps from the early lumber industry. Reforestation projects in the Southern States in 1920 are outlined. Timber growth and fire prevention are stressed.

CHAPMAN, A. G.

"Although species most suitable for quickly developing forest cover are of first consequence, especially for erosion control planting, attention should be given to the relative values of the final planted crops . . . Until we can secure substantial data from mature stands of carefully planned experimental plantings, we are justified in making large scale plantings only on the basis of ecological principles applied to the native species of the region."

CHAPMAN, H. H.

The author cites the pioneer work of Dau Yang Lin, graduate of the Yale Forest School, in studying the effects of floods in China and the influence of forests for control. Erection of harriers, dams, and reservoirs and reforestation of denuded slopes are the only hope of checking soil erosion. "... without reforestation the plains of China will continually be subject to floods of greater severity."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

CHITTENDEN, H. M. (2277)
FORESTS AND RESERVOIRS IN THEIR RELATION TO STREAM FLOW WITH PARTICULAR REFERENCE TO NAVIGABLE RIVERS. Amer. Soc. Civil Engin. Trans. 62: 245-318, illus. 1909. [With a discussion by F. Collingwood and others, pp. 319-546.]

This paper describes the effects of forests upon rainfall run-off, the influence of forests on snow melting, and artificial reservoirs in their relation to stream flow. The author states among other conclusions that the bed of humus or debris that develops under forest cover retains precipitation during the summer season more effectively than soil or crops on deforested land similarly situated; that the effect of forests on the run-off resulting from melting snow is to concentrate it into brief periods thereby increasing the severity of freshets; that soil erosion does not result from forest cutting in itself but from subsequent cultivation practices.

CHURCH, J. E., JR. (2278)

Data are presented "in modification of the belief of some that the forests tend to cause rather than to prevent floods."

CLAPP, E. H. (2279)

In an address given before the Connecticut Engineering Congress at Bridgeport, Conn., July 25, 1936, the author indicates the close relationship of reforestation to soil conservation and flood control, and proves that a solution of the soil-erosion problem is not possible without the aid of coordinated reforestation practices. Data on erosion and run-off are given for localities in Wisconsin, the southern Appalachians, and California.

CLELAND, H. F. (2280)
EFFECTS OF DEFORESTATION IN NEW ENGLAND. Science (n. s.) 32: 82-83. July 15, 1910.

The author points out the less disastrous effects of deforestation in New England as compared with sections of the South. "The reason for this difference in the amount of erosion under similar conditions of slope and vegetation between glaciated New England and the non-glaciated regions to the South is to be found in the soil and climate ... the till of New England is not favorable to erosion because the pebbles and boulders of the till are constantly diverting the water ... and lessening its velocity."

CLOTHIER, G. L. (2281)
RECLAMATION OF FLOOD-DAMAGED LANDS IN THE KANSAS RIVER VALLEY BY FOREST PLANTING. U. S. Forest Serv. Cir. 27, 5 pp. 1904.

Lands injured by the flood of 1903 are classified as sanded, eroded, and caving river banks. Recommendation is made for planting eroded land to black walnut or hardy catalpa. The best way to manage land that has eroded and subsequently silted is to let it grow up to willows and cottonwoods. "The trees will collect the silt at each rise in the river, and will assist in building the soil up to its former level."

CRAIG, RONALD. (2282)

The author discusses the tax-default acreage of various Southern States and from studies made concludes that the primary cause of forfeiture was mismanagement and lack of protection of timber by the owners prior to forfeiture.

Cristadore, C. (2283)

"Unless the loyal support of our citizens is given the government to sustain the Mississippi reservoirs and Forest reserves, it would be goodbye forever to all dreams of a water-borne commerce which would enrich the
The dangers of deforestation, the denudation of watersheds, and the necessity for State and national reforestation are stressed.

Cross, P. G.

In Chapter 1, Trees and National Welfare, the author says: "You are committing economic suicide when you ignore trees in the scheme of life. He who recklessly slaughters trees with no thought for the future is betraying his country. Just as prevention is superior to cure, so conservation is superior to reforestation. Not flood control, but flood prevention, is the great desideratum." Chapter 26 on Soil Pointers discusses plant food, drainages, and soil qualities in relation to prevention of soil erosion. "Each year erosion bites from the farm area in the United States the enormous total of 63,000,000 tons of top soil. Unless you mend your national ways erosion will destroy you!" Tree treatment, pruning, and surgery are discussed.

Crumley, J. J.

The author questions whether roots of trees actually bind the soil together and prevent erosion on hillsides and bank cutting along streams. In support of his contention he says: "The mulch covering over the forest floor in an unpastured and undisturbed woodland has a remarkable capacity for holding water. Herein is the source of protection rather than in the roots of the trees. We have noticed also that erosion will take place in soil filled with the roots of trees if the protective covering, through pasturing or exposure to the winds, has been destroyed from the surface of the ground."

Culbertson, G.

"It is the purpose of this paper to treat of some of the questions, geological and meteorological, as well as economic, arising from the deforested conditions found in the hills of southern Indiana . . . One of the most striking effects of deforestation of this region has been upon the 'immediate run-off' of streams . . ." See also Ind. Acad. Sci. Proc. 24: 27-37. 1908.

Cuno, J. B.
Utilization of Black Locust. U. S. Dept. Agr. Cir. 131, 10 pp., illus. 1930.

This circular describes planting, cutting, marketing, and general utilization of black locust. Among other advantages is its ability to grow vigorously and rapidly when young under a wide range of soil and climatic conditions, combined with abundant reproduction by seeds and by stump and root sprouts, which makes the tree valuable for checking erosion on denuded slopes.

Dana, Samuel T.

The protection given by forest cover for combating soil erosion is pointed out. "The action of the forest in reducing surface run-off tends also to regulate the flow of streams. Excessive erosion may interfere seriously with navigation by filling the streams with material which is deposited in their lower reaches and in the harbors into which they empty." The damage to storage reservoirs by siltation is considered.

Data are given on the injury to farm lands and agricultural and other industries of the United States resulting from erosion and floods. A direct relation between these and deforestation of the higher areas is shown.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

DANA, SAMUEL T. (2290)
Damage resulting from interference with forest cover is shown in the story of a buried ranch, and other examples.

The history of precipitation and water power development in the West is reviewed at length. "Every user of water which originates in the National Forests—and this includes by far the greater number of water users throughout the West—must look to the forest for safeguarding his supply."

WHAT THE NATIONAL FORESTS MEAN TO THE WATER USER. 52 pp., illus. U. S. Forest Service. 1919.
"Perhaps the most obvious relation that exists between forests and water is the tendency of the tree cover to check erosion." In describing successful irrigation the writer presents photographically what water will do before and after irrigation projects are established.

DAVENPORT, WALTER. (2293)
This article states the opinion of a Government fire lookout in the Ouachita National Forest regarding the C. C. C. The writer contends that the new roads built by the C. C. C. aid greatly in fighting forest fires.

DEMON, E. L. (2294)
"In order to stop erosion in this region it is absolutely necessary that a new forest cover be established on an extensive scale."

DETWILER, S. B. (2295)
"Shipmast locust (Robinia pseudoacacia var. rectissima) is a much better tree than the ordinary black locust (Robinia pseudoacacia L.) in erosion control operations. Shipmast locust overcomes many objections to use of black locust in erosion control operations, because of its straighter trunk, greater resistance to horer-attack, and exceptional durability of its wood in contact with the soil." Its enduring quality for fence posts also is pointed out.

DOCK, M. L. (2296)
FORESTRY, DESTRUCTIVE AND CONSTRUCTIVE. Forest Leaves 7: 139-142. June 1900.
The author reviews Pennsylvania forest conditions. The result of present conditions on mountains, valleys, and communities of the higher portions of the State are compared with the intensive forestry methods of the Black Forest. Cuttings and forest nurseries are discussed.

DONNELLY, C. (2297)
Reafforestation for the control and prevention of floods is advocated. Individual farmers should cooperate in care of small wood lots and wildlife. "Forests supply water to springs, creeks and wells in much the same manner as a reservoir."

EBY, HARRY G. (2298)
Figures on soil-eroded acreages in various States are given. "Studies of soil erosion problems should be correlated with such important subjects 5893"—38—21
as soil analysis, plant ecology, rainfall and climate, as these factors apply to each section. In reforesting eroded land, the forester may find it necessary to content himself with the growing of a tree crop whose wood is of secondary importance. Various species of hard pine are ideally suited for planting on impoverished soil where moisture conditions are fair.

Fankhauser, F. (2299)
THE SIGNIFICANCE OF AFFORESTATION IN PREVENTING AND CORRECTING TORRENTS.
“It will be seen that the torrent to be conquered is attacked by the forester at its source where its forces are as yet scattered, and thus easily tamed. Here by means of forestation we are able on the one hand to retard the water, and on the other hand to secure the soil. In this way only is a lasting remedy of the evil possible.” The author cites examples of successful afforestation on steep slopes of France and Switzerland.

Fernow, B. E. (2300)
The author speaks of “a small trial plantation in the sandhills of Nebraska, described in the Annual Report for 1891.” He is speaking of conifers and says that “mixed planting and close planting are undoubtedly the proper methods of establishing quickly forest conditions.”

Finley, W. W. (2301)
The author discusses the broader issues of the soil-conservation problem and recommends various land-use policies for control. The relation of stream conservation to forestry and soil conservation is shown.

Forbes, R. D. (2302)
Remarks made at meeting of American and Pennsylvania Forestry Association, Eagles Mere, Pa., September 10, 1936. W. C. Lowdermilk’s percolation experiment is described.

This article discusses the important role played by forests in regulating stream flow and the influence of vegetative covering on erosion and run off. The areas considered are the Tennessee Basin and southern California.

Garrison, F. L. (2304)
EFFECTS OF DEFORESTATION IN CHINA. Forest Leaves 8: 75-78. October 1901.
The history of China’s forests, floods, and agriculture is reviewed. Various causes of the extermination of forests are suggested such as rainfall decrease in frequency with increase in violence, the hunger of the peasants which forces them to eat grass and roots, the fear of wild beasts, and the destruction of cover for them.

Gifford, J. (2305)
The writer tells of a Dutch society, Nederlandische Heide Matschapij, similar to the New Jersey Forestry Association, whose “objects are to promote the exploitation of the dunes, heaths, and other desert places; to give advice; to form nurseries, and sell trees at cost price; to educate the people in the principles of forestry . . .”

Gleissner, M. J. (2306)
THE RELATION OF THE SURFACE COVER AND GROUND LITTER IN A FOREST TO EROSION. Forestry Quart. 12 (1) : 37-40. 1914.
“The author cites the experience in a Bavarian forest to show that the constant removal of forest litter is an important cause of erosion on hill
sides. The prevention of erosion under these conditions by the construction of a series of horizontal transverse ditches is here described."—Expt. Sta. Rec. 30: 743. 1914.

Goble, W. C. (2307)

The writer presents examples of forest soil protection. "The forests of the hilly section of our State have played an important part in the conservation of the soil by keeping it from eroding or washing away..."

Goodman, R. B. (2308)

The three phases of forest protection, namely, prevention, detection, and suppression are analyzed. Forest taxation, surplus and exhaustion, multipurpose forestry, and watershed protection are among the points covered in this paper. Presented at the thirty-fifth annual meeting of the Society of American Foresters, Atlanta, Ga., January 27–29, 1936.

Grattan, C. H. (2309)

Discusses forest denudation and its consequences on an area of 71,000,000 acres in the northern portions of Michigan, Wisconsin, and Minnesota. "At present, but one-third of the cut-over is in farms and but one-eighth of the area in farms is in crops. Between 1920 and 1930 there was a net increase of 2,600,000 acres in agricultural use."

Graves, H. S. (2310)

This article deals with various aspects of forest conservation in the Pacific Northwest. In discussing soil washing and floods the author says: "To eliminate such floods it is essential to eliminate the conditions which give rise to them. With the watersheds under protection, grazing is adjusted to give nature a chance to revegetate the untimbered slopes; timber cutting is so planned as to protect areas of critical position against erosion and floods; and investigations are under way to develop feasible means of repairing damage where erosion has progressed to a degree beyond repair by nature alone."

Greeley, W. B. (2311)

The author discusses statements made by Gifford Pinchot. It is contended that floods have become a national problem, largely due to deforestation, clearing of lands, and drainage of swamps. The necessity is stressed for working out means for permanent control of rivers. Levees are recognized as the first line of defense, while spillways, reservoirs, reforestation and other relief measures, with forestry the handmaiden of engineering, are essential for flood control.

Green, H. A. (2312)
WORN-OUT LANDS. Forest leaves 3: 18–19. April 1890.

The author describes the common farming practice in the South of working a piece of ground as long as it will produce and then discarding it. He claims that these worn-out lands can be restored by planting trees. The China tree, pride of India, ailanthus, catalpa, and poplars are recommended as quick-growing trees for this purpose.

Griffin, A. A. (2313)

Studies of snow melting on three separate watersheds were carried out which show the value of forests to irrigation interests. Areas described are Tumalt, Wind River, and Yakima. In his summary the writer states that the depth of snow retained was considerably greater in a dense forest than in an open forest, at least during the latter part of the melting season.
HAIN, F. H.
Discusses the comparative value of forests and dikes in flood prevention and recommends tree planting for protection against the dry winds of Indian Territory, Kansas, and Nebraska. The need for the Government to engage in forestry is pointed out.

HALL, A. G.
A study of soil washing and its prevention through protective vegetation and forest plantings is presented.

HALL, W. L.
In discussing the Monongahela watershed, Hall attributes the increased precipitation and cooler climate which causes less evaporation to the high elevation of the source of this watershed. "In consequence of this there is more water to be discharged from the mountains. The whole upper part of the Monongahela watershed is made up of steep slopes which allow the water to escape rapidly. The soils of the Monongahela watershed, while not subject to such violent erosion as the soils of the watersheds farther south are nevertheless easily washed away where the slopes are steep and the forest cover lacking." As an element of damage the author considers erosion second only to floods and advocates forest preservation.

HANSEN, G.
"The plow stirs the valley soil, the log-team drags deep furrows over hillsides, and ax and powder assist the weak arms of man in his struggle to cultivate. But of all the agencies that combine to subserve such purpose, none has shown itself of such fierceness as fire . . . It is the mountain ranchers who sets them out, the man who struggles to create pastures in the timber-belt, and of his reasons and ways I write in explanation." The writer shows that where such conditions prevail the forest perishes, water vanishes, and the land is left desolate and unfruitful.

HAWGOOD, H.
Investigations regarding rainfall and percolation relating to water supply through forest influences are discussed by the author, who states that "the efficiency of foliage in mechanically arresting and condensing moisture is well known. If there are doubts, a walk through underbrush on a misty morning will carry conviction to the most sceptical."

HAWLEY, F. M.
Literature cited, page 405.

HEISLEY, MARIE FOOTE.
Among the many benefits derived from forest conservation and reforestation, soil conservation, and soil fertility with their attendant advantages are an important factor. This publication describes different aspects of forestry in various regions of the United States, forest utilization and protection, farm forestry (giving data on shelterbelts), and gives a brief review of Federal and State research in forestry.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

HETWAED, FRANK
(2321)
The longleaf pine region extends from North Carolina to Texas. "Studies to date reveal that soils protected from fire are much more penetrable and porous than soils subjected to fire."

HOLSIGER, S. J.
(2322)
The boundary line between the desert and the forest. Forestry and Irrig. 8 (1): 21-27, illus. 1902.
A brief history of the forests of Arizona is given. "Possibly there is no portion of the United States where the necessity for forest preservation is more keenly felt than in Arizona. I know of no section of the country, except it may be Southern California, where it is of such vital importance. During the past twenty years the farmers in the fertile valleys of Arizona have been absorbed in the herculean task of constructing systems of irrigation." Discussing recent floods from forest destruction, the author states: "The forests in question usually consist of mesquite, Cat-claw, Palo-verde, Tornillo, Ironwood, Chapparal, Manzanita, Walnut, Cherry, Sycamore, Ash and a dozen species of Oak. Even the numerous species of cacti play an important part in the struggle against erosion."

HOOD, GEORGE W.
(2323)
This bulletin presents data on the care of planting stock, methods of planting, gully-site planting for erosion control, and forest planting other than for gullies.

HORSTETLER, A. W.
(2325)
An interview is recounted with the inventor of what is known as an angular, submerged tree planting used to combat floods and soil erosion. Willow planting on many small tributaries of the Mississippi is recommended as a measure in flood prevention. "Continuous and even tree growth will prevent eddies and stop action of waves and currents. A score of trees springing from each willow log will make the whole face of the levee immune to erosion and burrowing animals. The silt reclaimed from the water sill makes levees thicker." The results of successful experiments are cited.

HURST, C. R.
(2326)
Analysis of observations made on the more mature old-field forest stands in the Appalachian Mountains.

HUISING, H.
(2327)
Deforestation has brought about devastation of fertile lands and laid them open to all the forces of erosion. With the aid of photographs the author describes and illustrates the havoc done by erosion of all kinds.

"The restoration of worn-out and abandoned agricultural land to forests has been successfully demonstrated. Plantations of northern white pine
on worn-out land in western North Carolina have produced excellent returns. Where abandoned fields are adjacent to timbered areas with seed trees, natural restocking will take place."

IOWA STATE PLANNING BOARD.

RESTORE THE FOREST COVER. A GRAPHIC BROCHURE. 27 pp., illus. December 1935. [Lithographed.]

"An attempt is made to show the need for reforestation in parts of Iowa. The results of deforestation and erosion are shown.

JACOT, A. P.

Discusses duff, mull, and white pine carpets, and the general nature of forest-carpet structure.

JOHNSON, E. W.

This bulletin gives advice on the selection of species, preparation of soil, planting and care of trees and shrubs for that section of Kansas considered unfavorable to the growth of many species because of climatic conditions.

JOHNSON, F. A.

Reforestation and restoration of vegetative cover in the Central States is the subject of this paper. Comments on the proposed great tree belt for the western plains are included.

JOHNSON, F. R.

Describes the havoc wrought by the flood of June 3, 1921, centering at Pueblo, Colo. "The protective action of trees in preventing erosion and in saving property was everywhere apparent."

JUDD, C. S.

"Hawaii practices forestry to increase water resources rather than to add to wood supplies, and one quarter of the land surface is managed for such purpose. Since the water comes mainly from forest areas, its quality and timeliness are vitally affected by the character of the forest. The relation between water resources and forest cover in Hawaii is particularly intimate and delicate and the natural balance must be carefully maintained to prevent its disturbance. The author describes his problems and his organization for managing the protection forests."—Editor's note.

KANTHACK, F. B.

The writer comments on the destruction of forest growth in Europe, Asia, Australasia, Africa, and the United States. He sites the policy of President Theodore Roosevelt for reclamation, irrigation, and forestry. The influence of rainfall and conservation of water supply in Australia are discussed at length. "Let us have forests established on the mountains wherever possible, but what we need immediately is a purely passive forest policy ... unless the true nature of the evil (forest denudation) is quickly realized, and protective measures taken, the reclothing of the mountains with vegetation will be a practical impossibility."

KAUFFMAN, ERLE.

CIVILIAN FORESTERS IN FLOOD TIME. Amer. Forests 39: 454, 455, illus. October 1933.

A brief description of the work being done by the C. C. C. in flood control, reforestation, and soil conservation in Colorado.
KELLOGG, L. F.

(2337)

The author asserts that the value of forest cover on nonagricultural lands for erosion control is now definitely established and points out the beneficial effects of black locust in improving the site and stimulating the growth of associated trees by the fixation of nitrogen. Planting methods and mixture of species are advised.

KITTREGE, J., JR.

(2338)

The high value of water from California mountain watersheds is pointed out and possibilities of increasing the water yield by forest management are suggested. "Run-off or streamflow is the residual water after the losses by transpiration, interception, evaporation and deep seepage have been deducted from the precipitation. The rainfall and the deep seepage are little, if at all, influenced by the vegetation. There remains, therefore, the losses by transpiration and interception of the vegetation and evaporation from the soil, which vary with the kind, size and density of the vegetation and are therefore water losses which influence run-off and are subject to modification by forest management. The changes in these three factors with changes in the age, size, and density of forest cover will be followed."

Literature is cited.

KOTOK, B. I.

(2339)

This article deals with results of experiments which show the beneficial effects of forest and other plant cover upon stream flow and water conservation. Surveys in the Mississippi uplands, the Rio Grande in New Mexico, the Colorado River watershed which will feed Boulder Dam reservoir in California and Idaho are described.

KRAEBEL, C. J.

(2340)

Studies in erosion recently conducted by the Forest Service in California are described and results given. Floods in the Verdugo Creek watershed in Los Angeles County, after a severe forest fire had swept the mountain slopes, and the data on run-off and erosion are described and illustrated.

LAKE STATES FOREST EXPERIMENT STATION.

(2341)

Contents: Early development; present conditions in the district (forest industries, present public forests, Indian forests, State forests); present forest land ownership; outlook for the future. Table 4 gives a general classification of land; table 5, area of forest land by forest cover types and condition classes; table 6, ownership of forest cover types and condition classes; table 7, area of State forests, 1935; table 8, area of forests under Federal control.

Measurement made at two stations in northeastern Wisconsin in the spring and fall of 1928 indicate that forest cover prevents about 20 percent of the total rainfall from reaching the ground.

LAMB, F. H.

(2342)

"In the interior of the State, lying between the Cascade Mountains on the east, and the Olympic Divide on the west, there is on the plains a forest of nearly pure fir, with areas of cedar, broken by many gravel prairies of thousands of acres in extent." The question as to whether these forests should be cleared for farm lands is considered. The writer contends that without the forests of Washington every rivulet in western Washington would,
during the floods of winter, become a raging torrent and overflow its bank, doing immense damage to the lands below. "It is best to keep western Washington in perpetual forest."

LEFFERTS, W.
Estimates America’s thick-forest area at 3,500,000 square miles four centuries ago and says that nearly three-fourths of this territory has since been deforested. The importance of the varied functions performed by forests is pointed out.

LONG, A. P.
Summary of paper presented before the British Waterworks Association, June 24, 1936, at Leeds. Among the points discussed are the influence of large forest tracts upon atmospheric humidity, survey of the area selected as a basis for its subdivision into plantable, unplantable, and agriculturally suited ground, and the choice of species and methods of planting.

LONG, A. P.
"The primary object of this paper is to consider some practical aspects of the afforestation of hill country . . . Improvement would appear to be possible in two directions namely, (1) a more intensive and improved agri-cultural utilization, and, (2) the adoption of other methods of utilization." Direct and indirect benefits derived from afforestation are outlined as one method in hill planting. Suitable tree species are recommended.

LOWERWILK, W. C.
Report of the chairman of the committee on forest influences and erosion control of the Society of American Foresters, prepared for submittal at the Atlanta annual meeting, January 1936, but not presented. The author touches on significant events of the past year and recommends that a resolution be passed to favor the continued support of forest influence studies by the Forest Service, and erosion and flood control studies by the Soil Conservation Service, for selected drainage areas with special reference to the role of native vegetation and of land-use practices in erosion control and in streamflow.

This is a brief contribution on the relation of forest litter to soil erosion control. "The loss of litter layers as a result of forest fires or whatever other cause not only reduces the storable water but also leaves the soil exposed to excessive erosion, products of which are carried by the resultant high stages to silt up and destroy the storage capacity of flood-control reservoirs, or to cover and damage valley orchards and farm lands with sterile outwashed sands."

Paper read at thirty-sixth annual meeting, Society of American Foresters, Portland, Oreg., December 16, 1936. Various movements are traced during the 250 years of American experience with soil erosion and its consequences which culminated in the Soil Conservation Act of 1935 (Public, No. 46, 74th Cong.). Definition of the program of the Soil Conservation Service in its relationship to that of the Forest Service is given, with emphasis on coordination of attack on the erosion-control problem.

"The Hoyt-Troxell report is an attack upon the widely accepted belief that watershed vegetation must be kept intact for the most favorable
Influence upon stream flow and erosion and flood control, and, that the negative values of the vegetation, because of transpiration losses, are far outweighed by the beneficial effects. The Hoyt-Troxell report has had wide circulation; from several parts of the world we learn that it has misled engineers as to the value of watershed cover for the region in which the study was conducted. The conflicting evidence of various recent contributions emphasizes the importance of correctly evaluating the factors involved and that a complete algebraic summation must be made of all plus and minus factors to furnish the correct basis for watershed protection measures. Dr. Lowdermilk's careful analysis of the author's data and conclusions provokes and calls for further discussion of this report and of investigation of the subject in general by foresters and engineers."—Editor's note.

Lowdermilk, W. C. (2351)

Shows that the chief forestry problem of China is to control accelerated erosion on sloping land. Sketches the general features relating to the utilization of forests of the past in order to define principles for future methods. Local problems are discussed for south, central, and north China. Discusses specific methods of erosion control such as check dams, planting in the floors of gullies with willows and poplars, and the use of quick-growing vegetation.

(2352)

"Extensive studies in northern and central China by the writer suggested the possibility of comparing quantitatively the influence of natural vegetation, chiefly forest vegetation, . . . with the denuded condition of adjacent slopes resulting from cultivation upon surficial run-off and erosion . . ."

(2353)

"Management of forested areas for water production, its control, and utility, have become of first importance in regions of multiple land use, and become the principal objective in semi-arid regions." The interdependence of vegetation and soil, accelerated erosion, an analysis of supply and disposition of meteoric waters are among the questions considered. Some experimental results to date, including experimentation in California, are described and illustrated.

(2354)

Gorrie, R. M., and Ainslie, J. R.

"The future prosperity of a considerable proportion of the world's surface is primarily dependent upon the control of erosion and the conservation of water." The authors declare that before this can be fully effective several objectives must be attained: The actual problem must be understood; where it is already active, erosion must as far as possible be checked; and the initiation of new erosion must be obviated. Erosion problems in Nigeria are reviewed.

(2355)

Lundy, J. P.

"So long ago as the time of the Greek philosopher, Plato, the destruction of hill and mountain forests was recommended as the main cause of destructive floods and torrents." The author quotes Alexander von Humboldt, considered the father of modern forestry, as saying: "The clearing of forests, the want of permanent springs, and the existence of torrents, are three phenomena closely connected together."
McCarthy, E. F. (2356)
The author maintains that forest litter is the best protection against soil erosion and quotes in support thereof the findings of various Federal and State agencies.

MacDonald, G. B. (2357)
TESTS OF TREE SPECIES FOR PLANTING UNDER DIFFERENT SOIL, MOISTURE, AND CLIMATE CONDITIONS. Iowa Sta. Rept. p. 97, illus. 1932.
"The black locust is discussed with respect to its value in preventing erosion."—Expt. Sta. Rec. 69: 58. 1933.

McGree (2358)
The author points out the effects of the industrial revolution in the early sixties. "So the cultivated acres were abandoned by thousands. Then the hills, no longer protected by the forest foliage, no longer bound by the forest roots, no longer guarded by the bark and brush dam of the careful overseer, were attacked by raindrops and rain-born rivulets and gullied and channelled in all directions . . ."

McIntyre, A. C. (2359)
Species of trees resulting in maximum benefit in the shortest time are discussed. "On denuded lands where advanced erosion is evident, nature must be aided . . ." Factors for consideration are climate and site; influence of insects, disease, animals; growth rate; aerial parts; forest litter and humus.

McLean, J. E. (2360)

Maddox, R. S. (2361)
CARE AND PROTECTION OF FORESTS. Resources Tenn. 5: 65-73, illus. April 1915.
"Land unfit for cultivation, and which should have been kept covered with trees, is a great contributor of soil to the floods of water that rush over it." Fire, run-off, and grazing are treated relative to forest preservation.

MADDOX, R. S. (2362)
The writer cites Tennessee as typical of erosion problems and reviews conditions in various sections of the State. "We must look for the causes of erosion to the clearing of timberland. Causes of erosion can also be traced to forest fires." In discussing reclamation of the lands he says: "At every point erosion touches forestry. Its results and causes, as have been seen, are forestry issues, and attacking the problem means the regeneration of many acres for permanent tree growth."

The increasing scarcity of lumber and its high cost are discussed. The author says that this situation "has been greatly augmented by the methods employed in handling our once forested lands . . . lack of proper conservation." Conservation work on waste areas and results, in eastern Tennessee are described. Photographs of gullied and wastelands before and after treatment are presented.

This article is the result of a geological survey made of gullied lands. Black locust, poplar, walnut, sycamore, Bermuda grass, and honeysuckle are recommended for gully planting after brush dams have made the foun-
dation. “It is a pretty safe guarantee that if a man carries out a scheme by which he restores his waste land, he will then have such understanding of the work and of the character of the soil that he can and will prevent it from wasting again . . . Thousands of acres of such land are primarily agricultural, by which is meant, land that can be readily perpetuated for growing crops, that under proper treatment will grow crops for all times.”

MAADOX, R. S. (2365) WEST TENNESSEE GULLIED LANDS AND THEIR RECLAMATION. Resources Tenn. 5 (1) : 8–22, illus. 1915.

“This article deals with an area of more or less eroded and gullied lands lying in a belt extending in a northeast and southwest direction through the State . . . the author recommends the planting in gullies of such quickly-growing and widely-rooting trees as the black locust, yellow poplar, black walnut, and sycamore, and such crops as Japan clover, wild honeysuckle, and Bermuda grass . . .”—Expt. Sta. Rec. 33 : 392. 1915.

Attributes the 1918–23 floods in Bohemia to the destruction of spruce stands by the nun moth and gives an analysis of observations made on the extent of floods in streams having denuded watersheds, as compared with stream flow in forested areas having about the same precipitation, geological conditions, and size and form of watershed.

“The author reports observations made on the progress of snowfall and subsequent melting in a virgin stand of western yellow pine in northern Arizona, and on an adjacent treeless park covering an area of several square miles. The observations, included the measurements of each successive snowfall and the total depth of snow at intervals of 7 days . . .”—Expt. Sta. Rec. 21 : 638. 1909.

The advantages and methods of forest conservation are described.

This bulletin shows the relation of forest conservation to soil-erosion control. The author stresses the importance of forestry in reclaiming gullies.

The writer maintained that protection of forests and foliage on mountain sides for the preservation of natural storage reservoirs was necessary. “The preservation of our forests means not only the preservation of water supplies for irrigation in the West; it means the preservation of water supplies throughout the whole country for power, for navigation, and for all the manifold needs for which the waters of the Eastern streams and rivers are used.”

The geological history of Mount Desert Island, Maine, and its hilltops ranging from 300 to 1,500 feet above sea level, now barren mainly from fires, is given. “First, these hills are anything but everlasting. In the granite there is often much feldspar, which, on exposure to air and moisture, crumbles to powder. Then there is iron—and this oxidizes, rusts, and the hard rock, on exposure soon crumbles.” Black spruce grows rapidly in this soil.
MEGINNIS, H. G. (2372)
Experiments conducted in Marshall County, Miss., are described and results given in tabular form.

It is pointed out that tree planting in the United States has always held a preeminent place in public thought over other forestry measures but in actual practice has lagged far behind. The author recommends national attention on forestation measures as a means of utilizing idle and unproductive areas.

MILLER, F. A. (2374)
Discusses the various ways in which the forest may exert a modifying influence on stream flow and soil erosion. Land erosion along streams is divided into two classes (1) that which affects the river banks, and (2) that which affects hills and slopes which form the river valley. Different treatment is recommended for each.

MILLER, JOAQUÍN. (2375)
WASHING AWAY THE LAND FOR WANT OF FORESTS. Forest Leaves No. 6, p. 35. February 1888.
This address was read before the American Forestry Congress in September 1887. He says in part: "I believe it is pretty generally conceded that our continent is being washed into the sea by way of the Mississippi and its thousands of miles of tributaries, on the one hand, and at the same time swept naked of its native forests by annual fires, on the other." He warns of danger from deforestation.

MOORE, W. L. (2376)
The author contends that forests are the effect and not the cause of rainfall, and that floods are not caused by cultivation. "Only the size of the continents and the height and trend of their mountain ranges affect rainfall, not forests or other surface covering ... Forests should be protected by the state, but not for themselves alone, and not because of any supposed beneficial influence on climate or floods." The impounding of flood waters is advocated; a comprehensive plan for the control of the rivers and floods of this continent should be worked out instead of wasting public money in protecting bush lots.

In studies for the conservation of national natural resources the author, from a meteorological viewpoint, takes issue with the generally accepted findings that forests control stream flow, both in high- and low-water stages. "It is my purpose to present facts and figures that do not support these views ... The fact that dead forests stand long after the streams have receded seems to prove that they are the last to disappear rather than the first, and therefore that their removal did not precede the drought but rather that the forests ceased to exist when the rainfall became deficient."

MORTON, J. N. (2378)
This paper was prepared for presentation at the Society of American Foresters on February 28, 1936. Constructive recommendations that will correlate forest practices as they apply to timber production, recreation, and wildlife management are given.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

This bulletin describes the kinds of trees adapted to different parts of the United States, 22 regions being considered. The study presents practical information on the adaptability of the trees.

MUNGER, T. T. (2380) AVALANCHES AND FOREST COVER IN THE NORTHERN CASCADES. U. S. Forest Serv. Cir. 173, 12 pp., illus. 1911.

Types of avalanches are discussed, and a study of the regions is presented. Description of the nature of slope slides and their relation to forest cover is given, the Berne and Wellington slides of 1910 being cited as examples.

The Department of Savoy in southern France is said to be more subject to sudden floods than any other locality in the world. This acute problem, together with destructive landslides, has been met by systematic reforestation as the only practicable flood-control measure of permanent value, superseding many years' use of levees.

---, AND SIMS, I. H., COMPILERS. (2382) FORESTS IN FLOOD CONTROL; SUPPLEMENTAL REPORT TO THE COMMITTEE ON FLOOD CONTROL, HOUSE OF REPRESENTATIVES, SEVENTY-FOURTH CONGRESS, SECOND SESSION, ON H. R. 12537 TO PROVIDE FOR A PERMANENT SYSTEM OF FLOOD CONTROL, AND FOR OTHER PURPOSES. U. S. Forest Serv., 70 pp. 1936.

A presentation of the various aspects of forests in relation to flood control. The relation of private and Federal ownership to watershed conditions, the program for adequate watershed protection, and methods of meeting management requirements on private land are discussed.

It is pointed out, among many other reasons for forest conservation, that "there is furthermore, an important relation of the forests to agriculture; every particle of soil upon our highlands is slowly moving toward the tide-water. It is merely a matter of time before the productive fertility of our hillsides will have taken its place in some stream, and be on its way to the ocean. This tendency we counteract by the use of fertilizers. The forests on higher grounds may be regarded as important factors in breaking up rock and furnishing decaying vegetable matter to restore the fertility which has been washed out of our fields, and whilst they do this they, themselves, are seldom much gullied or washed"

The extent of the influence exerted by forests on climate is dealt with. "Individual and communal action must supplement the State’s efforts by the establishment of windbreaks and the maintenance or creation of forest cover along stream banks." The writer thinks that the majority of forests exercise a regional influence on climate. Forests and rainfall, forests and streamflow, and forests and wind are discussed with reference to a paper by Raphael Zon (2376) and one by C. E. P. Brooks entitled "The Influence of Forests on Rainfall and Run-off (3036)."

A review and interpretation of the conclusions presented by Heinrich Walter in his book, entitled, "Ist die Prairie von Natur aus Baumlos?" "Among the many reasons that have been advanced in explanation of the absence of trees on the prairies are: the presence of salts injurious to tree growth; lack of typical forest soil organisms; dry summer winds; cold winters; deficient precipitation; and finally, that forests once occupied the prairies but were destroyed by fire and have been unable to return."
PERBY, A. A. (2386)
BALD PEAKS KE-CLOTHED WITH TREES. Farmer Mag. 34: 6, 15, illus. February 1937.
How soil erosion was checked on hilltops in Peel County, Ontario, by tree planting.

PETERS, J. G. (2387)
The removal of pine and hardwood forests without proper provision for restocking the cut-over areas, and the destruction by fire of young trees and other vegetation on watersheds of important rivers has often resulted in increased soil erosion, the siltion up of stream channels, and floods. This bulletin offers a solution for these problems.

PINCHOT, GIFFORD.
(2388) MILLION TONS OF SOIL WASHED AWAY ANNUALLY. Save Our Soil 1: 2. March 1937.
The author calls attention to the Ohio flood and declares that the restoration of forests and vegetative covering is a major factor in flood control and soil conservation.

The author discusses the national resources of the United States, the importance of forest resources and reforestation, and the relation of soil waste to deforestation.

FORESTS AND EROSION. Forester 7: 48. February 1901.
Quotes Vice President-elect Theodore Roosevelt: "The forest is a great sponge for absorbing and distilling water. It is the great preventor of erosion, and erosion is always the danger point in any irrigation system."

The author presents his views on questions concerning national-forest reserves and their uses, the relation of forestry to mining, grazing, irrigation, water supply, and the forest policy of the Government.

PRATT, J. H. (2392)
Summary of addresses given by Stuart Chase on Planning for Natural Resources in America, and by T. W. Norcross on Toward Stability in Our Natural Resources, at a meeting held in Washington, September 7-12, 1936.

PRESTON, J. F. (2393)
A description of the aims of the Soil Conservation Service in its reforestation program.

Paper presented at the thirty-sixth annual meeting, Society of American Foresters, Portland, Oreg., December 16, 1936. "The theme of this paper is that the soil conservation movement must have forestry as its chief ally. Forestry must replace other forms of land use on the steep and critically eroded land of the United States."

RAMSEY, GUY R. (2395)
TREES TO CONTROL SOIL EROSION ON IOWA FARMS. Iowa Agr. Col. Ext. Cir. 223: 12 pp., illus. 1936.
Practical information on gully control and methods of planting on sheet-eroded areas.
RANDALL, C. E.
LAND USE AND FORESTRY. Nation's Agr. 12: 3-4, 10, illus. May 1937.
The author outlines the objectives and program of the Forest Service, pointing out the effect of forestry, private and public, on soil conservation. Windbreak planting under the Clarke-McNary law is commented upon.

RANSDELL, J. E.
"The influence of forests in retarding run-off and thus diminishing the destructive power of floods, and the value of forests in binding soils and preventing erosion have resulted in many forest areas in civilized nations being established as protection forests and placed under public control." The history of China's floods and famines may be traced to deforestation.

REDBNACHBB, O. C.
The author states that the chief cause of erosion is the injudicious clearing for cultivation, of land on which a forest cover should always have been maintained and estimates the soil losses in various sections of the United States. Nation-wide education is urged as a necessary step.

RICHARDS, E. C. M.
What the T. V. A. is doing in its united attack by engineers, agriculturists, and foresters on the water-flow control problem, and actual development of best techniques for stopping erosion through reforestation are discussed. Mentions the importance of the opportunity for the demonstration and development of forestry knowledge as it relates to control of run-off water and soil-erosion prevention presented by the creation of Norris Lake Forest consisting of 117,000 acres.

This is a discussion of an article in the December 24, 1936, issue, entitled "River and Region", in which the writer attempts more clearly to distinguish the problem of handling the land now in forest and the separate and distinct problem of stopping erosion on the nonagricultural lands which are not in forests. "There are at least 3,000,000 acres of such land, largely in small scattered areas."

RICHARDSON, ARTHUR HERBERT.
"All agree that the forest does play an important part in connection with water resources and in this article an attempt will be made to show how this part can be strengthened by the wise use of existing forests on watershed areas and especially by the reforesting of new ones."

RILEY, C. G.
"This poignant story of what happens when the forest is stripped from the land and no longer able to do its duty as the father of fertility is written and illustrated by C. G. Riley of Yale University School of Forestry."—Editor's Note.

ROSS, N. M.
This paper was read before a joint session of the Western Canadian Society of Agronomy and the soils group and engineering group of the Canadian Society of Technical Agriculturists at the University of Alberta, Edmonton, June 23, 1935. The author states in his conclusions: "We do not make any extravagant claims as to what shelter-belts will accomplish nor do we consider that the planting of trees alone will provide a solution to the soil drifting and drought problem ..." Not examined.
ROTHROCK, J. T.
THE BLACK WILLOW (SALIX NIGRA MARSH) AS A PROTECTOR OF RIVER BANKS.
An example is given of protection and restoration of soil by black-willow plantings.

FIRE AND FLOOD. Forest Leaves 5: 8-9, illus. February 1895.
The author states that forest fires are the main cause of forest-restoration prevention. Floods are a natural consequence. In discussing the legitimate removal of mature timber he says: “The blunder is when the after-math of sprouts is left unprotected. These, unharmed by fire, and growing from well-established, vigorous roots, would speedily reach tree dimensions, an we should then have, not only the moisture-holding, flood-retaining capacity of the woody growth, but the timber as well.” Cost of flood damages to bridges in Pennsylvania is mentioned.

The history of the earth is given with the causes and development of forests from lichens, or rock moss. The function of forests in retaining moisture and preventing soil washing is treated. “In a single day a tilled field may lose from its surface more soil than would be taken from it in a century of its forest state.” The State law encouraging forest culture and imposing penalties for injury and destruction of forests, is discussed.

WILLOWS ALONG THE BANKS OF OUR RIVERS. Forest Leaves 5: 66-67 October 1895.
The recuperative power of willows from floods or ice jams is pointed out.

RUMMELL, L. L.
FORESTRY AND FLOOD CONTROL. Ohio Farmer 179: 8 June 19, 1937.
Attributes the severity of modern floods to denudation of hillsides and removal of vegetation and recommends erosion-control measures. Comments on the work at the Miami and the Muskingum projects in Ohio.

RUPP, A. E.
“. . . afforestation appears to be the most feasible means of restoring soil productivity, through the process of building up organic matter. The correct determination of species and cultural practices is basic to successful afforestation.”

RUZICKA, C. H.
“Among several native and introduced tree species, the behavior of which is briefly commented upon in this report, the Russian olive, golden willow, Canadian poplar, Black Hills spruce, American elm, green ash, and box elder have proved hardy and drought resistant.”—Expt. Sta. Rec. 48: 229. 1922.

SCHIEFLE, O. S.
Describes the use of angular submerged willow tree planting to stop erosion and sliding of earth banks of rivers, canals, lakes, levees, cuts and fills, and for general flood control. Projects to effectuate these measures in Canada and the United States are described.

SCHUYLER, J. D.
The writer discusses some conditions essential to the maintenance of stream flow and water conservation. The maintenance of vegetation on
slopes is described as most important. Conservation work of the Austrian and Swiss Governments is outlined; the author concludes that similar methods would be beneficial in California.

SEBRING, H. M.

This article tends to show the value of the forest litter and vegetation in erosion and flood control. Experiments at the Statesville, N. C., experiment station on vegetation and water run-off are analyzed.

SECREST, EDMUND

"Experiments in various regions of Ohio demonstrate that gullied lands can be reclaimed by plantations of forest trees ... The checking of soil erosion is accomplished not so much by the roots of the trees as by the accumulation of needle (pine) litter which falls from the trees ..." which increases the absorptive capacity of the soil and sheds the surplus run-off without soil loss. Various species of trees which have proved best for reclamation are named.

SHARPE, C. F. S.

The author warns against the clearing or "brushing out" of flood channels. He cites an experiment of a farmer in the eastern part of Spartanburg County, S. C., who decided that the land bordering a small stream flowing through his property would be improved if there were fewer trees along the banks to shade his crops and interfere with cultivation.

SHEPPARD, W.
FORESTS AND FLOODS. U. S. Dept. Agr. Cir. 19, 24 pp., illus. 1928.

"Frankly admitting that forests are but one of the many influences affecting the flow of streams, the author discusses in detail the effect of forests on run-off and erosion, taking up such subjects as the forest as a soil and water holder, deforestation and erosion, effect of deforestation on large rivers, aspects of the problem in different sections of the Mississippi River watershed and a suggested forestry program for this area. The well-kept forest is conceded to be an effective water and soil holder, the leaf litter and humus absorbing in the aggregate vast quantities of water. Forests also retard the melting of snow and delay and prevent run off."—Expt. Sta. Rec. 58: 744. 1928.

SHEPHERD, E. A.
PROTECTION FORESTS OF THE MISSISSIPPI RIVER WATERSHED AND THEIR PART IN FLOOD PREVENTION. U. S. Dept. Agr. Cir. 37, 49 pp., illus. 1928.

This circular presents the findings of a study conducted by the Forest Service to determine the relation of forests and forest lands of the Mississippi watershed to the flood problem. Considerable data on soil erosion are given.

COMPILER.
RELATION OF FORESTRY TO THE CONTROL OF FLOODS IN THE MISSISSIPPI VALLEY. U. S. Cong. 70th, 2d sess., House Doc. 573, 740 pp., illus. 1929.

Contents: Protection Forests of the Mississippi River Watershed and Their Part in Flood Prevention, by E. A. Sherman; Forest and Flood Relationships in the Mississippi River Watershed, by E. N. Munns; Forests as a Factor in Flood Control Within the Upper Mississippi River Basin, by Raphael Zon; Forest Conditions Within the Ohio River Watershed, by E. F. McCarthy; Forest Conditions Within the Lower Mississippi River Basin, by E. L. Demmon; Watershed Conditions Within the Missouri River Basin, by M. H. Wolff; Forest Conditions Within the Arkansas-White River Basin, by W. W. Ashe; Forest Conditions Within the Red River-Ouachita Basin, by E. L. Demmon. The remainder of the volume consists of appendixes.

69893
Silcox, F. A.

Forest cover as an important issue in watershed areas for the prevention of floods is discussed. That part of the coordinated program of erosion stream-flow research and erosion control, established by the United States Department of Agriculture, which has to do with forest, range, and wild lands, is assigned to the Forest Service. This Service "has for years been studying watershed conservation, principally on forest and range lands...and has the data, the knowledge, the experience...to carry out this part of the national program to help prevent floods on the sources of critical watersheds."

Simmons, J. R.

PLANTING WHITE WILLOWS TO CHECK EROSION. Amer. Forests and Forest Life 32: 283-284, illus. May 1926.

The author presents a practical method of protecting earth banks by "angular submerged tree planting." Experiments in Canada along railroad embankments and shores are described.

Skeels, F. E.

Certain clauses of the general tax law of 1893 are pointed out in relation to the author's observation of deserted farms in decay. "If we trace up the original owners and enquire as to the cause of these apparent failures we find in almost every case that ordinary farm crops and the hardier fruits were successfully grown until some large tract of timber was cut that had stood near enough to afford a wind break." Conversion of barren, swampy, or worthless lands into forested areas is advocated.

Smythies, E. A.

AFFORESTATION OF RAVINE LANDS IN THE ETAWAH DISTRICT, UNITED PROVINCES. Indian Forest Rec. 7, pt. 8, 33 pp., illus. 1920.

"This note has been written to describe work carried out during this past six years by the Forest Department on a more than experimental scale, in afforesting waste lands of a peculiar but widespread type...The afforestation of ravine tracts in the Etawah District was a compromise between three schemes: (1) ravine reclamation, to prevent further erosion, (2) the creation of fuel and fodder reserves for the local villages, (3) a financial scheme for obtaining a profitable return from waste lands." The results to date are excellent and promising.

Society of American Foresters.

Southern Forestry Congress.

REPORT OF THIRD SOUTHERN FORESTY CONGRESS, JULY 20-22, 1921. 209 pp. (Atlanta, Ga.) 1921.

The main headings under which material in this report appear are as follows: Organizations and Methods for Forest Protection, by B. H. Stone; What Forest Co-operation in Forest Fire Protection Means to Georgia, by J. G. Peters; Railroad Co-operation in Forest Fire Protection, by F. W. Beasley; The Farm Forest as a Public Asset, by A. M. Soule; Forest Resources and Opportunities in Georgia and other Southern States, by W. B. Greeley; Private Forestry, by J. K. Johnson; The Future of Cut-over Lands in Missouri, by F. Dunlap; Effect of Erosion and Relation to Land Use, by H. H. Bennett; Selling the Forestry Idea, by H. A. Reynolds; We Must Have Forestry, by R. S. Maddox; A Forest Experiment Station in the Southern Appalachians, by E. H. Frothingham; Reforestation in the South Atlantic and Gulf States and Some Brief Observations, by C. S. Ucker.
SOUTHERN FORESTRY EXPERIMENT STATION. (2425)

Reports the results of investigations to determine the place of forests in erosion control and in the regulation of stream flow. Planting studies are described.

STARRING, C. C. (2420)

TREES TO CONTROL EROSION. Mont. Farmer 24: 3, illus. March 1, 1937.

Emphasis is placed on the advantages of single hedge rows.

STEEDING, E. P. (2427)

"So far back as 1475 the subject attracted the attention of the famous Venetian Council of Ten, by which a law was passed ... regulating in great detail the clearance of the forests on terra firma. The mountain forests especially were protected by judicious and careful regulations which were renewed from time to time down to the very year of the extinction of the old republics. Tuscany and the Pontifical Governments were equally provident." The evil effects of deforestation in India and in Ceylon are discussed. "This destruction of forest for the growth of crops has been carried out [in Ceylon] in the past in a haphazard manner and has been followed by erosion on a great scale, with sititing up of rivers and periodic flooding of the low country and destruction of arable land and property." It is pointed out that small scrub forests have as beneficial effects on the local countryside as have the heaviest of the great timber forests. Well-authenticated cases in India are quoted. Reference is made to various recent works on the influence of forests on rainfall, erosion, etc. A pamphlet published by the Kenya Forest Department on this subject is discussed in detail. The writer asserts that this question is yearly assuming a greater importance and demanding the closest attention and study.

STEVENSON, D. D. (2429)

This is a report of a general survey of the interior of Kwangtung, China, a region which offers great possibilities for practical results from a program of land conservation. Mention is made of the destructive effects of erosion and the need for reforestation on the hillsides to suit local conditions. It is suggested that where the soil is especially barren and in need of building up, legumes such as lili-lili (Leucaena glauca), a fast-growing leguminous tree successfully established on the hillsides of Luzon in the Philippines, should be tried.

STICKEL, P. W. (2430)

"It is the purpose of this paper to show that forests, because of their modifying influence upon the factors which bring about water loss in the form of evaporation from the soil, have a very important role in any system of watershed protection Practically no comprehensive data have been presented showing the influence of forests upon the evaporating power of the air, a factor which may serve as a fairly reliable index to the relative loss of water evaporated from the surface of the ground. The data included in this paper show how markedly the presence of the forest canopy modifies this factor." A description of forest areas and instrumentation, and an account of the effect of forest cover upon water loss from duff and soil follow: In his summary the author states: "In this paper no attempt has
been made to evaluate all influences which bring about differences in water losses within forests as compared to the open; sole consideration has been given to the influence of forests upon only one of many interrelated factors—the evaporating power of the air."

Stiny, Josef.

An article by Jan Stejskal in Bratislava, on the value of forest cover (more especially pine trees) for holding water is reviewed. From observations made after heavy rainstorms he found that, although the water washed the forest floor clean, it left pools of water and in the spring various moisture-loving plants sprang up, such as Juncus and even peat moss. J. Schmid, however, in a book subtitled "Klima, Boden und Baumgestalt", thinks the opposite. The reviewer states that all these observations and opinions are more or less local, that is, dependent on certain conditions, and he suggests that it would be well if young foresters and experiment stations would undertake research work to decide definitely whether forest cover increases moisture conservation and erosion control or hinders it. Many articles by American authors on the same question are briefly reviewed.

Swingle, C. F.

Experiments undertaken by the Soil Conservation Service nurseries, Arlington Experiment Farm, Rosslyn, Va., are described. "Shipmast locust produces few or no seeds. Consequently the tree must be propagated by vegetative methods." A comprehensive study of this subject showed that shipmast and other locust may feasibly be propagated by root cuttings.

Tamesis, Florencio, and Sult, Carlos.

Tharp, W. E.

"Forests make little contribution of organic matter to the soils. This change or degredation of the soil with respect to organic matter, increases the erosivity. As previously stated this increased liability to surface washing is not apparent as long as the forest occupies the ground, for the tree roots and surface litter are decidedly effective in holding the soil in place even on strong slopes. It is only when the land has been cleared, the leafy debris dissipated and the meagre store of humus in the first few inches of soil has disappeared under tillage, that this feeble resistance to the run off waters becomes manifest."

Thorne, D. W., and Walker, R. H.

The author describes the black locust as growing best on well-drained, neutral soils and states that it has been recommended for planting from the New England States south to Georgia and west to Texas, Missouri, and Illinois. Experiments in isolation and study of black locust root-nodule bacteria, and inoculation in field trials at three nurseries in Ames, Iowa, are given with tables.

Topham, P., and Townsend, R. G. R.

Summary: "Notes of three lectures by P. Topham give a general account of forest conditions and policy in Nyasaland, and those of a lecture by R. G. R. Townsend describe the development of a communal forest scheme for the establishment of village forest areas. An appendix contains a memorandum, by the Native Welfare Committee, on Land Control and Development indicating the need for cooperative measures by all Government Departments concerned for soil conservation and the improvement of agricultural methods." Not examined.
TOUMEY, J. W. (2437)

"Many efforts have been made during the past century to study rainfall on denuded areas and rainfall on forested areas . . . The results obtained by some of the investigators appear to show that the forest increases rainfall, often as much as 40 or more percent. The results obtained by other investigators . . . indicate that the forest does not increase precipitation . . ." The author recommends that the drainage area which feeds a reservoir be kept in forest, preferably coniferous, for the purpose of distributing the water crop over a longer period following precipitation.

Tells what the various factors entering into the problem of forests and stream flow are, and states some of the more important facts that observations in southern California have revealed. "In conclusion, it may be said that . . . its [the forests] economic importance in regulating the flow of streams is beyond computation. The great indirect value of the forest is the effect which it has in preventing wind and water erosion . . ."

UNION OF SOUTH AFRICA DEPARTMENT OF AGRICULTURE AND FORESTRY. (2439)

This bulletin is divided into five parts. Part 1 discusses forests and climate; part 2, forests and water conservation; part 3, erosion (in which gully, veld denudation, and control measures are considered); part 4, veld burning; and part 5, conclusions.

UNITED STATES DEPARTMENT OF AGRICULTURE. (2440)

Discusses forests in relation to erosion and stream flow, pages 9-14. A forest with a good understory of brush and a deep layer of humus is undoubtedly the best conservator of soil. Forests are not the only safeguards against erosion. Any vegetative cover has a tendency to retard run-off and check erosion. In the study of the relation of forests to stream flow, an important fact to keep in mind is the wide difference between the total precipitation and total run-off of any watershed.

UNITED STATES FOREST SERVICE. (2441)

A NATIONAL PLEA FOR AMERICAN FORESTRY. 73d Cong., 1st sess., S. Doc. 12, 2 v. 1933.

This report contains sections on land-use planning in the Forest Service, pages 1-3. Forest and range influences, pages 56-57. "Common sense calls for a systematic study of our lands, determination of the types of service for which they are most useful, and the formulation of practicable measures for obtaining these services, both now and continuingly."

APPALACHIAN FOREST EXPERIMENT STATION. (2443)

Description of preliminary and experimental studies on the influence of forest cover on stream flow and erosion.

SOUTHERN FOREST EXPERIMENT STATION. (2444)

SIXTEENTH ANNUAL REPORT, JANUARY 1, 1936-DECEMBER 31, 1936. 48 pp. [1937]. [Mimeographed.]

Plans are announced for experimentation in the use of timber on watersheds and the regulation of stream flow to curb floods and soil erosion. "Many problems are involved in watershed protection. Clearly, measures
which will promote reestablishment of plant cover on the barren or sparsely vegetated areas... are of the first moment.

United States Soil Conservation Service. (2445)

Presents in tabular form data concerning acreage and plantings on each project in the Neshanic watershed area.

Seed collection of woody plants. U. S. Soil Conserv. Serv. Regional Off. (Salina, Kans.) 7, 26 pp., illus. May 1936. [Mimeographed.]

"The brief information contained in this leaflet will aid in the seed collecting work of the [erosion-control] Projects, and Camps." The work is divided into three parts—coniferous trees, deciduous trees, and shrubs and small trees.

Vigouroux, C.

The question of reforestation of uncultivated or abandoned lands by the State or by cooperative societies is considered. Long-term leases of land, to be reforested and cut every 30 years, are advocated.

Voorendyk, J. J.

The author deals with veld conservation and states that the results of floodwater and wind "may be controlled to a certain extent by devoting attention to those factors which do indirectly affect soil erosion. The most important of these... are: (1) destruction of the vegetation by human and animal agency; (2) over-grazing; (3) veld fires, and (4) cultivation of the soil." He lists some of the more important indigenous trees and bushes which may be regarded as fodder plants, as well as trees recommended for permanent firebreaks, and others for the reclamation of gulleys.

The general principles as to how vegetative growth prevents soil erosion are presented, and differentiation between regions is stressed. Some of the outstanding qualities of trees in preventing soil erosion are enumerated.

Ward, R. D. C.

"A popular discussion of this subject based upon a review of the literature. Special attention is given to the relation between forests and rainfall, but consideration is also given to the value of forests as windbreaks; their influence upon temperature, humidity, and evaporation; in collecting moisture from clouds and fogs; upon hail and other storms; and upon water supply, erosion, and floods,..."—Expt. Sta. Rec. 29: 842. 1913.

Warren, W. D. M.

The effects of denudation are summarized. "The gradual disappearance of forests in several countries of the world today is so changing the climate and soil conditions, that the very existence of the people is threatened." Description is given of an interesting irrigation experiment recently initiated by the Government of Bihar and Orissa. "The aim of the Department is to improve the conditions of the forests under its control. These improvements are doubly attractive if, in addition to being good financial investments, they fit in with the Orissa Floods Committee's recommendations for lessening flood damage and erosion. Irrigation does this." Summary of lecture delivered at the Science College, Patna University.
WEBB, M. F.

A plea for preservation of forests. To support his plea the author cites such indirect benefits as the broad influence exercised by forests over the temperature of the air, their influence in breaking the force of destructive winds, the tendency of forests to increase rainfall, and their influence in improving the general fruitfulness of the country. "The well-kept forest floor, better than even the close sod of a meadow, prevents erosion and abrasion of the soil and the washing of soil and detritus into brooks and rivers."

WEBTZ, J.
AN AFFORESTATION PLAN FOR PALESTINE. Palestine and Middle East Econ. Mag. 8: 391–394, 300, Illus. August 1937.

Suggests a government afforestation policy and discusses hill and sand-dune afforestation. The planting of two types of forests is urged, ordinary woodlands and carob plantations, for the hills, which, according to the author, "owing to the erosion of the slopes which has gone on for many centuries—ever since the Jews were exiled from Palestine—and to the continuous felling of fruit and forest trees without replanting" have been brought to their present bare and denuded state.

WEST VIRGINIA ACADEMY OF SCIENCE.

The West Virginia Academy of Science submits its resolutions with reference to the protection of forests and headwater streams for cooperation with other academies of science, scientific and forestry associations, and individuals.

WESTVELD, R. H.

The author discusses selection of species and class of stock, site preparation, and protection.

WHITTLE, C. A.

Describes 200-foot chasms in the Piedmont and the Atlantic Coastal Plain. "The tree growth at the bottom of some of these gorges affords interesting data. Without doubt the trees have sprung from seed. The transfer of a tree or even a young sprout to this site is against all probabilities... In these redeposits of earth, and in a region of heavy rainfall, erosion is to be felt with greatest severity and unusual problems for the conservationists are afforded."

WILBER, C. P.

The need for reforestation on eroded lands of New Jersey and for reclamation of abandoned fields and idle brush lands is emphasized.

WILBUR, R. L.
CONTINENTAL CONSERVATION. Rural Amer. 8: 12–14. November 1930.

The history of early settlement is reviewed by the writer. "Gradually, with the shifts and changes, and with the development of a more intelligent understanding of the fundamental problems, we have been acquiring new conceptions of continental conservation. Conservation does not mean the hoarding of natural resources for a hazy, indefinite future. It does, though, mean intelligent and thoughtful planning for every resource of our continent." Other resources are considered but with respect to trees the author says: "For the most part, trees were the greatest antagonists of the settler. Today we are conscious that trees are the only suitable plants for many of the thin-soilled areas that have been cultivated almost to their destruction."
WILSON, JAMES.

An appeal by the Secretary of Agriculture to the American farmer asking for more intelligent forest conservation. Among the various benefits which may result from such a policy are listed as protection against winds, floods, and drought, and the continued production of wood. The various uses of small woods and wood lots are discussed.

WOOD, G. L.

This paper, prepared for the third British Empire Forestry Conference, discusses the inconclusive nature of Australian evidence of climatic effects following deforestation, the effects of deforestation upon the conservation of rainfall as shown in stream flow and erosion and siltation effects following deforestation in southeast Australia. The author says: “There is an urgent necessity for more complete investigation of the dangers that threaten our water supplies. The very delicate inter-relation between forests on the catchments and the regulation of stream flow is a problem of prime importance…”

—

HILLS AND HILLS. Gum Tree 8: 21-25, illus. December 1925.

The author deplores the folly of unrestricted deforestation and while recognizing the possibility of a timber famine in Australia, considers the maintenance of running streams, preservation of soil beds, mitigation of climate extremes, and the welfare of rural industries largely dependent on forests.

WOODS, J. B.

“If we accept the latest available statistics as satisfactory, we are at a point where the area supporting forest vegetation has been reduced from an original 940 million acres to approximately 615 millions.” Article X of the Lumber Code and private forest management are discussed. The need is stressed for State legislation to make forest ownership more attractive.

WOOLSEY, T. S., JR., AND OTHERS.

This is a preliminary report of a special committee of the New England section, Society of American Foresters, presented at a meeting at Hartford, Conn., January 31, 1929. Past floods and causes of the 1927 flood in New England are discussed. “Heavy cutting not only diminishes the capacity of the soil and humus to absorb moisture; it increases surface run-off and erosion because of the logging roads, skidding trails, and bare soil merely covered with weeds. For details on forests in relation to erosion and streamflow, see pages 7 to 13 of the U. S. Department of Agriculture Circular 37 (August 1928). Anyone who will study this report can picture what would have happened in New England had there been no forests at all.”
Ziegler, E. A. (2405)
FOREST RELATION TO FLOODS AND SOIL EROSION. Pa. Dept. Forests and Waters
Serv. Letter 7 (43) : 1–2; (44) : 1–3. 1936.
Consideration of the influence of forest cover on moisture precipitation, evacuation, leaf transpiration, run-off, and soil erosion is presented in two parts. Reforestation measures are also presented. The author says: “No human measures will prevent floods. They may have their destructive peaks reduced and somewhat controlled through (a) Engineering works, storage reservoirs particularly, and dykes. (b) The restoration of a complete forest canopy, and particularly a soil protecting forest litter and humus on every acre not needed by agriculture, industry and homes. (c) A general improvement of agricultural methods of farm management, specifically directed to the prevention of soil erosion . . .”

Zon, R. (2406)
The author presents the pros and cons of forest destruction as a cause of floods, referring particularly to the Mississippi Valley flood of 1927. “The forests themselves could not have held back these raging waters, but without forest management there can be no rational river management. The engineer and the forester must work hand in hand. It has long been recognized in the older countries that the secret of permanent flood control lies at the source rather than the mouth of mountain streams.” Afforestation and engineering work in the northern Alps, Japan, and France are reviewed.

(2467)
“Of all the direct influences of the forest the influence upon the supply of water in streams and upon the regularity of their flow is the most important in human economy. This paper aims to bring together impartially all the well-established scientific facts in regard to the relation of forests to water supply.” This report contains 36 pages of bibliography on the relation of forests to water and climate.

(2468)
“The essence of a forest policy may be reduced to five principal objectives: (1) A sufficient and permanent supply of forest products and forest by-products; (2) protection of watersheds needed for regulation of stream flow and prevention of soil erosion; (3) preservation of forests for aesthetic enjoyment and recreation; (4) preservation of forests for the propagation and maintenance of wild life; and (5) utilization of wild lands not otherwise usable.” The author enlarges on these objectives and concludes: “The benefits to agriculture from such a conservation program are self-evident . . .”

(2469)
States that from the earliest times there existed among laymen, and even scientists, a belief that forests exercised an influence upon the climate of entire countries. “With the introduction of accurate methods of meteorological observations, this popular conception has seemingly been greatly discredited. Within recent years . . . many new facts came up independently in different countries, which point strongly to the possibility of the forest exerting a potent influence upon the humidity of regions lying far away from it.” In the conclusion of his study the author states: “Forests must be protected not so much in localities which already suffer from lack of moisture as in regions which lie in the path of prevailing winds and are still abundantly supplied with ground water and precipitation.”
Findings of the Lake States Forest Experiment Station help to indicate the part taken by cleared pastures and ungrazed wood lots in preventing run-off and erosion on steep slopes. Results of measurements on three small watersheds are presented. The total amount of soil washed away from May to November was found to be 600 pounds per acre for cleared pasture, 1,600 pounds for grazed, wooded watershed, and 17 pounds for ungrazed, timbered watershed.

GULLIES

ANONYMOUS.

The use of explosives for gully-bank grading and straightening out channels "proved that in explosives the erosion engineer had acquired a faster, cheaper, and more efficient worker than ever before ..." Details and results of the first demonstration in Mississippi are quoted direct from the superintendent's report.

Damage to tilled land by gullies is stressed. Detailed instructions for repairing such gullies by terracing and brush dams are given.

FARM ROADS. Reedy Creek Farm Coop. 3 (3): 6-7, illus. March 1936. [Mimeographed.]

Shows two methods of constructing farm-haul roads to prevent gullies. Road types illustrated by drawings.

Discusses need for erosion control in an interview with L. G. Livingston, manager of the Du Pont agricultural extension section. Livingston is quoted as saying that in control of gullies with almost vertical sides "blasting the top sides of the banks to throw fertile topsoil into the gully has proved to be the most effective method of procedure. For this reason, explosives are playing a highly important part in the country's erosion-control program."

GENERAL POLICIES OF GULLY CONTROL IN THE SALT CREEK WATERSHED. The Land, Today and Tomorrow 1: 16-17. October 1934.

This article recommends gully-control methods for use on three different classes of land—cropland, pasture land, and land to be reforested.

The main cause of gullies has not been stated. "Gullies and washes are formed by the action of water running over the surface of the ground. The soil is always underlaid by a hardpan or tough material, where the washes and gullies are evident ... The cheapest and most profitable method I have tried for the prevention of washes and gullies is subsolling by the use of dynamite."

This paper suggests practical measures for gully control.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

Anonymous. (2478)
The story is told of a Pennsylvania farmer whose attempts to stop gullies by throwing in trash, cans, and old machinery resulted in failure. "The thought is to heal the gully—not to fill it." Bundles of cornstalk baffles were used, overlaid with Bermuda sod which prevented further gully cutting.

Shows the need for preventive measures against the effects of heavy rainfall such as soil washing and the formation and enlargement of sluits and dongas (gullies). Reclamation of gullies is stressed.

Anthony, Harold G.
GULLY CONTROL WORK WITHSTANDS TORRENTIAL DOWNPOURS. The land, Today and Tomorrow 2: 16, illus. 1935.
Check dams prove effective on the Hollery and Brewer farm, south of Minden, in northern Louisiana.

Ayres, Q. C.
"This bulletin deals with the various methods of gully control and reclamation by mechanical means. It is an attempt to capitalize the experience gained in building a large number of dams of many different types in widely distributed parts of the State under the Federal Emergency Conservation program of 1933-34. In considering the detailed treatment presented one should not lose sight of the fact that gullies represent an advanced stage in erosion devastation and that the gully problem in all probability would not have developed had the land been rationally managed from the beginning."

Bentley, M. R.
For gully control the author advocates the soil-saving dam built of earth, the rock-wall dam, the concrete dam and drop, and the wooden stop-plank dam. "The best and cheapest means of stopping a gully is to build a terrace across it, and for that reason terraces should be used whenever practicable." Instructions for building dams are diagrammatically given.

Besley, F. W.
Evergreen rather than deciduous trees are recommended for watersheds, except in cases of badly gullied lands. "White pine requires good soil and moisture. Red pine will grow on drier sites." Along ridges and thin soils of upper slopes Scotch pine is advocated. Instructions for treating gullies are given.

Brink, Wellington.
The author describes the work of the Soil Conservation Service in Stewart County, Ga. He points out the advantages of diversion ditches, terraces, terrace outlets, and vegetative cover such as kudzu, Bermuda grass, and black locust.

Calhoun, F. H. H.
GULLYING AND ITS PREVENTION. S. C. Agr. Expt. Sta. Cir. 20, 36 pp., illus. 1913.
"This circular contains popular discussion of the cause of erosion of farm lands, particularly through the agency of water, the necessity for its prevention, the means of checking the erosion, and the method of restoring eroded land to its original fertility . . ."—Expt. Sta. Rec. 30: 625. 1914.
CLAYTON, E. S.
GULLY EROSION; A SERIOUS MENACE TO FARMING AND GRAZING LAND.
"There are numerous instances of the serious damage caused by gully erosion to farming and grazing lands in Australia." Discusses the control of gullies, waterfall erosion, and the prevention of gullies by contour banks or furrows.

COLLINS, D. R.
PREVENTION OF GULLYING.
Gully-control work on the Iowa State College farm.

COLLINS, HENRY E.
PLANTS OF PROMISE IN GULLY SLOPE PROTECTION.
The Gila River watershed of Arizona is considered.

EARGLE, D. HOYE.
WHEN IS A GULLY STABLE?
"In many of the older agricultural regions of eastern United States there are hillsides, now covered with a thick second growth of forest vegetation, which were once riddled with active gullies. While such gullies bear witness of destructive agricultural practices of the past, their activity has ceased and they are commonly regarded as stable."

FAOER, G. E.
STOP THE GULLIES.
Discusses checking soil erosion in orchards by means of the Mangum terrace. Directions for laying out the terrace are given.

FICK, J. C.
ERODED AREA TURNED INTO LUCERNE LANDS.
Describes how a practical farmer converted a badly gullied area into productive land.

FREEMYER, G. W.
EROSION BRINGS MILLION DOLLAR LOSSES. Purdue Agr. 31: 76, 87, illus. March 1937.
The author estimates the annual losses to the United States, in money, soil, and plant food and describes the nature of erosion, especially gullivan. Directions for gully control are given, emphasizing the importance of various types of dams.

HARMON, GEORGE L.
HOW GULLIES ARE CONTROLLED BY VEGETATION IN SOUTH CAROLINA.

Hazen, L. E.
OKLAHOMA FARMSTEAD.
Pages 12-14 of this circular are concerned with erosion control. "The instant we strip the native vegetation from the surface there will occur many provoking little gullies on the slopes, and the loss of much surface soil." Bench, sod-ridge, and Mangum terraces are recommended.

HICKOK, R. B.
PREVENTING BARNYARD GULLIES.
Describes the use of vegetation and loose-rock check dams in controlling farm-lot gullies.

HOOD, I. M.
GRASS FOR GREEDY GULLIES.
Farm and Ranch 55: 2, illus. December 1, 1936.
Gully control in Oklahoma.

IRELAND, H. A.
ROTATION OF GULLY HEADS.
Soll Conserv. 2: 228-229, 244, illus. April 1937.
This article describes the success of a farmer in Spartanburg County, S. C., who tackled the erosion problem through "rotation of gully heads."
LAKE STATES FOREST EXPERIMENT STATION.

This paper describes the process of gully cutting in southeastern Wisconsin. "Gully formation is not a process by which the fertility and soil of a farm are slowly lost but is literally a cataclysm."

LEBRON, L. C.

LIEHMANN, E. W.

CALLING A HALT ON GULLIES. Capper's Farmer 45: 20, illus. February 1934.

Various ways of controlling and checking gullies are discussed.

LENTZ, G. H.

A description of the work of the Soil Conservation Service in cooperation with the Civilian Conservation Corps in gully control.

LIVINGSTON, L. F.

MCCLYMONDS, A. E.

PLANT PROBLEMS IN CALIFORNIA GULLIES. The Land, Today and Tomorrow 2: 1-5, illus. February 1935.

"While this article does not pretend to cover completely the place of plants in gully control, it has outlined the recommended methods of procedure with the plants of proven value as used in California. It is believed that the results of our work here on the Pacific Coast may be of interest to others, particularly those West of the Mississippi River, and it is with that thought in mind that this paper has been written."

MACDONALD, A. B.

The author discusses acreage and cost of farm land annually washed down the gullies to the ocean. Experiments with the Adams soil-saving dam are cited.

MARTIN, G. E.

"Reclamation methods suggested here are offered as supplements to terracing, not as substitutes for terracing." Some of the work undertaken on the Guthrie, Okla., project is described.

MATTERN, J. R.

The experience of a farmer in Montgomery County, Pa., in blasting the bottoms of gullies to break them up in such a way as to result in their filling again to the surrounding level. Details as to methods and results are given.

MATTOON, W. R.

Soil erosion in western Tennessee has been brought to the attention of the public "by the widespread depreciation in value of farm lands." Gully reclamation work in Tennessee is described and illustrated.
MATTOON, W. R.

"Comprised largely of illustrative material, this is designed to suggest effective and practical ways and means of checking gullies by establishing stands of trees, vines, and grasses as protective soil covers. The necessary steps in stopping gullies are said to be (1) construction of temporary check dams, (2) grading of abrupt banks to an angle of 30 percent or less, (3) planting of soil-retaining vegetation, and (4) protection of the vegetation from fire, livestock, and overcutting."—Expt. Sta. Rec. 72: 847. 1935.

MEGINNIS, H. G.
USING SOIL BINDING PLANTS TO RECLAIM GULLIES IN THE SOUTH. U. S. Dept. Agr. Farmers' Bull. 1697, 18 pp., illus. 1933.

"Asserting that millions of acres throughout the uplands of the South are eroding at an appalling rate, the author discusses the planting of trees, vines, grasses, and other plants as a means of preventing erosion. The restoration of the forests is deemed the climax process for reclaiming areas denuded by gullying. However, the construction of brush barriers and the planting of rapidly-growing plants must usually precede actual reforestation."—Expt. Sta. Rec. 69: 59. 1933.

MOSES, D.

"It cannot be too strongly emphasized that South Africa is losing, annually, thousands of tons of soil which we cannot afford to lose." The author thinks that the farming of cultivated lands along sound lines, the introduction of scientific methods of pasture management, the filling up of dongas (gullies) by methods described in this article, and the planting of more trees will do much to reduce this loss, and are lines of action within the reach of most farmers.

OHIO AGRICULTURAL EXPERIMENT STATION.

Emergency Conservation Work labor is being used on constructive work in soil-erosion control in southeastern and southern Ohio. Temporary structures for the control of gullies and the planting of trees on gullied areas to hold and protect the soil are included in the program. Statistics on work accomplished are given.

PENN, RAY E.

Sixteen erosion-control measures are prescribed.

PURDUE, A. H.

Discusses the formation of soil and the origin of gullies, advises the spreading of straw and the planting of raspberry and blackberry plantings on slopes subject to soil washing, and especially recommends terracing.

RAMSEY, C. E.

Methods for the reclamation of gullies, and a description of a test at the Guthrie, Okla., experiment farm.

"Popular information is given on gullies, their types, causes, occurrences, and results, and on the prevention and reclaiming of gullies by plowing in and seeding, tree planting, and the use of soil-saving dams."—Expt. Sta. Rec. 47: 19. 1922.
WILD PLUMS STOP A GULLY. Capper’s Farmer 47: 43. March 1936.

In Washita County, Okla., an incipient gully was sowed with wild plum seed and was soon stopped by the spreading plum trees. One acre produced a 200-bushel crop in 1934, the year of western Oklahoma’s worst drought.

The author tells of the great loss of productive land around Las Posas, southern California, caused by the gullies (barrancas). These barrancas “have actually taken out of cultivation 773 acres of land with a total value exceeding $775,000, and are certain to take soon, if not stopped, an additional 525 acres worth $525,000.

Instruction is given for the prevention and control of gullies. Soil-saving dams, sodded channels and barriers, and other measures are advocated.

The author tells of his effective, yet cheap, method of stopping small gullies with sod barriers and suggests bags filled with bluegrass sod to prevent new washes in gullies.

How Georgia’s largest gully was caused by the rain from the roof of a barn built in 1885, on the Patterson farm in Stewart County.

Reclamation of gullies in Illinois was considered too costly, if not impossible, up to 1933 when Emergency Conservation Work was initiated. Through the C. C. C. valuable timber and grassland is protected, soil is kept on the hills, and silt out of the streams.

RUBBISH NO GOOD IN DITCHES. Farm Mechanics 1: 17. September 1919.

The use of refuse to fill up ditches makes them larger. Rubbish should be dumped elsewhere because it does more harm than good in the control of soil erosion and gullies, is the opinion of a Shelby County, Iowa, farmer.

Instructions are given on gully control by means of barriers made of burlap bags and woven-wire check dams. Tree plantings are suggested for gullies forming in soils which have soft substrata. Terracing the area above the course is recommended as a most effective control method.
UHLAND, R. E.

"The author has used bluegrass sod for barriers and vegetative cover in central Missouri for many years and has observed the use of bluegrass in various ways by a number of farmers in gully control. It has proved a highly effective and practical method of checking small washes in cultivated fields and in pastures where gullies have started in livestock paths ... This bulletin ... is designed to further familiarize farmers with the various ways in which bluegrass may be used as a means of gully control."

AND WOOLEY, J. C.

"Practical information is given on the causes of gullying in soils and on control measures ..."—Expt. Sta. Rec. 62:78. 1930.

UNITED STATES SOIL CONSERVATION SERVICE.
AN EXPERIENCE WITH BLACK LOCUSTS. Soil Conserv. 2:25, illus. August 1936.

Notes success with black locust plantings in control of gullies in Muskingum County, Ohio, and emphasizes value of black locust for fence posts.

UNITED STATES EROSION SERVICE.
EROSION CONTROL HANDBOOK. 60 pp., illus. (Zanesville, Ohio.) 1934.

[Mimeographed.]

"This handbook has been prepared ... for the use of members of Camp Mangold and Camp McIntyre." Its purpose is to show the general plan and organization of the Salt Creek Watershed of the Soil Erosion Service to present information on gully-control methods which members of the camp may use as a guide. The methods outlined herein are presented as a framework upon which to build and increase knowledge of gully control."

WALKER, R. S.

An insignificant little stream turned into a wide gully in 10 years. The farmer plowed it north and south after the winter rains were over, and planted blackberry bushes. Grass and brush took root, soil was formed, and in 5 years he could plant it to farm crops.

WITSON, J.
WHEN A GULLY GROWS INTO A DEEP DITCH. Wallaces' Farmer 56:908, illus. August 8, 1931.

The need of erosion control to stop the serious loss of fertile topsoil is stressed. A ditch or gully 25 to 35 feet deep in Fremont County, Iowa, and the progressive cause of it is described. Also refers to the "piecing out" of bluegrass pasture in southern Iowa with sweetclover.

WOOD, I. D.

Recommends the use of soil and brush dams for gully control and gives directions for building them.

Practical hints on gully control by the use of different types of brush dams are given.

"Methods of erosion control vary greatly, depending on soil conditions, location in the State, rainfall, topography, and the stage which the damage has reached. One of the first and most important steps in any program of erosion control consists of building up and maintaining the organic matter content of the soil by the use of legumes, manure, straw, and cornstalks." Methods of ditch control, such as plowing in and seeding, baffles, terracing, and soil-saving dams with a list of necessary materials are discussed.
WOOD, I. D. (2537)
STOPPING THE LARGE GULLY, A METHOD THAT SAVES BOTH LAND AND LABOR.
Successful Farming 21: 5, 91, illus. October 1924.
Gives instructions on the construction of permanent soil-saving dams for
gully control. A drainage system in connection with the dams is described.

ZOBELL, I. D., AND STEWART, GEORGE (2538)
Describes the chief causes of erosion in Carbon County, Utah, with par-
ticular reference to gullies.

LAND-USE PLANNING AND SURVEYS FOR SOIL AND WATER
CONSERVATION

ANONYMOUS. (2539)
AERIAL PHOTOGRAPHIC SURVEY OF THE NAVAJO AND ZUNI INDIAN RESERVATIONS
OF ARIZONA, NEW MEXICO, AND UTAH. Science 79: 51, illus. January 19,
1934.
"The conservation and rehabilitation work to be done on these Indian
lands has been made necessary by the progressive impoverishment and de-
struction of the ranges by soil erosion following over-grazing."

COMBATING THE NATION'S GREATEST ENEMY. Earth Mover 22: 24-26, illus.
October 1935.
Ninety-four new projects have been approved to supplement 47 projects
already in operation, and these will give added momentum to the program
of the Soil Conservation Service. The keynote of this Service is: "Effi-
ciency, harmonious relations, and scientific methods, all working together
for the common purpose of soil conservation through wise use of the land."

CONTROL FOR SOIL CONSERVATION PROJECTS. Mil. Engin. 28: 152. March-
April 1936.
Announcement is made that the Coast and Geodetic Survey has been
requested by the Soil Conservation Service to extend horizontal control
surveys in four small areas, totaling approximately 21,800 square miles,
in New Mexico, Arizona, and Wyoming, as required in producing maps
to be compiled from air photographs.

DETAILS OF EROSION CONTROL WORKED OUT FOR EIGHT STATES. Engin. News-Rec.
The States of Pennsylvania, Louisi ana, Ohio, Minnesota, Maine, Ala-
bama, Wisconsin, and New Jersey will have a complete land-use and land-
treatment plan, demonstrating practical and effective measures of land
protection and erosion control.

EXPERIMENTS ON THE PREVENTION OF SOIL EROSION. Science 78: 526. Decem-
ber 8, 1933.
An experiment in land use, covering 2 million acres in 10 different re-

gions, is described.

"If the present type of soil conservation program is continued in 1938,
what changes and modifications would be desirable to those wishing to par-
ticipate?" The A. A. A. put this question to State committees in the north-
central region, of which Iowa is a part, and four general recommendations
resulted for the State as a whole, namely: (1) an increase in soil-building
allowances for 1938; (2) "... the participating farmer would not need
to meet fully the soil conserving goal in order to earn some payment, but
he would need to have a soil conserving acreage of not less than 50 per cent
of goal to start with"; (3) two types of payment, one for soil conserving
and one for soil building; and (4) a special soil-building allowance for taking
land unsuited to continued crop production out of the cropland bases.

"Erosion in the wide sense of the word is at work no less in the temperate regions than in the sub-tropical and tropical parts of the world. The essential food materials of plants—nitrogenous and other—are continually being washed away... The menace threatens urban as well as country life." The destruction through overgrazing and burning of grasslands all over the British Empire, as well as forest felling and shifting cultivation which cause accelerated erosion, have made it clear that land planning should be made a work of research and study for the benefit of the whole world. For this purpose the establishment of an Agronomical Institute at Oxford is advocated: "The maintenance and enhancement of the fertility of the earth are problems that will only be solved when biological science as a whole is brought to bear on them."

The Government is actively developing a long-time land program and policy and in so doing the recommendations of the National Resources Board are being applied. These recommendations are given in their entirety.

LARGE-SCALE DEMONSTRATIONS TO PREVENT SOIL EROSION. Fert. Rev. 8: 13. October, November, December 1933.

A brief survey is made of the Nation-wide effort to combat soil erosion through P. W. A. projects. The author sums up statements of H. H. Bennett: "Mr. Bennett has pointed out that already, so far as crop production is concerned, 35,000,000 acres of crop land have been completely destroyed by erosion. He (Mr. Bennett) estimates that 3,000,000,000 tons of soil are washed from our fields and pastures every year and the cost to farmers amounts to $400,000,000 annually." Locations of P. W. A. demonstration projects are given.

Announcement is made of Louisiana's State Planning Commission, established at the last session of the legislature. The plan will cover such subjects as flood protection, forests, wildlife refuges, and drainage. The plan also includes the development of a comprehensive land-utilization program.

NEW AGRICULTURAL PLAN FOR SOIL CONSERVATION AND NATIONAL FARM AID. Wis. Agr. and Farmer 63: 1, 6, illus. March 28, 1936.

Describes the Agricultural Adjustment Administration's soil conservation program for the current year. Soil-depleting, soil-conserving, and soil-building crops are listed, with an explanation of the cooperative program between landowners and the Federal agencies.

"The Muskingum project is impressive both in its magnitude and its possibilities as a national proving ground of what can be accomplished by cooperative effort in readjusting land uses to benefit the social and economic life within a given drainage area. The Conservancy District embraces eighteen counties or about one-fifth the area of the State."

The statement is made that "the committee recommends further large-scale purchases of land by the Federal government for the protection of areas that cannot be made commercially profitable, further encouragement of zoning by states and counties, continuation of the soil conservation pro-
gram, and a re-study of reclamation problems by the Department of the Interior and Agriculture." The committee asks that it be made a permanent organization and recommends the establishment of a land-use subcommittee.

PLANNING TO PREVENT SOIL AND BEACH EROSION. Amer. City 50: 65, illus. August 1935.

Comment on a statement issued July 24, 1935, by the New Jersey State Planning Board. Describes measures taken to prevent beach erosion. "In the matter of soil erosion, generally, the Board says that only a reconnaissance survey of the extent of the damage is as yet available." A map defines the extent and locality of eroded areas.

"A rounded program of national scope covering development of the Nation's watersheds was visualized by the President in his message to Congress June 4 and June 8. The whole plan is suggestive of the Tennessee Valley experiment ..." Referring to the Norris resolution and its comprehensive plan on flood control, navigation, irrigation, and development of hydroelectric power, the author quotes the President: "This broader definition brings to our attention very clearly such kindred problems as soil erosion, stream pollution, reforestation, afforestation ..."

President Roosevelt recommends adoption of a standing 6-year public works plan, based on selection and priority of projects. "In a special message to Congress on Feb. 3, President Roosevelt ... referred especially to a three-part program submitted by the National Resources Committee ... The second part of the report deals with a nationwide investigation of drainage basins undertaken with a view toward determining the principal water problems in various areas and to present an integrated pattern of development and control designed to solve these problems ..."

States that the proper use of land resources of the Nation was an outstanding objective of the relief program for 1936. The scope of the program with respect to land use and soil conservation is briefly outlined.

Contains summaries of reports of various committees. The report of a program and policies committee recommended, among other things, "the development of a well-defined Nation-wide land policy for the beneficial use of land and water resources and including proper recognition of reclamation ..." The agriculture and land classification sections of the Land Resources Division submitted recommendations as to; policies for resettling farmers now on marginal lands, including provisions for advice to settlers; the use and control of marginal and sub-marginal lands; continuation of cooperation in research on land problems, and land classification and land-use planning; the expediting of soil survey work; consideration of recreation in land planning; control of noxious weeds; public information in connection with land-planning activities."

The organization of the Rio Grande Joint investigation is headed by the National Resources Committee. Most of the work has been assigned to three Federal Bureaus—the Water Resources Branch of the United States Geological Survey, the Bureau of Agricultural Engineering, and the Bureau of Reclamation. In addition the Soil Conservation Service, the Resettlement
Administration, and the Indian Service are cooperating. "Water resources, present uses, and possible transmountain diversions are being investigated to lay the foundation for an interstate compact on water."

Under the heading "Water Resources Problems" many State boards point out that a program for conservation of water resources can be successful only when properly coordinated and interrelated with plans for land use, forestry, health, recreation, game management, agriculture, and soil erosion.

ALEXANDER, WILL W.

The Resettlement Administration "plans for correct land use and the rehabilitation of maladjusted farm families . . . A loan or a new homestead mean new life and new hope to thousands of Americans; and reforestation and erosion control mean new acres for generations to come."

ALLIN, B. W.

"Planning in a democracy is not the making of a blueprint, with specifications fixed for all time; it is a social process in which the participation of the layman is as important as that of the expert. This process is nowhere better illustrated than by the agricultural planning now being sponsored by the Agricultural Adjustment Administration, where agreement between farmer and expert opinion is an indispensable part of the planning procedure. One aspect of this planning relates to the problem of soil conservation. Here, as in most economic matters requiring the attention of the government, the most hopeful procedure for harmonizing public and private interests is the employment of collective persuasions and inducements democratically determined. These can be developed only by planning."

ALLEN, B. W.

Reports on work of projects as observed during a soil-conservation tour held June 15 to 18, beginning at the Pueblo project. Gives information concerning the system of pasture contour spreaders at Burn Mill project water-penetration tests, contour-furrowed pasture lands, and an improvised grass seeder.

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.

PROCEEDINGS OF LAND USE SYMPOSIUM, SUMMER MEETING AT SYRACUSE, N. Y. 57 pp., Illus. N. Y. State Col. Forestry. 1932.

Contents: The National Land Use Committees, by L. C. Gray; The Relation of Taxation to Land Utilization, by F. P. Weaver; Land Use and Forestry, by J. S. Illick; The Tax Problem, by M. Graves; Land Use and Agriculture, by J. C. Lipman; Land Use and Erosion, by H. G. Knight; Land Use and Transportation, by C. L. Raper; Planned Land Use, by L. R. Schoenma.nn.

BAKER, O. E.

The author discusses boundaries and division lines, moisture belts, crops and pasture, livestock, agricultural productivity, size of farms, and systems of farming.

This publication is one of a series on graphic summaries of farm tenure, taxation value of farm property, farm mortgage debt, etc. Seventy maps show lands suitable and unsuitable for crops and pasture.
BAKER, O. E.

The years since the World War in the agricultural area are discussed with respect to the mechanization of agriculture, geographic shifts in production, and livestock changes by regions.

A survey of land utilization is presented. "It is evident that land utilization research has not only economic but also geographic and demographic aspects, ..." Among the recommendations adopted by the National Conference on Land Utilization in 1931 is the following: "Steps should be taken to outline and initiate a program of soil conservation whereby damage from erosion, leaching, increasing acidity, destruction of organic matter, deterioration of soil structure, overgrazing, flooding, and alkali accumulation may be reduced to a minimum." Literature is cited.

The author discusses the geographic and demographic aspects of agricultural productivity, land reclamation, the enlarged homestead law of 1909, the grazing homestead law of 1916, and national welfare as the basis of a national land policy. "A survey of the present and potential use of the land is one of our greatest national needs." (2567)

OUTLOOK FOR LAND UTILIZATION. U. S. Dept. Agr. Ext. Cir. 168, 33 pp., illus. 1931. [Mimeographed.]

"The outlook for the utilization of agricultural land in the United States is affected primarily by four groups of factors: I. Extent of the land resources and rate of depletion; II. Technical progress in utilization of these resources and trends in agricultural production; III. Population trends, changes in diet, exports, and other factors that affect the consumption of farm products; IV. Land resources of foreign countries and competition by agricultural products from these countries, both in the United States and abroad." The author regards erosion as the third source of soil depletion, and the greatest. Figures on soil loss, from estimates by H. H. Bennett, are quoted. Conservation of the Nation's resources through grass and perennial legumes and the operation of machinery for improving lands are among the measures advocated. (2568)

The writer contends that in studying the land problem the first step is to consider the probable future need for farm land. "This is dependent upon the future consumption of farm products ... and upon production by acre ..." The prospect for consumption of farm products depends upon three factors—population growth in the United States, consumption per person, and net exports. Soil erosion and land resources are considered, pages 173-174. (2569)

"In considering a land use program it will be well to keep in mind the probable continuation of three trends: (1) Advances in agricultural technique; (2) Depletion of soil resources; (3) Decline in the birth rate." The author considers the situation with regard to all three. A map showing the general distribution of erosion is included.

BAKER, R. H., SITTERLEY, J. H., AND FALCONER, J. I.

MAJOR LAND-USE PROBLEM AREAS AND LAND UTILIZATION IN OHIO. 98 pp., illus. March 1935. [Mimeographed.]

This preliminary report is in two parts and presents material assembled and coordinated from various sources. Part I is a presentation and discus-
ension of areas that seemed to show major land-use problems arising out of past and present use of land. Part II presents some of the significant physical, economic, and social factors related to land use.

Bates, C. G., and Zebsman, O. R. (2572)

"This bulletin reports the results of an investigation of soil erosion made by the station in cooperation with the Lake States Forest Experiment Station of the U. S. D. A. Forest Service. The region studied embraces three counties in the unglaciated section of southwestern Wisconsin, and to a very small extent the Minnesota territory adjacent, in the vicinity of Winona . . ."—Expt. Sta. Rec. 64: 270. 1931.

Bayer, L. D. (2573)

This bulletin describes and summarizes in detail the results of a soil-erosion survey of Missouri conducted by the Soil Erosion Service and the Department of Soils, University of Missouri, in 1934. "The results of the survey are shown in Map 1 and Tables 1 and 2. The different areas on the map indicate the distribution and extent of the erosion types within the State. The data in Table 1 are approximate acreage estimations of the different types of erosion. The data in Table 2 are estimates of the extent of erosion by counties . . ." Several maps are shown presenting data on time requirements in pounds per acre, acres terraced, soil types in various areas, the average degree of slope of Missouri lands, etc.

Beamon, W. F. (2574)

Describes the work of the drafting section of the Soil Erosion Service.

Beeler, M. N. (2575)

Over an entire watershed in three Kansas counties, a complete land-utilization program, including erosion control and water conservation, is being developed. Experimentation with machinery and methods of terracing and contour farming on the limestone Creek project are described, as are also cropping systems, dams, livestock production, and reforestation.

Kennett, H. H. (2576)

"The Soil Survey of the United States Department of Agriculture, cooperating with most of the States, is undertaking to show on maps the precise location of all the different kinds of soils, to define each type of soil, to explain its present economic use . . . The question of forestry adaptation has not been given the consideration that has been devoted to the adaptation problem of farm crops." The author comments on the need for further study of soil and plant relationships in connection with forest trees and plants. Data on areas of forest land and land of low farm value in the pine belt of the southern Coastal Plain are given.

An address before the American Association for the Advancement of Science, Pittsburgh, 1934. The author discusses the findings of the Nationwide reconnaissance erosion survey, conducted by the Soil Erosion Service, and stresses the need of greater soil conservation education. In describing control measures he points out that more than 2 million acres of land in Georgia alone have been destroyed for further crop use because of improper terracing. Practical control measures are listed as (1) various adaptations of thick-growing vegetation to practical farm operations, (2) use of engineering structures and mechanical procedures where applicable, and (3) retirement of steep, excessively erodible land from cultivation. The relation of soil conservation to flood control and silting is also discussed.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BENNETT, H. H. (2578)

A paper presented at the Upstream Engineering Conference, September 22 and 23, 1936. The author discusses the seriousness and extent of soil erosion in the United States and stresses the need for additional research work. The use of vegetation is particularly urged as a control measure. The author also discusses the relation of proper land use to flood control, the conservation of water by contour tillage and terracing, flood irrigation, conservation of water with small dams, and siltations. Considerable tabular data are given on the effects of land use on the average annual run-off and soil loss at experiment stations in various sections of the country.

"The national program of soil and water conservation, with which this paper is concerned, relates primarily to the abnormal phase of soil erosion—that which results from the activities of man and his domestic animals in breaking down natural soil conditions and stabilizers through the complete or excessive removal of vegetation and the disruption or destruction of the normal or natural soil structure by cultivation, trampling, and other means." Methods of control are discussed, and the program is outlined. "It is proposed under the national program of soil and water conservation to determine the efficacy, practicability, and cost of all promising means relating to the prevention, control, and reduction of erosion and excessive run-off of rainwater, and to carry the results to those users of the land according to the specific needs and adaptabilities of their soils."

The author discusses various soil types in different regions of the United States and their suitability for different crops. A plea is also made for better land usage to check soil erosion. Protective policies are outlined.

The author discusses land impoverishment in the Tennessee Valley "calling for control of erosion and a new concept of regional land use." The initial steps of early settlers are pointed out, together with their methods of cultivation of the various soils. The author says in part: "After all is said, it is erosion that constitutes the real American crisis in land use. The steps that inevitably must be taken to control the devastating agency of erosion, and the causative process of speeded-up run-off is the application of a coordinated land-use program, applied in accordance with the specific needs and adaptabilities of every acre of land within watershed areas."

USING THE SOIL CORRECTLY. Farm Jour. 49: 10, 50, illus. December 1925.

A paper on the value of the United States Soil Survey and how it will help farmers avoid a recurrence of mistakes.

BESSEY, R. F. (2583)

PROGRESS REPORT, 1934-35. 219 pp., illus. 1935. [Mimeographed.]

The report of the consultant of the Pacific Northwest Regional Planning Commission for 1934. It is intended to cover the progress and findings of the first year of the Pacific Northwest Regional Planning Commission. The report embodies (1) a description of the region, (2) the regional planning problem, (3) organization, (4) progress in various fields, (5) State planning, (6) local planning, (7) objectives, and (8) recommendations. Important data on soil erosion control are presented under Land Resources, page 48.

"The purpose of this book is to discuss the issues of agricultural reform as they are likely to come before the people of the United States in the next ten years. The data and facts which it presents are brought up to the minute; but they also reach back and furnish a basis for discerning the trends of the next decade ... The book is in five parts: The first including a brief statement as to the present conditions of agriculture and the efforts made to improve it; the second, an analysis of the three kinds of surpluses; the third, an analysis of the proposals to raise prices of farm products by Government action; the fourth, a description of the other methods of attack on the problem; and last, a brief statement of the adjustments that are needed in production, land utilization, transportation, marketing, credit and taxation. Part I also outlines in a broad way the various alternatives of a national policy with respect to agriculture and the bases of these."

Boke, Richard L.

The author shows how the Soil Conservation Service, acting in cooperation with the Indian Service, is aiding the primitive people of the pueblo of Laguna on the Rio Grande to establish improved land-use policies.

Bond, W. E., and Spillers, A. R.

The study reported in this paper was to determine, for the territory covered, the elements of a land-use program, based upon physical factors, present methods of utilization, and economic conditions which affect present and prospective utilization. The region, forest conditions, forest industries, financial possibilities of forest management in present stands, use of forests for soil protection, game management, and recreation and grazing are discussed. An appendix presents considerable data on different plantings for erosion control.

Bonser, H. J.

Descriptive summary of social aspects of a survey of 458 farms in 1935 by the Soil Conservation Service in locating a soil erosion control demonstration project.

Brooks, Benjamin.

The author gives specifications for the construction of the Mangum terrace and discusses the efforts of western and southern farmers in checking erosion. The suggestion is advanced that the Federal Government cooperate with the individual in solving the problem.

Brown, P. E.

"It is time that something is done about soil conservation and proper land use if our security as a nation is to continue." Land inventory and classification, removal of submarginal land from production, protection and regulation of land use and industry, land use and taxation, are all parts of a program advocated. "We must have a land-use plan, and then we must have action."

This article points out the indifference of farmers to the dangers of soil erosion until awakened by depression conditions. The history of agricultural rehabilitation in the Corn Belt is sketched. "The primary problem is to determine the ratio of feed to grass and other crops which will most
effectively conserve land resources . . .” Maps, work sheets, cropping systems for soil fertility maintenance are presented and problems of soil erosion and prevention such as pasture, rotation, organic matter, liming, fertilizer, grass land, and education are discussed.

Buchanan, R. E. (2591)

Describes the work and programs of the Iowa Agricultural Experiment Station in soil conservation. An account is given of research in various demonstration areas and soil-erosion farms.

Burrier, A. S. (2592)

Discusses the unproductiveness of Oregon’s submarginal wheatlands, p. 13, and attributes the problem to lack of rainfall. The consequent factor of wind erosion is pointed out, and it is recommended that these lands be turned back to grazing.

Carr, M. E. (2593)

Soil resources are regarded by the writer as a natural source of wealth and “without exception the greatest economic endowment of the American people . . .” The history of American soil with changes in utilization is given. Drainage of swamps and protection of farm land through deep plowing are stressed. “If we expect to receive adequate returns from the soil we must begin at the foundation and prepare a seed bed of sufficient depth and such condition of tilth as to furnish an ideal home for the growing plants which constitute the crop . . . We must reforest those soils which never should have been cleared and we must utilize the present forest products of the soil in the best possible way . . .” Education of children for the farm is recommended.

Carter, W. T. (2594)

“Nearly 80 percent of Texas has been reached by some form of soil survey work.” The author presents an analysis of soils and soil utilization for different sections of the State. “Erosion has injured much of the soils of this region, and the inherent productiveness has been greatly reduced in many places by this agency of soil destruction.” The general character of native vegetation is discussed.

Central Northwest Regional Planning Commission. (2595)

Report and Recommendations of Central Northwest Regional Planning Commission on Great Plains Area Problems. 136 pp., illus. November 16, 1936.

Part I gives recommendations of the Central Northwest Regional Planning Commission to the National Resources Committee, and the Great Plains Drought Area Committee, and recommendations of various States to the Central Northwest Regional Planning Commission. Part II presents factual material on land use, soil conservation and erosion, water conservation, and forestry.

Bibliography, pages 133-136.

Chamber of Commerce of the United States, Special Committee on Land Policy. (2596)

Chapter titles: The Approach to a Sound Land Policy; Land Classification; Adjustment of Agricultural Production to Demand; Conservation of Soil Resources; The Marginal Land Problem; Forestry; The Public Domain; Federal Reclamation; Land Settlement and Colonization; Land-Use Planning. Chapter IV, pages 14-16: “Losses of soil resources due to the removal of plant-supporting elements by cropping have been substantial in some regions, but there are ample supplies of these elements which can be applied to the soil in the form of commercial fertilizers, to compensate
for such losses. Losses by erosion, which removes entirely the top-soil, are much more serious. Every practicable method of control is being used, according to the character of the land. Reforestation and reseeding to grass of the steeper slopes, soil-conserving cropping systems, strip and contour farming, terracing and other erosion-control engineering works, and control of grazing constitute the more common of these methods."

CHAPMAN, H. H. (2597)

Two theories for the administration of a State's natural resources are discussed: (1) The plan of consolidation; and (2) the plan of specialization. The form of organization adopted by Connecticut is described with data proving its success.

CHASE, STUART. (2598)
PLANNING FOR NATURAL RESOURCES IN AMERICA. Conservation 2: 1. October 1936.

Condensed from paper read before the third World Power Conference, Washington, D. C., September 1936. "Shall we move the people from the blighted areas, let them remain there on a dole, or reconstruct the natural resource base?"

CLAYTON, C. F., AND NICHOLLS, W. D. (2599)

This bulletin reports the findings of a study, the principal objectives of which were: (1) To determine the present major uses of the land, that is, whether for crops, pasture, or woodland; (2) to relate the present utilization of the land to basic physical conditions for the areas studied; (3) to trace the relationship between the physical characteristics of land and (a) the distribution of land among various uses, (b) the size of the farm business, (c) the amount and sources of farm and other income, (d) the sources and value of the family living, and (e) the composition and characteristics of the people; and (4) to outline a land-utilization program.

COFFEY, GEORGE N. (2600)

The writer describes a reconnaissance soil survey of south Texas in the prosecution of which some long, narrow clay ridges were encountered. Their formation and provenance are discussed.

COHEE, M. H. (2601)

Results of a study made in a selected area in 1933 are given. "The purpose of this project was to determine the utilization of the land on the different slopes, and how this utilization affected erosion. The significance of this study lies in the fact that much of the prevention and control of erosion lies in proper land utilization . . ." Pasture and forest land uses and public policies for erosion control are included.

CONDRA, G. E. (2602)

Fundamental principles in land use for future development of the State are discussed. Land resources are described. "The three principle forms of land reclamation in Nebraska are irrigation, drainage, and forestation." Tables show the amount of land publicly owned or used for public purposes.

CONNER, A. B. (2603)

The function of the Texas Agricultural Experiment Station includes the mapping and classification of the soils of the State. The branches of soil study are discussed.
COOKE, M. L.
Responsibility for use and control of water is considered and the statement made: "Unless we can cope quickly and competently with soil erosion and its related water problems, our most prized national possessions will gradually lose their significance—our political institutions, our struggle for justice and equality of opportunity, even liberty itself." The relation of soil-erosion control and water-works engineering through public cooperation, hindrances of politics, constitutional, legal and other retarding influences are dealt with. "To accomplish this high purpose of saving our soils, and thereby our civilization, we need competent and bold planning, adequate spending, and a spirit of high devotion." Accompanied by literature citations.

CRADDOCK, G. W., Jr.
The author discusses vegetation and revegetation, depleted lands in relation to the conservation of perennial streams and water flow, and shows how accelerated erosion has robbed the soil of essential plant nutrients in unregulated areas where streams become swollen with melting snow.

CULLING, E. S.
In this study it is recommended that the following factors be considered: Precipitation and run-off, frequency and magnitude of great storms; floods and flood control; water supply; water power; stream pollution; wildlife; recreational use of waters; land use; reforestation; soil conservation and erosion control; and transportation.

CUNNINGHAM, R. N.
"What to do with 60 million acres of roughly wooded, cut-over, and other wild land is the problem which is being forced upon the Lake States, Michigan, Wisconsin, and Minnesota, by ever-increasing tax delinquency." The problem is discussed from the standpoint of forest management.

CUTLER, J. S., and PASCHALL, A. H.
In proposing land-inventory policies the authors discuss topography, soil type, erosion, and cover. The procedure of the Ohio reconnaissance erosion survey is outlined giving details on three small areas: Muskingum River watershed, Salt Creek project survey, and Guernsey County survey.

PASCHALL, A. H., and CONREY, G. W.
Some tentative general suggestions for land use are made. "The recommendations are based on studies made on the several soil-conservation projects, experiences in CCC camp work areas, and on the cooperative surveys made jointly by the Agricultural Adjustment Administration, the Ohio Agricultural Experiment Station, and the Soil Conservation Service."

PASCHALL, A. H., and CONREY, G. W.
"Soil conservation may be defined as 'maintaining the productive capacity of the land.' It is the opposite of soil deterioration and can be achieved through attention to the various factors that lead to depletion of the soil." The authors present a general land-use classification of agricultural lands and discuss the factors affecting land use—the soil, slope, extent of erosion, plant cover, present field location. The economic factors must
be determined for each tract of land: Markets, necessity for economic returns, land tenure. Steps are suggested for readjusting land use on the farm.

Darling, J. N.

An address before the National Council of State Garden Club Federations. Advises them to have local, State, and national plans for conservation work ready when money and men are available. States should be surveyed in readiness for future programs of conservation.

Ferry, J. F.

The inevitable result of paying scant attention to soil-conserving practices has been a general depletion of soil fertility and county-wide erosion. Human, economic, and industrial factors have also had a share in the depletion of land resources in this area.

Fleming, B. P., and Matthews, F. D.

This report discusses a survey, the object of which was to "view erosion conditions and to suggest remedies which, with a limited expenditure of money, might be applied to the solution of some of the more serious problems of the San Simon and its watershed." A short description of the San Simon is given, and general erosion conditions are indicated. Two previous reports are commented on, and the present problem is described.

Forstling, C. L.

The author presents, among other things, a series of general studies in erosion, and also detailed studies of erosion areas. The place of vegetation in preventing soil erosion is discussed in connection with data from research studies as to plant cover and soil stability.

Frank, Bernard.

"Perhaps the greatest service foresters can render as land planners and managers is in this field of community development; namely, through adapting administrative policy and land-use programs to the needs of the population..." Tables showing proposed forms of land use for the Norris Lake Forest are presented.

Fuller, G. L.

"Five areas of some 8,000 to 10,000 acres each were surveyed in representative locations through the belt. These differed widely as to dominant soil-types. In order to acquire additional information on the distribution of various land conditions within the region resulting from erosion, a strip was surveyed entirely across the State." The writer was appointed to organize and carry out the field work of this survey, and he discusses the results of erosion surveys and related studies with particular reference to soil types.

Considers soil type, present land use or ground cover, slope, and character and degree of erosion of dominant importance in soil conservation surveys.
“What the New Deal undertook to do for agriculture was to restore its golden age.” The Agricultural Adjustment Act is discussed. Other projects outlined are the land-buying program, the resettlement program, the rehabilitation project, and the soil conservation project.

“This Act, which embodies the progressive principles of conservation and planned use of land and its resources is not the first, but rather the last, of a series of similar measures which have completely reversed our traditional land and agricultural policy . . .” The author examines the problems created by wasteful exploitation of natural resources and analyzes the provisions of the Taylor Act as they affect land policies. “The removal of the forest cover, together with the drainage of swampy areas, has hastened the run-off and increased erosion. Erosion in previously forested areas has washed away much of the soil, which in turn has silted up the rivers, increased the flood menace . . .”

“This publication presents the results of a reconnaissance erosion survey of an area of a little more than 27,000,000 acres, comprising 70 counties and parts of counties lying within the Brazos River watershed in Texas. The survey was made in cooperation with the Texas and Oklahoma Experiment Stations.”—Expt. Sta. Rec. 71: 397. 1934.

THE USE AND MISUSE OF LAND. Oxford Forestry Mem. 19, 80 pp., illus. 1935.

“The following report has been . . . rendered possible through the generosity of the Leverhulme Research Fund.” It deals with the various ramifications of the misuse and abuse of forest land and the need for a well-planned land policy as a control measure. Main headings are: Forestry as a Factor in Land Management; Grazing and Range Management; Overgrazing as a Primary Cause of Soil Erosion; Value of Vegetational Covering in Stream-flow Control; Forestry as a Factor in Farm and Village Economy; Farm Erosion and Its Control; Other Examples of the Misuse of Land; and Public and Private Control of Land.

The author discusses the importance of the report of the National Resources Board and its groundwork for coordinating and rounding out public conservation policies. “The Report of the National Resources Board is a summary of detailed reports of a number of federal bureaus, committees, and boards. It gives a broad view of the natural resources problems . . . It is specially valuable in clarifying the purposes of the various new undertakings in land-use and water-use.”

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

GIBBS, R. M. THE USE AND MISUSE OF LAND. Oxford Forestry Mem. 19, 80 pp., illus. 1935.

GIBBS, R. M. THE USE AND MISUSE OF LAND. Oxford Forestry Mem. 19, 80 pp., illus. 1935.

Defines the objectives of the Resettlement Administration in land use. The resettlement program is concerned with the economic influences which
have encouraged soil erosion and with the effects of soil erosion upon the standards of living in any area. An important objective of the program is "... to bring about the necessary changes in land tenure or methods of land use which will make it economically possible to put into effect the technical means of stopping erosion which other agencies have devised." Paper read before conference of Southern Agriculture Workers, Nashville, Tenn., February 3, 1937.

GRAY, L. C.

Submarginal farm-land problems as involved in land-use planning are considered. The author states that "one of the obvious purposes of the land-utilization program is to bring to an end the destruction of natural resources which the continued occupation of unproductive farms entails. In the southern Appalachians, for example, the cultivation of steep slopes has resulted in the serious erosion and depletion of large areas of land. The restoration of a valuable forest crop on these hillsides is prevented by the operation of farms." Similar conditions prevailing in the more arid portions of the western plains, due to wind erosion, are discussed.

This pamphlet describes, among other major factors influencing land requirements, the significance of forest conservation and its relation to soil conservation. The soil-erosion problem is discussed briefly.

Six steps necessary for a sound national system of reclamation are suggested: "(1) Complete divorcement from politics through control by a nonpartisan board; (2) inclusion of both drainage and irrigation; (3) development on the basis of plans for water use and conservation covering entire watersheds; (4) close integration with agricultural and settlement policies of the Nation; (5) substitution of a low interest rate for the subsidy involved in exemption from interest charges on capital advanced for construction; (6) due allowance for costs properly allocated to power, flood control, and other elements in multiple-purpose projects, and also for measurable indirect benefits to other private interests as primary conditions for the development of projects."

The writer discusses submarginal farm problems in various States with regard to the land-use program of the Resettlement Administration. "Types of improvement undertaken cover a wide field. Erosion control, forest improvement, building of roads and trails, construction of recreation facilities such as cabins, picnic areas, and lakes and the improvement of wildlife environment are among the most important features of the development program which has been worked out in cooperation with agencies that will later manage these lands."

Federal land policies past and present are discussed with special consideration of problems confronting the various land utilization and land reclamation agencies of the New Deal. Of the Soil Conservation Service, the author says "it has concerned itself with large-scale demonstrations of erosion control practices, primarily on private land under contracts with farmers, and has conducted a reconnaissance survey of erosion conditions throughout the United States."

In a discussion by Noble Clark, of the University of Wisconsin, a new national land-program organization is suggested.
Gray, L. C.

"It has been estimated by Mr. H. H. Bennett that through erosion 35,000,000 acres of cultivated land have been essentially destroyed for crop production . . ." The development of a program of erosion control is regarded as a hopeful step in correcting soil conditions.

--- AND BAKER, O. E.

The authors present some of the highlights of existing conditions and tendencies in the use of land without attempting to formulate a concrete and specific policy of land utilization. Forestation and soil conservation are treated on pages 38-45.

Green, W. J., and Secrest, E.

A reconnaissance survey of the natural forests and artificial forest plantations in Ohio is presented.

Green, H.

"Practically no information is available in the Sudan on the occurrence of soil erosion along the fringe of the rain-belt . . . To ascertain the extent of soil erosion now occurring in the Sudan and to devise means of control is an urgent, practical responsibility to be faced by the Government . . . There is evidently scope for aerial reconnaissance which, if checked by ground surveys, should greatly expedite the work."

Guilfey, Joseph, F.

Conservation of land and water is a desperate necessity. "The national pattern of control for land and water must be formulated by Congress, because Congress is the only political body we have which represents the whole Nation."

Hall, W. C.

Text of an address delivered before the National Planning Conference held in Richmond, Va., May 4, 1936. States that "the work of the State Planning Board should be intimately related to the work of the State Commission on Conservation and Development, through all of its divisional activities."

Land Classification as a Basis for Land Use Planning. Jour. Farm Econ. 16: 431-443, illus. July 1934.

"Economic planning has become an accepted fact, and the National Planning Board, together with Regional and State Planning Boards, are now considering the techniques for carrying the effects of planning in its broader sense into a much more intimate contact with the life of the average American." The purpose of this paper is to make understandable, land-classification material not sufficiently easy of interpretation to planning boards for ready use. A tentative list of differentia is suggested for Missouri, specifically those land features and attributes necessary to the planner.

Hartman, W. A., and Wooten, H. H.

"The purpose of this study is to mobilize and to present pertinent facts as an aid in the formulation of plans [for a construction program of land use] by public officials and interested citizens . . . Adoption of such a program by the Federal government, the state, and the counties, will result in material benefits to established farmers, to business men, to land owners, and to the general public."

Discusses land utilization on four different types of soil, namely, uplands with good soils, bottom lands with comparatively rich alluvial soils, poorly drained bottom lands with salt marshes, and uplands with stony soils. Directions for utilization of these types are of a generalized nature with the fact stressed that a long-range policy is the only solution. Sweetclover is recommended for pasture on stony soils subject to erosion.

The author emphasizes the importance of reclaiming arid land by irrigation as a part of current policies and programs for the use of natural resources and tells how increase of population, particularly in the West, will require more acreage for food and fiber crops, which can only come from reclaiming arid land. The seasonal grazing of livestock is also discussed.

"It is the purpose of this publication to outline in as brief form as possible the relation of soil management to land utilization, with proper regard for soil conservation through the control of erosion and the maintenance of soil fertility."

Discusses soils, soil provinces, the program of the Soil Erosion Service, watersheds, drainage basins, and present land use in Montana, Oregon, and Washington.

A review of our public-land policies of the past and the disastrous effects of these policies on American agriculture. On pages 472-475 the author writes of the period of conservation. "About the year 1900 a great number of men prominent in politics, educators, editors, and others of public spirited character became suddenly awakened to the patent fact that the natural resources of the country could not be lavishly used, and wantonly wasted indefinitely without great danger of ultimate disaster . . . Thus far no far-reaching plan has been devised to prevent soil depletion and worse, nothing has yet been found feasible for the control, through social action, of soil erosion. We are still 'mining' the soil."

"Mapping, as a source of basic information on the Stillwater Creek project in Oklahoma, is one of the most important phases of the soil erosion project . . ." The article describes the methods, the value of aerial pictures as an aid to mapping, and the general utility of maps in erosion control.

In describing the objective of a land-use planning program the writer defines the term as follows: "Land use planning deals with cases, not with theories; it is not a compilation of abstractions or hypotheses, but thought-
fully deals with problems of human lives and welfare." The program for Pennsylvania includes an analysis of the problems of Cameron County and a land-use study of Bradford County.

HUTCHINSON, C. B. (2646)
"The main agricultural problem of this country is that of adjusting agricultural production to the population requirements ..." After reviewing the land utilization studies that have been made, the writer says that the time is ripe for serious attack on the problem in a large way, but that the plans of each State "should be developed in a manner fully coordinated with the plans of other States and in line with and a part of the national procedure that is being evolved by the National Land-Use Planning Committee."

HYDE, ARTHUR M. (2647)
In his report for 1932 the Secretary of Agriculture includes a discussion of land utilization, soil erosion, national forests, and wildlife refuges.

IOWA STATE PLANNING BOARD. (2648)
SECOND REPORT TO THE NATIONAL RESOURCES BOARD, APRIL 1933. 226 pp., illus. [Des Moines.] 1935.
Part I of this report sets forth a land-use program for Iowa which includes the following: Soil survey and its relation to land-use planning; forestry and soil conservation; improvement of tenant-landlord relationships; debt burden and soil conservation; work of the soils specialist; coordination of soil-erosion activities; wildlife areas and land-use planning.

JAMES, HARLEAN, ED. (2649)

LAND PLANNING IN THE UNITED STATES FOR THE CITY, STATE, AND NATION. 427 pp., illus. New York, Macmillan Co. 1926.
This book is divided into three sections: Section 1 deals with beginnings in American planning; section 2, modern city planning, its aims and accomplishments; and section 3, national and State planning.

JAMES, P. E. (2651)
Contains information concerning a meeting held at St. Louis on December 30 and 31, 1935 and January 1, 1936. A symposium on land utilization included papers on Ireland, Scotland, State planning in Wisconsin, and work of the Tennessee Valley Authority. Other papers dealing with land planning, areal studies, population and occupancy patterns, urban and economic studies, geomorphology, meteorology, and climatology were read.
JARDINE, J. T., and BEAL, W. H.

Pages 14–16 are devoted to land use and soil conservation. Secretary Wallace is quoted as saying: "When the soil suffers beyond a certain point, the people of the United States are running up a bill which few civilizations have ever been able to pay." Among the points discussed are: utilization of cut-over lands; land use in Pennsylvania; use and resettlement of marginal lands; soil conservation in dry regions; strip cropping to prevent soil erosion; progress of land terracing in Texas.

JARVIS, T. D.

The writer discusses the problem of the crop production phase of land utilization from the following angles: (1) The present status of agricultural development in Canada; (2) the inherent weaknesses in our present land utilization; (3) accumulated experience vs. scientific research as a means of increasing efficiency in land utilization; (4) the scope of soil surveys in our regional research program.

JOHNSON, DOUGLAS

"The many maladjustments in land use in the Northern Great Plains are partly the result of continuing an outmoded homestead policy which encouraged settlement of land unsuited to crop farming." Discusses transition zones, i.e., an area containing land that should stay in crop production but changing to land that is definitely unsuited for such purposes. A positive program, based on adequate research for these areas is proposed. Some aspects of overgrazing are considered.

JOHNSON, S. E.

"The many maladjustments in land use in the Northern Great Plains are partly the result of continuing an outmoded homestead policy which encouraged settlement of land unsuited to crop farming." Discusses transition zones, i.e., an area containing land that should stay in crop production but changing to land that is definitely unsuited for such purposes. A positive program, based on adequate research for these areas is proposed. Some aspects of overgrazing are considered.

AND STEELE, H. A.
SOME ASPECTS OF THE FARM MORTGAGE SITUATION IN SOUTH DAKOTA AND THEIR RELATION TO A FUTURE LAND USE POLICY. S. Dak. Agr. Expt. Sta. Cir. 9, 63 pp., illus. 1933.

JONES, EWING

At over 500 camps the C. C. C. are demonstrating that soil erosion can be controlled by proper land use.

KANSAS STATE PLANNING BOARD.
TWENTY-FIVE YEAR PLAN FOR SHAWNEE COUNTY. 42 pp., illus. June 1935. 1935. [Mimeographed.]

Among other problems considered in this plan are drainage and flood control, storage capacity, and the Kansas River maintenance.
KELLOGG, C. E. (2660)
The writer discusses a natural land classification based upon the inherent qualities of the land. "Such a classification would, to a great degree, consist of the definition and arrangement of natural land types in terms of climate, relief, stoniness, native vegetation and their mutual relationships . . . Practical land classification is concerned with the use of the land by man, both qualitatively and quantitatively, the type of use and the relative potentiality within the type."

KELLOGG, C. E., AND BARNES, C. P. (2661)
An effort to define more precisely expressions used in the comparatively recent development of land-utilization studies.

KELSO, M. M. (2662)
Some preliminary reports on findings of the Interdepartmental Committee of the Rio Grande Valley. This committee was appointed to assemble material on land-use conditions in this valley.

KENBIPP, L. F. (2663)
"In essence, land planning is nothing more than the analysis and measurement of national needs, both present and prospective, quantitatively and geographically, for every type of service and commodity derived from lands; followed by systematic survey, classification, and dedication of the land resources of the Nation to the types of services or commodity production thus determined, in the proper proportions and geographic relationships." Programs of the National Resources Committee, the Agricultural Extension Service, and the Resettlement Administration are considered at length.

KNIGHT, H. G. (2664)
The author urges farmers to study available soil surveys, in order better to tackle the problem of erosion.

"Owing in large measure to destructive soil erosion, not only throughout the older settled Eastern States but throughout the entire Nation, the subject can no longer be ignored. Serious and irreparable damage has already been done. The effects of destructive erosion are cumulative, and if no effort is made to retard its ravages land abandonment may increase at a more rapid rate in the future than in the past." Investigations by State experiment stations are described and the results given. Erosion data for the whole country are reviewed.

LADD, C. E. (2665)
STATE LAND USE COMMISSIONS AND PROGRAMS OF LAND USE. Jour. Farm Econ. 15: 243-244. April 1933.
This article discusses the inadvisability of State land-use commissions and attempts to show why land-use programs should be carried out by existing agencies, and research and classification work by the land-grant colleges. The author also discusses two essentials in a land-use program (1) classification of land, and (2) formulation and execution of a program for putting each class of land to its proper use.

LAMBERT, A. W. (2666)
CORRELATING GROUND AND AIR SURVEYS; HOW MAPS ARE MADE FROM AERIAL PHOTOGRAPHS BY USE OF STEREOSCOPE AND GROUND CONTROLS. Civ. Engin. 6: 732-736. November 1936.
Describes in some detail the art of photogrammetry.
LaMont, T. E. (2008)

Lane, C. N. (2009)
Submarginal Farm Lands in New York State. N. Y. State Planning Bd. Rept. 56 pp., illus. 1935. [Multigraphed.]
This report summarizes the findings of a preliminary land-classification survey made in New York State in the fall of 1934 through the cooperation of the New York State College of Agriculture and the National Resources Board. "The purpose of the survey was to determine the principal areas in the State that were better suited to forestry and to recreational uses than to agriculture."

Lee, L. L. (2070)
1933.
The writer, in outlining the land resources of New Jersey describes the topography, the location and present use of land, the potential use of land, the types of land found in the Kittatinny Valley, the territory between Riegelsville and Trenton, the lowlands of the Passaic Valley and other sections of the State. There is an increasing need for definite State policies in crop production and soil conservation.

Ligutti, L. G. (2071)
Outlines the evils resulting from widespread farm tenancy and shows how an increase in ownership of farm lands will facilitate proper land-use policies.

Lipman, J. G. (2072)
Shows how land use in the Northeastern States is a regional rather than a local problem and proposes water-conservation policies, a stricter selection of areas for residential sites, and a better quality of produce. Part-time farming and commercial farming are considered separately.

Lory, C. A. (2073)
Explains urgent need for water conservation in Colorado and suggests possible projects for slope surveys, storage reservoirs, and transmountain diversion developments.

Lovejoy, P. S. (2074)
April 1933.
"Forestry borrowed its basic concept—production—from agriculture and as in agriculture, the concept has been shifting rapidly to a new base. The fundamental thing, as now appears, is not increased production of farm and forest crops, but the identification, dedication and soundly economic use of such of our lands as have a geography and a quality to justify such use. The intensive use of farm and forest land, under the orthodox production formulae, will evidently be justified in only a small fraction of the total land available. What then of the marginal and submarginal lands?"

Lowdermilk, W. C. (2075)
Conservancy Districts in Land Management. U. S. Soil Conserv. Serv. 4 pp. 1934. [Mimeographed.]
Attributes the cause of increasing siltation rates in the West to accelerated erosion brought on by vast removal of vegetative covering. The formation of conservancy districts as a means of enacting and enforcing land-use regulations is recommended.
LOWDERMILK, W. C. (2676)

LAND USE PLANNING OF EROSION CONTROL DEMONSTRATION PROJECTS OF THE SOIL EROSION SERVICE. 3 pp. 1934. [Mimeographed.]

“Completion of our surveys may show that a larger part on the [Piedmont] area should be withdrawn from cultivation. The occupants of the rededicated cultivated lands must be or should be provided for in a scheme of land use planning.” Treatment of these areas is suggested and described briefly.

SOME NECESSARY DISTINCTIONS IN LAND USE PROBLEMS. The Land, Today and Tomorrow 1 : 5–6. October 1934.

In commenting on the inception of The Land, Today and Tomorrow, official gazette of the Soil Erosion Service, and the scope of its usefulness, the writer states: “It is necessary at this point to make such distinction between depletion of soil productivity resulting from the consumption of plant nutrients within the soil by plants, and the destruction of the physical body of the soil . . .” Both conditions are considered. Causes of unprofitable land cropping are also discussed.

LUCAS, BRODER F., AND CALLAHAN, E. P. (2678)

MAJOR RURAL LAND USE PROBLEMS IN TENNESSEE. Tenn. State Planning Comm. 23 pp., illus. March 1936.

This report on land-use problems and farm management describes, pp. 17–19, Tennessee areas on which serious erosion should be checked by a change in the cropping system. The areas in question are the upland region of west Tennessee; the central basin; the southern, eastern, and northern highland rim; and east Tennessee. Control practices for each area are suggested.

MCCORRY, S. H., YARNELL, D. L., AND McEATHRON, W. J. (2679)

Reports a survey made in Kansas and recommends means to ameliorate overflow conditions of valuable farm land. “It is accompanied by one map showing the watershed of the valley, three sheets showing topographical details of the valley and stream, and the plans suggested for their protection, one profile, and one standard levee cross section, all of which are essential parts of the report.”

McGREGOR, P. C., AND HORNOR, G. M. (2680)

This report describes the findings of studies conducted at the soil conservation experiment station at Pullman, Wash., and the substation at Cunningham, Wash. The studies embrace research in run-off, tillage and cropping practices, terracing studies, gully control, erosion on grazed lands, windbreaks, etc.

LITERATURE CITED, pp. 116–117.

McNamara, Katherine. (2681)

For references on conservation, land utilization, and water resources, see pages 174–103.

MAHER, COLIN. (2682)

LAND UTILIZATION AS A NATIONAL PROBLEM WITH SPECIAL REFERENCE TO KENYA COLONY. East African Agr. Jour. 2 : 130–144. September 1933.

The author discusses soil-erosion conditions in Kenya and proposes a system of land tenure so that erosion-control practices may be facilitated.

MANN, A. R. (2683)

The author draws attention to the relation and significance of soil conservation to rural land-use planning.
MANN, A. R.

"In replanning the uses of land in a State, the facts must be gathered as to the past trends in land values and uses, the present and the prospective values and uses, and the factors which determine values and intensity of use to which the land is adapted. Among these latter factors are the physical nature of the soil, including topography, the climatic conditions, and the whole economic and social environment." Land-use planning must be a continuous process, and as conditions change the plan should be changed to conform.

MARRUT, C. F.

On the need for land classification in the United States. Knowledge of the character of lands must be known before they are taken out of production. "Such knowledge should result in a classification of these lands on the basis of adaptability to crops and of capacity to produce good yields." The author concludes: "Such a land classification constitutes the fundamental land productivity basis on which agricultural adjustment must be established."

MAST, Capt.
We can’t have any secrets now! Illinois farms are being mapped by air. Prairie Farmer 109: 1, illus. January 2, 1937.

Aerial check-ups on soil-depleted acres for the county soil-conservation committee are cited. The development of aerial mapping is reviewed.

MEAD, E.
The Arid Public Lands: Their Reclamation, Management and Disposal. Arid Amer. 9 (2): 1-9, illus. 1897.

MEKEEL, H. S.

Talk given at series of extension conferences in the Indian Service, September 28 to October 17, 1896, stressing importance of recognizing the Indian characteristics. It is pointed out that "the Soil Conservation Service has very wisely put alongside its technical land staffs a socio-economic staff to assay the human potentialities and limitations of the people within a region, realizing that efficient land use depends not only on the land but on the characteristics of the people who will be using the land."

MILLER, F. M. S.

Description is given of aerial photography under the Soil Erosion Service, for accurate map making of the stricken Indian lands. "The astonishing discovery that most of the United States is inadequately mapped has been made by the Government’s National Resources Board. A sum of $117,531,000 must be spent to obtain much-needed knowledge of topography, to combat soil erosion"

MILLER, G. J.

A discussion of planning and conservation from the standpoint of the geographer including a review of the National Resources Board report for 1934 with abstracts of 28 States and miscellaneous publications on various phases of planning for conservation and utilization of natural resources in the United States. Accompanied by a bibliography on planning.

MISSOURI CONFERENCE ON LAND UTILIZATION.

Partial contents: Recent Economic Changes and Their Effect on American Agriculture, by N. A. Olson; Land Inventory and the Problem of Marginal

Missouri State Planning Board.

A State Plan for Missouri . . . A Report to the National Resources Board. 444 pp., illus. April 15, 1935.

This report includes a discussion of land use with respect to erosion, forestry, grazing, tilled crops, drainage, and recreation problems.

Monroe County [New York] Regional Planning Board.

Report of Monroe County Regional Planning Board. 68 pp. Illus. 1936. [Mimeographed.]

On pages 8 and 9 of the report the erosion-control program in the Irondequoit Creek drainage area is described. "One hundred fifty farmers have agreed to plant one million additional trees during the next several years so that a large portion of the area of poor soils subject to erosion and not now wooded will be protected." Establishment of permanent pastures and construction of check and conservancy dams are part of the program.

Montana State Planning Board.

Staff Report for Period Ending December 31, 1938. 87 pp., illus. 1936. [Mimeographed.]

This report presents problems that are considered to demand immediate attention. Among them are problems connected with irrigation, water rights, range depletion, forest protection, soil conservation, and wildlife. A digest of information on the resources of the State is also included.

Moon, J. W.

The objective of this survey is primarily "to classify, map, and describe the soils in such detail and manner as to be of the greatest possible use in problems of soil management and conservation, proper land use, and agricultural development." Details on mapping eroded areas are given.

Morgan, A. E.

"Planning has been characteristic of all great peoples—the greater their civilization, the more extensive its scope . . . We are exhausting our soils by cropping and erosion at such a rate that we probably consume the equivalent of several thousand years of accumulation of fertility for each century of use." Planning of several kinds in various regions and areas are discussed, among them the T. V. A. "One kind of regional planning in the Tennessee Valley region has to do with control of soil erosion . . . There is no traditional line at which men must stop in their efforts to bring order out of chaos; no limits need be set on our hopes for a more inclusive and masterly synthesis of natural forces."

Morse, H. Howe.

Musgrave, G. W.

States that the correct design of erosion-control measures is importantly dependent on information centering around three groups of factors (1) those affecting the infiltration capacity of the soil, (2) those affecting the capacity of the surface-storage reservoir, and (3) those affecting the density of the run-off material.
NATIONAL CONFERENCE ON CITY PLANNING. (2009)

Papers devoted to soil and water conservation and related subjects are:
Report On a National Land-Use Program, by L. C. Gray; The Water Resources of the United States, by Morris L. Cooke; and Opportunities in Forest Land-Use Planning, by E. A. Silcox. Presented at the twenty-sixth National Conference on City Planning held jointly with the American Civic Association at St. Louis, October 22 to 24, 1934.

NATIONAL CONFERENCE ON LAND UTILIZATION. (2700)

Papers in these proceedings dealing with the relation of land utilization to soil conservation are as follows: Soil Conservation a Major Problem of Agricultural Readjustment, by H. G. Knight (2665); Soil Classification a Basis of Agricultural Adjustments, by J. G. Lipman; Land Utilization in the Western Range Country, by William Peterson; What Methods Should Be Employed To Take Submarginal Lands Out of Agricultural Production?, by H. W. Mumford; and Land Utilization and Conservation, by George D. Pratt.

NATIONAL LAND-USE PLANNING COMMITTEE. (2701)

"Since its organization in the spring of 1932 the National Land-Use Planning Committee has been giving considerable attention to the problems of those areas that are not clearly adapted to use for farming, generally spoken of as 'marginal' or 'submarginal'... The present report... may be said to apply to areas where the major use of the land (i. e. farming, forestry, extensive grazing, parks, or other uses) needs to be determined, particularly when the uncertainty as to major use is associated with significant problems of economic and social adjustment." On page 12, the relation of reforestation and vegetative cover to watershed protection and erosion control is shown.

NEW ENGLAND REGIONAL PLANNING COMMISSION. (2702)

The following subjects are included: Geology, precipitation, surface waters, evaporation, ground water, snow surveys, pollution, water supply, water power, flood control, navigation, population, and sewage disposal.

NEW JERSEY LAND USE CONFERENCE. (2703)
PROCEEDINGS... HELD AT NEW BRUNSWICK, NEW JERSEY, DECEMBER 21, 1932.

NEW JERSEY STATE PLANNING BOARD. (2704)
FIRST ANNUAL REPORT OF PROGRESS... PLANNING SURVEYS AND PLANNING STUDIES FOR NEW JERSEY. 147 pp., illus. [Trenton, N. J.] 1935.

This report is in seven parts, part four of which is entitled "Physical Conditions and Land Use, Including Soil Erosion and Agricultural Problem Areas."

NEW MEXICO STATE PLANNING BOARD. (2705)
PROGRESS REPORT TO NATIONAL RESOURCES BOARD... APRIL 15, 1935. 334 pp. [Santa Fe, N. Mex.] 1935. [Mimeographed.]

This report embodies the work of the State planning board staff since July 1934 and is a continuation of a preliminary report of December 15, 1934. Partial contents: Land Utilization (Land Grants, Homestead Acts, Reclama-
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

- **New York State Planning Board.**
 - Partial contents: Population; Land Use (Decline in Farm Acreage, Land Classification Studies, a State Policy Needed for Submarginal Lands, Continuation of Land Use Survey, Base Maps, Soil Erosion, Local Government and Land Utilization); Forests (Reforestation); An Enlarged Public Domain; Waters (the Upland Watersheds, etc.); Mineral Resources; The Highways; State Planning Objectives and Administration.

- **New York State Planning Council.**
 - **A Report to the Governor... By the New York State Planning Council for the Division of State Planning in the Executive Department, for the Period Ending June 30, 1936.** 95 pp., illus. (Albany.) 1937.
 - This report on water resources, highway development, public works, and land use, discusses soil erosion and reforestation, pages 72-76.

- **Oregon State Planning Board.**
 - A preliminary survey of sources of municipal water supplies and the problems of protecting municipal watersheds in Oregon. The report discusses the principal features and difficulties of these problems and suggests methods for their solution. Maps showing Oregon’s municipal water sources and watersheds are included. Grazing on watersheds and its erosive effects are described, pages 9-11.

- **Osborn, Ben, and Whitaker, H. L.**
 - The work incident to reconnaissance mapping of natural vegetation is described. They state that the same methods could be used in other regions where sufficient reliefs or records of the original vegetation remain to show the distribution of the dominants of the various communities.

- **Pack, A. N.**
 - States that the work of the National Resources Committee is handicapped owing to the uncoordinated programs of Government bureaus connected with resources and conservation and especially points out the difficulties encountered by the land-use committee of the New Mexico State Planning Board.

- **Paschall, A. H., and Conrey, G. W.**
 - “Poverty grass and broome sedge grow luxuriantly in pasture on sandstone and shale soils where the soil is distinctly acid and sheet wash may have resulted in a considerable loss of surface soil.”

- **Peck, Millard, Frank, Bernard, and Eke, Paul A.**
 - “The first objective of the investigation reported in this bulletin is to show which type of land should be used for agriculture and which for...
forestry and to try to point out the conditions that will determine whether
land not easily classified as farm land or forest land should be used for a
different type of farming or for a different combination of agriculture
and forestry. The second objective is to indicate lines of improvement in
the utilization of both farm and forest lands, and the relation of such
changes in utilization to the social institutions of the area, particularly
the schools and roads."

Pennsylvania State Planning Board. (2714)
PRELIMINARY REPORT . . . TO THE NATIONAL RESOURCES BOARD. 682 pp., illus.
[Harrisburg.] 1934. [Multigraphed.]
A chapter entitled "Soil Erosion in Pennsylvania," by A. L. Patrick,
appears on pages 97-102.

Pettet, Z. R. (2715)
CENSUS MINOR CIVIL DIVISION STATISTICS AVAILABLE FOR LAND USE PLANNING.
"Some 50,000 townships, precincts, or other minor civil divisions which
have agricultural operations, have been tabulated separately by the Bu-
reau of the Census including nearly all of the information obtained in the
1933 enumeration. This information covers the entire range of land use,
aacreage and production of major crops, major classes of livestock and
poultry."

Powell, John W. (2716)
This report presents what purports to be a coherent program, for the
proper utilization of the Great Plains, recognizing the necessity of adjust-
ment to natural environment.

Pratt, J. H. (2717)
THE CONSERVATION AND UTILIZATION OF OUR NATIONAL RESOURCES. Jour.
The natural resources of North Carolina are named, including soils and
soil products. "The preservation of forests, which are one of the natural
products of our soils, is one of the most important problems that now
confronts the State." The need for adequate protection of young forest
growth is stressed. Erosion in different sections is discussed. "There are
two methods by which this loss of soil can be very materially lessened and
in some instances entirely prevented: (1) Deeper plowing; and (2), ter-
racing." Mineral products, drainage of swamplands, water power, and
the fishing industry are considered.

Preston, R. J. (2718)
PLANNING COMES TO THE TENNESSEE VALLEY. Jour. Forestry 34: 1033-1038.
December 1936.
"The misuse of the resources with which this valley was endowed has
gutted the once fertile land with gullies and worn out the soil . . . If
successful, the work of the TVA may prove an epoch-making event."

Raizs, Erwin, and Henry, Joyce. (2719)
AN AVERAGE SLOPE MAP OF SOUTHERN NEW ENGLAND. Geogr. Rev. 27: 467-472,
illus. July 1937.
Describes a map similar to the relative relief map of Ohio by Guy Harold
Smith which is said to have called attention in the United States to the
problem of defining quantitatively the average slope of the land. Not
examined.

Ramser, C. E. (2720)
FEDERAL SOIL EROSION RESEARCH PROJECTS. Agr. Engin. 10: 277-281. September
1929.
The details of a general provisional program for soil erosion investigation,
formulated on March 12, 1929, are set forth, with a reconnaissance map of
regional soil erosion areas. Experimental work near Guthrie, Okla., and
Temple, Tex., is discussed.
RAUP, H. F.

The area known as the San Pedro Hills on the Palos Verdes Hills, 20 miles southwest of Los Angeles, has no need of irrigation. "The profile of the hills presents a series of remarkably well preserved marine terraces . . . Without the terraces the hill slopes would be too steep for successful agriculture." The critical climatic factors and the historical development of these terraces are discussed. "We have here an interesting example of deliberately balanced agriculture possible only because of careful attention to the conservation of the available rainfall."

RENNER, F. G.

EROSION STUDIES UNDER WAY IN SOUTHERN IDAHO. Forest Worker 7: 10. March 1931.

The acute erosion problem in southern Idaho is traced to soils of loose, coarse, granite sand. Livestock grazing was reduced in an effort to check further erosion but was found not to keep pace with soil losses or cover depletion. Experimental work in several phases of the problem has been started by the Intermountain Forest and Range Experiment Station.

RINGLAND, A. C.

"DONIFICA INTEGRALE," THE ITALIAN NATIONAL PLAN OF LAND UTILIZATION. U. S. Forest Service. 50 pp., illus. 1933. [Mimeographed.]

"The following summary of a more detailed report is a bolle-down factual exposition, without embroidery or speculation, designed simply to emphasize and demonstrate the policies and principles of a national plan of land utilization in actual course of execution. It is a plan which in its integration alone is patently suggestive for American consideration and application. Our unrelated land policies and ill-coordinated practices in their historic sequence reveal the same disastrous results which are apparent in many parts of Italy. The Italians are now profiting by past experience: Their land plan and work is wholly coordinated, linking the state and private enterprise—there is unity of conception and unity of execution in the purpose to be served. This purpose is the utilization of the land, and all means to that end are centered and subordinated to the direction of the Ministry of Agriculture and Forests."—Foreword.

RUSSELL, W. M.

Summarizes some of the work undertaken during the period November 1935 through April 1937 and indicates the varied improvements undertaken on 94 projects.

SAUER, C. O., LEITH, C. K., MERRIAM, J. C., AND BOWMAN, I.

"The two research programs which are herewith recommended to be undertaken are: (1) An investigation of the relations of surface, soil, and climate with the control of soil erosion and soil wastage as its objective . . . (2) An investigation of critical land margins and their hazards, with emphasis on precise localization through the mapping of their constituent risk elements. These two programs are outlined in detail on the following pages."

SCHICKEL, R., AND HIMMEL, J. P., IN COOPERATION WITH IOWA AGRICULTURAL EXPERIMENT STATION.

This study, undertaken in the Tarklo Creek erosion control demonstration area in southwestern Iowa, "attempts to analyze the effects of various forms of land tenure on land-use patterns and related farming practices. This highly complex problem is studied from the viewpoint of group behavior of farmers under specified conditions of land types and institutional arrangements rather than from the viewpoint of individual farm management."
As a result of soil survey work concerning the location of eroded lands "eighteen distinct areas have been roughly outlined and estimates made of the extent of erosion in these regions." Referring to the large amount of work on the prevention and control of soil erosion done by many other agencies the writer says: "The time has now arrived when all this information should be brought together and correlated with a view to working out national plans for a study of the methods of erosion control." Funds for soil erosion research, location of field stations, and research at field stations, are among topics considered.

Scudder, H. D., and Hurd, E. B.

Sedberry, R. K.

Describes aerial-photography methods of map making from the air over Navajo, Gila, and Rio Grande Valley soil conservation projects, with 10-lens camera for large areas.

Sinclair, J. D.

In a survey of nine representative counties of Mississippi the author found 27.7 percent of the area actively eroding, owing largely to improper land use. Some historical background on erosion is given indicating its extent, and causative land uses. The impairment of valley lands due to erosion on the uplands is emphasized and reforestation as a remedy is indicated.

Sitterley, J. H., Moore, H. R., and Falconer, J. I.

"In the poorer areas of the Lake States, a rapidly mounting rate of tax delinquency has focussed attention upon the problem of marginal lands." The authors present the results of a study which should help to solve these problems in southeastern Ohio and serve as a basis for further studies in marginal and submarginal areas. In conclusion the authors think that large areas of land seem unable to support a system of agriculture that will yield a living and support the functions of local government. "The present and future use of these idle and abandoned areas may well be considered in any State conservation and forestry program."

——, Moore, H. R., and Falconer, J. I.

The purpose of this study has been to picture the different ways in which the less favorable agricultural areas of the State are adjusting themselves to the economic and social changes of the past and present century. "How to make adjustments to meet these changes has been a problem for all agricultural regions."

Smith, J. R.

The writer attempts to give a thorough knowledge of land conditions and natural resources on the American continent. Conditions in the United States, Canada, Mexico, and Central America are reviewed. Soil conservation and related subjects are considered throughout the text.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

SMITH, J. R. (2734)

"In the report of the National Resources Board and that of the Mississippi Valley Committee we have for the first time the rock-bottom of our national planning in terms, not only of soil and rainfall, but of the distribution of energy and in the phrase of the President's message, 'the security of livelihood through the better use of the natural resources of the land in which we live.' These surveys, surveyed by an economic geographer who has explored as no other writer the promise of human life on the North American Continent."—Editor's Note.

SOUTH DAKOTA STATE PLANNING BOARD. (2735)
AGRICULTURAL RESOURCES: A PRELIMINARY REPORT. 166 pp., illus. [Brookings, S. Dak.] January 1, 1936. [Mimeographed.]
Partial contents: Land Tenure and Ownership, pages 88-112; The New Public Domain (includes a plan for the administration of the public domain), pages 113-115; Land Use and Conservation, pages 116-138; Rehabilitation (Need and Methods), pages 139-142; Soil Erosion, pages 143-150; Summary and Conclusions, pages 159-166. Tables show ownership classification of land in South Dakota counties as of March 1, 1934.

Numerous projects designed to promote irrigation, transportation, stream and run-off control, erosion control, and restoration of grass and forest lands along the Missouri River and its tributaries were recommended in a resolution adopted at a meeting in Yankton, April 15, 1937, of the Upper Missouri Water Conservation Association. Text of resolution adopted is included.

WATER RESOURCES OF SOUTH DAKOTA. 69 pp., illus. June 1, 1935. [Mimeographed.]
This preliminary report deals with distribution of water resources and problems of water use and control. A tentative program for a 10-year plan for South Dakota water resources is presented. Drainage of lands for agricultural purposes and measures for flood control are discussed.
Literature cited, pages 68-69.

STEVENS, R. E. (2738)

In southeastern Minnesota, where the problem of soil erosion is rife, nine Emergency Conservation Work camps were established and nearly 2,000 young men employed. The writer tells what erosion is, the damage it does, and preventive methods which have been developed to check it. He describes the work done at soil experiment stations and demonstrations made in soil-erosion control, and concludes: "It is to be hoped that when these soil experiment stations have worked out a definite program as the result of their research, that the government and the people will not lag in putting these findings into effect as they have in regard to their forests."

STEWART, GEORGE, AND HUTCHINS, S. S. (2739)
"This paper explains the working of the new point-observation-plot method of vegetation survey which has evolved over a period of 4 years... Its application extends throughout the fields of range management, pasture management, agronomy, and soil erosion. It provides definitely quantitative data instead of merely qualitative. The new method is founded on the technic long used by plant breeders... It includes randomization and replication of plots and, therefore, lends itself readily to statistical analysis. In addition, it has been modified to include some phases of the timber survey and certain refinements of the range reconnaissance survey long used by the Forest Service and other organizations."

Data from the Bethany erosion farm are cited to prove the author's contention that soil losses on many farms exceed their crops in value. A proper policy of land utilization is proposed to alleviate this waste.

TAYLOR, C. C.

A survey is made of Government and State organizations established for the purpose of conserving natural resources, having their origin in President Theodore Roosevelt's administration. The President is quoted: "When soil is gone, men must go, and the process doesn't take long." Important changes indicating that America's pioneering era is over and that America must now decide on future issues through coordination of various State, Federal, and voluntary activities "into a National, dynamic, conservation movement" are considered.

TAYLOR, W. P.

Partial summary: "Harmonious and satisfactory land use and efficient conservation of natural resources can be obtained only through programs based on a sound ecological foundation. Ecology is one of the most useful and essential of the sciences, in at least the following fields: soil conservation, land classification and planning, resettlement projects, all the farm sciences ... practically all phases of conservation of natural resources, reforestation, range rehabilitation, wildlife management ... and the social sciences."

Literature cited, pages 345-346.

TENNESSEE VALLEY AUTHORITY.

A brief outline of the T. V. A. program and objectives in water conservation, stream regulation, erosion control, and land utilization.

THE UNIFIED DEVELOPMENT OF THE TENNESSEE RIVER SYSTEM. 105 pp., illus. 1936.

Erosion control and land-use problems are discussed in connection with the ultimate purpose of the Tennessee Valley Authority, pp. 49-54.

TEXAS STATE PLANNING BOARD.
REPORT OF THE TEXAS PLANNING BOARD FOR PERIOD ENDING DECEMBER 31, 1935. 103 pp., illus. [Austin, Tex.] 1935.

A discussion of soil and natural vegetation appears on pages 39-43.

THROCKMORTON, R. I.

The author presents a regional land-use program for the hard red winter wheat belt with the following points considered: (1) The region is adapted to extensive farming which encourages a speculative agriculture; (2) need for soil and water conservation; (3) large wheat acreage increase since 1900; (4) much unsuitable land has been placed under cultivation; (5) total wheat area should be reduced about 20 percent; (6) acreage removed from wheat should be used for soil-improving crops of various kinds as designated by soil needs; (7) need for the development or introduction of a grass or grasses for reestablishment of sod on sandy areas and on sloping and rolling lands.

TOLLEY, H. R.
CONSERVING OUR SOIL RESOURCES FOR FUTURE GENERATIONS. Nation's Agr. 11: 16-17, 19. April 1936.

A discussion of the projected agricultural program with especial emphasis on soil erosion and depletion problems.
TOPHAM, P. (2748)
NOTES ON SOIL EROSION IN THE UNITED STATES. Oxford Univ. Imp. Forestry Inst. (Paper 8), 29 pp., illus. 1937. [Mimeographed.]
This is a report on a tour made in January and February 1937, with the aid of a grant from the Carnegie Corporation of New York. The following districts were visited: The Piedmont of North Carolina and South Carolina, parts of Mississippi, eastern Texas, and the Tennessee Valley. Government policies in soil conservation and flood control are discussed.

TUGWELL, R. G. (2749)
The writer points out that the land problem is one of adjustment involving "careful analysis of the relation of different kinds of soil to the crops it will easily and harmlessly support, and the bringing of farm and grazing practices into harmony again with natural requirements. It involves, also, not the depopulation of all hilly regions or a return of the entire Great Plains area to grass, but rather learning how to use hills and plains in ways to which nature has no objections."

Various stages of agriculture with resulting changes in Europe and the United States are traced. "The probabilities for the new agriculture are, then, that there will be more legumes and grasses, and a reduced cereal culture, particularly less corn; it will have more animals in larger groups; it will have more trees, especially of the food-bearing sorts; it will be carried on in larger units, but on less land and with a smaller personnel; it will be more highly capitalized; there will be fewer proprietors and more workers . . ." The McNary-Haugen bills for relief of present agricultural distress are given attention.

Outlines the history of public lands in the United States and describes conditions on forest, grazing, and croplands which have brought about the economic necessity for conservation of soils. "The creation and improvement of our new national domain, as a supplement to the efforts of private individuals, and a storehouse for the national heritage of our land resources, remains one of the major tasks of the coming years."

In discussing the program of the Agricultural Adjustment Administration the author states that the people must recognize and regard land-use planning as one of the central and controlling elements in our whole national economy. The plight of farmers living on eroded or submarginal farms is discussed. Three great areas of limited productive capacity are described, namely, the Appalachian Highland of the eastern part of the United States; the Great Lakes region; and the western border of the Great Plains.

UNITED STATES BUREAU OF CHEMISTRY AND SOILS. (2753)
Accomplishments since the formulation of a definite plan for national programs of research on basic principles of soil-erosion processes and on methods of erosion control are cited, as arousing farmers and agricultural specialists to a realization of the cost of this form of continuous land depreciation and starting practical methods of slowing down the wastage in regions where previously nothing was being done.

UNITED STATES BUREAU OF SOILS. (2754)
These reports, published 1899-1922 annually as Field Operations of the Bureau of Soils were subsequently published separately as Soil Survey Reports by the Bureau of Chemistry and Soils. They contain numerous
observations on soil erosion by soil types and much information pertaining
to geographic distribution of erosion and cover every State in the Union.
Many of them are prepared in cooperation with State agricultural experi-
ment stations.

[UNITED STATES] NATIONAL RESOURCES BOARD.
A REPORT ON NATIONAL PLANNING AND PUBLIC WORKS IN RELATION TO NATURAL
RESOURCES AND INCLUDING LAND USE AND WATER RESOURCES WITH FINDINGS
AND RECOMMENDATIONS, DECEMBER 1, 1934. 455 PP., ILLUS. WASHINGTON,
GOVT. PRINT. OFF. 1934.

“This report of the President’s National Resources Board brings together,
for the first time in our history, exhaustive studies by highly competent
inquirers of land use, water use, minerals, and related public works in rela-
tion to each other and to national planning.”

STATE PLANNING—A REVIEW OF ACTIVITIES AND PROGRESS. 310 PP., ILLUS.
WASHINGTON, GOVT. PRINT. OFF. 1935.

This report shows the growth of State planning and demonstrates the
importance of State responsibility for planning endeavor. Part 1 is a
récümé of the development of State planning; part 2 consists of reports
from each State; part 3, activities of State planning boards. Soil erosion
is treated under “Land Planning,” pages 137-184.

LAND PLANNING COMMITTEE.
SOIL EROSION: A CRITICAL PROBLEM IN AMERICAN AGRICULTURE. U. S. NAT.
RESOURCES BD., LAND PLANNING COM., SUP. REPT., PT. 5, SECS. 1-11, 112 PP.
1935.

Contents: The Crisis in Land Utilization; The Process of Soil Erosion;
The Effects of Soil Erosion; National Erosion Reconnaissance; Erosion
Conditions in the United States; Erosion Control Demonstration on a
National Scale; a National Policy of Erosion Control; The Future of
Erosion Control; Erosion Conditions by States; Engineering Aspects of
Erosion Control; Farm Organization and Related Facts for Selected Areas
In Erosive Regions.

[UNITED STATES] NATIONAL RESOURCES COMMITTEE.
DRAINAGE BASIN PROBLEMS AND PROGRAMS. 540 PP., ILLUS. WASHINGTON, GOVT.
PRINT. OFF. 1937.

“The investigation on which the report is based was undertaken . . . with
a view—(1) to determining the principal water problems in the various
drainage areas of the country; (2) to outlining an integrated pattern of
water development and control designed to solve those problems; (3) to
presenting specific construction projects and investigation projects as ele-
ments of the integrated pattern or plan, with priorities of importance
and time.”

DRAINAGE POLICY AND PROJECTS. REPORT OF THE SPECIAL SUBCOMMITTEE OF THE
WATER RESOURCES COMMITTEE OF THE NATIONAL RESOURCES COMMITTEE, 22 PP.,
ILLUS. JANUARY 1936. [MIMEOGRAPHED.]

Reviews the findings of the subcommittee on the following subjects:
(1) The nature of drainage work in which the Federal Government is
now engaged; (2) the conflicts of activity which have arisen among both
Federal and State agencies with respect to drainage; and (3) formulation
of a plan whereby the program of the various agencies may be reconciled
currently with the view to eliminating conflicts and of increasing the
general utility of each program.

PROGRESS REPORT WITH STATEMENTS OF COORDINATING COMMITTEES, JUNE 15,
1936. 61 PP., ILLUS. WASHINGTON, GOVT. PRINT. OFF. 1936.

“To sum up the work of the National Resources Committee on public
works—it has prepared and is revising lists of water projects, scientific
research projects, and general public works showing recommended order
of priority, and is now engaged on an extensive study into the problem
of allocating the costs among Federal, local, and private parties.” Land
and water use are considered on pages 6-13.

This report deals with problems of planning and development which overlap State lines or which require the use of combined Federal and State powers. “One advantage of having variable rather than fixed regional boundaries is that each specific problem can be handled by the regional planning office with regard to the actual area affected. When two or more problems interlock—as, for example, flood control, soil erosion, and power—the office can handle the problem of their interrelationship with regard to the area concerned in the interrelationship.”

A study of the Columbia River Basin’s natural resources and possibilities for power development. On pages 54-55, under “Land Resources,” some consideration is given to the problem of soil erosion in the wheat-growing areas of eastern Oregon and Washington. Land classifications and soil surveys are being made by the Resettlement Administration.

Contents: Recommendations of the National Resources Committee; Report of the St. Louis Regional Planning Commission.

This report on studies of population, land resources, transportation, industry, and water resources in New England discusses the findings of the Soil Conservation Service in soil-erosion research, page 30.

“This report contains authorized statements of State planning and regional planning boards. It records the notable advance made by these agencies during the last few years.”

Contains extracts from paper by Abel Wolman, presented before joint planning conference in Richmond, Va., May 4, 1936. Extracts contain objectives of survey and list of all drainage basin districts thus far organized and water consultants assigned to them. “A detail survey of the utilization and planning of water resources in the country’s major drainage basins is being carried out in cooperation with State and Regional Planning Boards.”

58893—38—25
UNITED STATES RESSETLEMENT ADMINISTRATION.

"The duty of the Great Plains Committee, appointed by the President, is to report on a long-term program for the rehabilitation of that area. The hearings were consequently focused not so much upon immediate problems as upon the long-term policies which appear necessary in order to protect the land, conserve the water, and place the economy of the region upon a firmer footing." Proposals for the control of absentee-owned land in order to prevent wind erosion on unoccupied tracts were included in most of the resolutions.

This report is presented as a partial summary of activities to April 1936. L. C. Gray states, pages 1-7, that: "The program of the Land Utilization Division of the Resettlement Administration ... is the first program aimed primarily not at acquiring land for a special purpose but at correcting the misuse which has gone on through the years." The program "... has been developed to deal with what has come to be popularly known as the sub-marginal land problem." Conservation work on the submarginal lands acquired by purchase include tree planting, constructing check dams or terracing to correct erosion, stream improvement, and the restoring of range grasses.

Contains information concerning land-use project activities in regions 7, 8, and 9. Activities include recommended cropping system studies for Nebraska, surveys of land ownership and land use in North Dakota, underground-water-resources analyses in Oklahoma and Texas, and irrigation surveys in Arizona.

Reports plans for reconnaissance survey of eastern Arkansas (region 6), for collection of data on drainage and backwater conditions and soil fertility, data to be used in land-use planning study by Arkansas Agricultural Experiment Station, Bureau of Chemistry and Soils, Federal Land Bank of St. Louis, and the Soil Conservation Service. Reports also land classification program to be projected July 1936, in Minnesota (region 2).

UNITED STATES SOIL CONSERVATION SERVICE.

PROCEDURE FOR MAKING SOIL CONSERVATION SURVEYS. Outline 4, 32 pp., illus. 1936.

This handbook contains instructions for making soil-conservation surveys. These surveys embrace the designation of four factors, namely (1) character and degree of erosion, (2) present land use or cover, (3) percent and class of slope, and (4) soil.

Summarizes erosion conditions in the United States and includes a separate table for each State. Considerable data on erosion conditions in the Nation by classes are also given.

UTZ, E. J.

"A major consideration in planning is the determination of proper land use." The author favors the idea of making the land-use plan according to specific prevailing conditions.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

Virginia State Planning Board. (2775)
TENTATIVE REPORT OF THE VIRGINIA STATE PLANNING BOARD ON PART IX—LAND USE, AND PART VI—AGRICULTURE. 136 pp., illus. May 1, 1936. [Mimeographed].

This report points out factors affecting land-use planning for agricultural purposes. Under part IX, pages 44-45, an outline and summary of the Soil Erosion Service reconnaissance-erosion survey made in 1934 is given. Considerable data are also given on a survey made by the Virginia Land-Use Committee. The recommendations for erosion control issued by the State Agricultural Extension Service are summarized.

Walker, H. B. (2776)

"Land is a basic resource, and, as such, it should be inventoried through adequate soil survey methods for a fundamental land-use foundation ... natural resources constitute basic resources to be systematically inventoried, and it is upon these that sound land-use programs are built." The author discusses land-use programs, which "must be evolutionary rather than revolutionary"; soil conservation, drainage and irrigation problems; new machine applications and performance; agricultural structures, and rural electrification which "is woven into the entire agricultural engineering fabric of soil conservation, power, machinery, structures, and utilities."

Walker, R. H., AND Brown, P. E. (2777)

The purpose, methods, and results of a reconnaissance soil-erosion survey are herein covered. The survey revealed that only about 13 percent of the total area of Iowa shows little or no evidence of erosion and that approximately 30 billion tons of soil have been washed away since cultivation began. Among the measures recommended for erosion control are contour cultivation, crop rotations, liming acid soils, plowing under crop residues and manures, application of phosphates and other fertilizers, and terracing.

Wallace, H. A. (2778)

This is a discussion of the report recently submitted by the National Resources Board, whose broad program the President recommends as a guide to future planning.

Discusses Federal submarginal land policies under the Resettlement Administration and the United States Biological Survey.

"During the last half century four stages may be distinguished in the evolution of public policy toward agriculture in the United States ... The fourth stage ... Is the stage of comprehensive agricultural planning." Research in land use, and the joint responsibility of both State and Federal public bodies in the development of a national land policy, are discussed. The findings of the land planning committee of the National Resources Board provide a solid basis for public policy. Wide ramifications of the problem are also considered.

"Essential to the welfare, not only of agriculture but of the Nation as a whole, is a better land-utilization policy. This involves systems of land tenure as well as of land use. It is concerned with all the principal land uses, including farming, forestry, recreation, and wild-life conservation." The withdrawal of land unsuited to farming is discussed. Soil-depleting practices and methods to control them are considered as well as the need for constructive effort to prevent the known wrong uses of land. Some social aspects of land use, the growth of farm tenancy, and the possibilities
of improved tenure conditions are discussed. The results of farm-management studies have great value. The nature of type-of-farming research is described.

WALLACE, H. A. (2782)
NEW FRONTIERS. 314 pp. New York, Reynal & Hitchcock. [1934.]

Under the heading "Putting Our Lands in Order", Chapter XVIII, pages 239-248, the following appears: "We have permitted the livestock men of the West to overgraze the public domain and so expose it to wind and water erosion. Much of the grass land of the Great Plains has been allowed to blow away. Timber land under private ownership has been destructively logged off, without proper provision for leaving seed trees." The history of the land problem, from its inception to the present is discussed. "Land planning is no longer an academic question. A wide use of our land is intimately related to the future of industry and the unemployed. So long as there are more than five million unemployed in the United States, there will be a steady and irresistible push toward the lower living costs of open country. The repeated droughts of the last five years demand special attention to another critical maladjustment. In the Eastern half of the United States, we need national recreational parks. . . Certain large areas of the Great Plains now plowed, should be put down to grass again. By planting the right kind of shrubs and grasses and protecting nestlings from pasturing and mowing, we can work wonders in restoring wild life over considerable areas unfit to farm."

WEHRWEIN, G. (2783)

Gives a classification of Wisconsin land, a brief history of agricultural land use and the present status of land-use practices. Soil erosion prevention is given first consideration under land-use problems. An outline of work in the southwestern and western Wisconsin soil erosion area is reviewed.

WELLS, O. V. (2784)

Work of the county agricultural adjustment planning project, designed to help farmers develop an effective planning procedure in good land use and agricultural conservation, is discussed.

WILLIAMS, CARL. (2785)

A comprehensive review of the land-use situation is presented. The author discusses farming changes that affect land abandonment and sets forth the problem of declining timber production and how the forest-tax problem is related to the comparative desirability of public and private ownership. Recommendation is made for the set-up of State planning commissions, the revision of tax systems, land classification in distressed areas, and the public acquisition of marginal lands.

WILSON, M. L. (2786)
AGRICULTURAL CONSERVATION—AN ASPECT OF LAND UTILIZATION. Jour. Farm Econ. 19: 3-12. February 1937.

Paper read at the twenty-seventh annual meeting of the American Farm Economic Association, Chicago, December 28, 1936. Enumerates a number of lines of action, each involving conservation and all converging on a common point. Recommends the setting up of soil conservation districts in accordance with the Standard State Soil Conservation Districts Law because "such a district can be an efficient institutional agency for the purpose of a land-use program at the same time that it can carry out to the full the principles of economic democracy in agriculture."

WINTERS, N. E. (2787)

A paper read at the second Southwest Soil and Water Conservation Conference. Describes a soil erosion survey of the State by the use of
crop meters. The findings of the survey are summarized, and statistics on erosion are given.

WINTERS, N. E.

The waste of natural resources through destruction of forests by ax and fires together with overgrazing is pointed out. "As a basis for an intelligent method of procedure in conserving our good soils and economically reclaiming our badly eroded and gullied fields and pastures we must map and classify the soils in a way that will give us the necessary knowledge regarding the several factors which must be considered for the best utilization of each field . . . Important factors to be considered are the soil type, the slope of the land, the type and extent of erosion, rainfall and climate, and the present use that is being made of the soil."

WINTERS, R. Y.

A paper read at the thirty-second annual convention of the Association of Southern Agricultural Workers. The author discusses the erosion problem in North Carolina and briefly summarizes the results of a cooperative study conducted on Cecil fine sandy loam soil by the Bureau of Roads and the North Carolina Department of Agriculture.

WOLFGANG, L. A.

"The 'Natural land-use' map and the 'Types of farming' study recently published by the Bureau of Agricultural Economics and the Bureau of the Census, respectively, shed an instructive light on the troublesome problem of formulating sound general land utilization policies in the United States." These publications are fully discussed.

WOODWARD, K. W.

Suggestions are made for the use of tilled areas, pastures, and woods for the next 50 years. It is indicated that "the spector of erosion is not always at the elbow of the farmer, as it is in warmer climates with more open winters." New Hampshire is compared with other States and found to have an unusual variety of conditions—seashore and mountains, fresh and salt water, rivers, lakes, fertile fields of varied soils, and dark forests. Literature cited, page 982.

WREGLEY, P. I.

A sketch is given of pioneer land use to date. Tables show the relative productivity of agricultural land in counties and townships, pages 12-39.

This is one of a series of studies of the more hilly and stony parts of Pennsylvania to determine what constitutes submarginal land. "If a part of the present farm area is destined to be withdrawn from agricultural use, it is important that the fact be recognized as far in advance as possible, in order that heavy investments will not be made in a region where there is no likelihood that they will prove profitable." The survey covers 1 year's investigation of 50 farms.

LEGISLATION

ANONYMOUS.
ANTI-DUST LAW. Business Week, p. 42. February 27, 1937.

"Black blizzards now are against the law in Kansas. The new statute declares that farmers must take steps whenever top soil starts to drift. Requisite action is outlined as plowing, furrowing, listing, chiseling, or
cultivating or by such other practical methods as have been demonstrated by experience as most effective. If the farmers or their agents don’t act, county commissioners are compelled to do the job and may levy an additional tax up to $1 an acre to cover their expenses.”

Includes report of committee on recommendations for a range-conservation program.

Revised and new provisions added to the flood control bill, placing the Soil Conservation Service of the Department of Agriculture in charge of water-flow retardation and soil-erosion prevention on watersheds, are discussed.

The Kansas erosion law of 1935 was an extension of a law passed in 1913, applying to only a few counties in the State. The Kansas Supreme Court decision, handed down May 26, 1936, found the law compelling the farmer to act, unconstitutional.

LET PEOPLE DECIDE IF THEY WANT SOIL CONSERVATION DISTRICTS ACT. (Editorial.) Ariz. Prod. 16: 1, 7-8, illus. April 15, 1937.
Arguments for and against the proposed soil conservation districts law in Arizona, known as Senate bill 207.

The author discusses, among other things, proposed legislation to create a three-man Ohio River Authority and outlines power to use funds for land purchase, reforestation, flood control, and navigation benefits.

Announcement is made of a survey authorized under the Weiss-Andrews bill, the first flood-control measure passed by the special session of the legislature. Two other flood-control measures are summarized.

PRESIDENT ROOSEVELT SUGGESTS STATE EROSION PLAN. Save Our Soil 1: 3-4. March 1937.
The western Wisconsin Soil Conservation Association acts to bring about passage of standard State soil conservation districts law in the Wisconsin Legislature.

Discusses the Overton flood control bill, which adopts and authorizes the Markham plan to develop “a more effective and workable system of flood bypasses west of the Mississippi delta.”

Explains the fundamental purposes of the Soil Conservation and Domestic Allotment Act, signed by the President on February 29, 1936.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

Anonymous. (2804)

SOIL CONSERVATION OR VOTE BUYING. (Editorial.) Calif. Cult. 84: 306. April 24, 1937.

This editorial weighs the purpose of the Supreme Court's invalidation of the processing-tax provisions of the A. A. A. "The true purpose of the act was to provide some real inducement to the farmers of America to quit mining the soil and engage in a soil-building program designed to maintain soil fertility."

(2805)

Act signed by the Governor of Maryland in spring of 1937.

(2806)

The legislature of Texas passed one bill and two resolutions relating to soil conservation. The bill "recognizes that soil erosion is the greatest menace to the agricultural lands of the State." Two experiment stations for the study of soil erosion have been established in the Black Belt near Temple and in the east Texas sandy lands near Tyler.

(2807)

The Supreme Court ruling is discussed.

(2808)

"Land owners of Kansas will be required to plant shrubs, grasses and trees as means of controlling soil erosion in accordance with an act signed on March 23 by Governor Walter A. Huxman. This repeals a law previously passed by the State Legislature requiring the listing of soil when ordered by the State Supreme Court on the ground that it violates statutes against trespassing and invasion and was not uniform in application. The secretary of the State Board of Agriculture is charged with the enforcement of the new act, but authority to order the planting of trees, shrubs, or grasses is vested in the several boards of county commissioners, who may issue warrants in payment for the work."

[2809]

"During the last few months, six Great Plains states have passed the standard soil-conservation-district law recommended by the Department of Agriculture. There are great hopes that the remaining Great Plains States will enact it before another year is out." The benefits to be gained under the law are reviewed.

Bennett, H. H. (2810)

Soil erosion is recognized as the greatest menace to the agricultural lands of Texas, as indicated by a bill passed in April 1931, which authorizes the use of county and State road machinery for construction of terraces on privately owned lands. Three resolutions relating to soil conservation are quoted in full.

Blackmer, F. M. (2811)

Briefly discusses the Taylor Grazing Act and what it means to the rancher, large or small. The author seems inclined to believe that the act will increase erosion on the public domain.
BUCKMAN, T. E.
The purpose and history of the Taylor Grazing Act is set forth (H. R. 6462). "Its title and first section very clearly and frankly express the purpose and objects of the act to be: (1) 'To stop injury to the public grazing lands by preventing overgrazing and soil deterioration'." The author discusses Nevada grazing districts, public lands statistics, leases, maps, and other subjects relating to the act.

BUNN, CHARLES.
The author discusses the constitutionality of sections 7 and 8 of the Soil Conservation Act approved February 29, 1936.

CASE, W. W.
THE SOIL CONSERVATION ACT. A NEW MEASURE OF FARM AND NON-FARM PARITY.
Explains the purposes of the Soil Conservation and Domestic Allotment Act, to be effected through grants of funds to individual States in return for adoption of suitable programs, these funds to be used for expansion of markets and protection of the interests of tenants and sharecroppers. Explains, also, the new parity index and discusses the new index as a basis for the national agricultural policy.

CEYLON CENTRAL BOARD OF AGRICULTURE.
REPORT OF THE PROCEEDINGS OF THE EIGHTH MEETING OF THE CENTRAL BOARD
This meeting was held at Peradeniya, Ceylon, September 24, 1936. A discussion on soil erosion was concerned with the further consideration of a resolution recommending that legislation be introduced to stop the practice of using scrapers on estates. Many of those present spoke in favor of the resolution, and others opposed it. It was urged that it would require the services of a whole-time officer to go into the subject of soil erosion, particularly cover crops.

CHAPMAN, H. H.
SHALL THE DEPARTMENT OF THE INTERIOR BECOME THE DEPARTMENT OF CON-
"This article is not a discussion of the reasons why such legislation should not pass ... They hinge on two points. First, the organic resources, soil, forests and wild life, constitute a balanced whole, which can be regulated intelligently only by unified control in the hands of men trained in the fundamentals of biology and administration of such problems. Second, the continuous and continuing record of the Department of the Interior is such as to prevent those who understand these problems from extending their confidence to this department as the custodian of such resources."

COLLIER, JOHN.
IN THE DEPREDATION AREA OF NORTHWESTERN NEW MEXICO. Indians at work
This article discusses existing wretched conditions among Navajo Indians because of the blocking of the Navajo boundary bill in the United States Senate. "Until the bill is passed, the operations of the Soil Conservation Service, the Indian Emergency Conservation Work, and generally, the rehabilitation grants of the Federal Government must go around this area of several million acres and may not enter it. This means that water development, soil saving, and the sundry operations necessary to prevent the complete wreckage of this watershed, await the passage of the Boundary Bill."

CULLING, E. S.
"New York River Regulating District Act points to the way in which flood control and river regulation can be directed by local bodies with the cost
of the work apportioned among the beneficiaries." Suggestions are included for amendments to attain a broader power in construction for local watershed improvements.

DAVIES, R. D. (2819)

RENOW, B. E. (2820)

"The laws enacted in 1878 appear to make legal a systematic plundering of this [Government timber] property. Not only has this baneful legislation led to destruction of millions of dollars worth of forest growth, but it has prevented any reasonable administration of the public timber domain. ... Reservation is the first step; regulation of the use of the timber the second; perpetuation of a valuable resource for coming generations the object."

GLICK, FRED C. (2821)

During the discussion on the Agricultural Adjustment Act, reference was made to various recent decisions of the Supreme Court including that on the original A. A. A. "The present bill does not invade the reserved rights of the States in any way, but, on the contrary, it proposes to vote appropriations to the States themselves so that they themselves may put into force a soil-conservation program, and do the other enumerated things set forth as the policy of the bill ... This bill is founded for one thing upon soil conservation and in preventing soil erosion ... Erosion precedes destruction and soil robbing results in ruin ... Under this bill a new era will come to soil culture ..." Mistaken and foolish policies in the control of agriculture are cited. A table showing certain payments under the A. A. A. is included.

GLICK, P. M. (2822)

Presents reasons for formulating the standard State soil conservation districts law, what it provides, how districts are organized, how regulations are enforced and recent action of State legislatures in adopting legislation along the lines of the standard law.

HAWBOWER, D. C. (2823)
INCREASING FARMERS' INCOME. BUSINESS NOT ALTRUISTIC IN DEMANDING THIS. NEW AGRICULTURAL LAW CALLS FOR CONSERVATION OF SOIL. ESSENTIAL TO MAINTENANCE OF HIGH LIVING STANDARDS. Briton's 6: 19. April 20, 1936.

"The new farm law is a highly constructive piece of legislation on which can be built a permanent agricultural policy to the benefit of the whole country." With this statement the author proceeds to show that conservation and soil upbuilding are "vital facts to which farm income and the supplying of consumers' needs must depend." Prosperous agriculture rests on the fertility of the soil, its maintenance, and upbuilding.

HOCKLEY, H. A., COMPILER. (2824)

Contains a list of State legislatures which had already met, and those in special or regular session at the time (June 15, 1936), with a brief digest of important bills dealing with land and land use which had been enacted into law between January 1 and June 15, 1936.

HURBURT, V. L. (2825)

Discusses the historical and economic background of the act, showing the need for this legislation, the objectives, the significance, and attitude of the public toward the act.
JOHNSON, Luther. (2829)
States that the soil conservation bill materially contributes to the con-
servation of the soil and aids the farmers of America. Its immediate passage
is urged.

KANSAS LEGISLATIVE COUNCIL, RESEARCH DEPARTMENT.
(2827)
SOIL DRIFTING PRELIMINARY REPORT SUBMITTING THE TEXTS AND SOME ANALYSIS
OF THREE PROPOSALS FOR REMEDIAL LEGISLATION. Kans. Leg. Council
Research Dept. Pub. 43, 12 pp., 1936. [Mimeographed.]
Discusses the Kansas soil drifting law of 1935, its unconstitutionality,
excerpts from the opinion of the court, and possible legislation embracing a
Kansas wind-erosion law and a soil conservation district law.

LEWIS, Elmer A., COMPLIER. (2828)
LAWS RELATING TO FORESTRY, GAME CONSERVATION, FLOOD CONTROL, AND RELATED
A compilation of the following acts: Watershed Act and amendments;
Reforestation act and amendments; Mississippi River Wildlife and Fish
Refuge; Migratory Bird Conservation Act; Game Refuges; Extending
Reforestation Act to Puerto Rico and Territories; Forest Service to Simplicity
Work and Promote Reforestation; Forest Products Laboratory, Madison,
Wis.; Tree Planting on National Forests; Shade Trees to Plant Along
Federal Highways; Eradication of Predatory and Wild Animals; Forest
Land Management; Migratory Bird Hunting Stamp Act; Tennessee Valley
Authority (Muscle Shoals); Mississippi River Flood Control and amend-
ments; Beach Erosion Act; and Rural Electrification.

LORD, Bert. (2829)
CONSERVATION OF AGRICULTURAL LAND RESOURCES. Cong. Rec. v. 80: 2587-2588.
February 21, 1936.
The processing tax is discussed. "This tax fell on all of our people, but it
was hardest for the farmers, dairymen, and poor people, who had to pay the
advanced cost of living . . . The substitute A.A.A. bill . . . proposes to sub-
sidize the western and southern farmers by taking land out of production and
putting it into alfalfa and other grasses which will be fed to dairy cows
and cattle . . ."

McNeal, T. A. (2830)
THE NEW KANSAS SOIL DRIFTING LAW. PASSING COMMENT. Kans. Farmer 74:
4. February 27, 1937.
House bill 130 known as the "soil drifting law" which passed both houses
of the Kansas Legislature is reviewed.

STATE SUPREME COURT KNOCKS OUT COMPULSORY SOIL LISTING LAW. Kans.
States that the Kansas Supreme Court has declared the compulsory soil-
listing law unconstitutional. The author explains the law, and the court
decision and says that other laws may be unconstitutional for similar
reasons.

Nelson, Lowry. (2832)
UTAH'S NEW SOIL CONSERVATION DISTRICT LAW. Utah Farmer 57: 7. April
10, 1937.
This law was passed by the 1937 legislature. "The real purpose back of
this law is to bring into existence on a wide scale methods of control to
reduce or prevent the erosion of the soil . . . it was considered wise to bring
into direct action the forces latent in the state by the passage of a soil con-
servation districts law which would make it possible for the landowners
themselves, to set up their own organization under the law." The general
structure of the legislation is summarized.

Nelson, William L. (2833)
[SOIL SAVING AND C. O. C. CAMPS.] Cong. Rec. v. 80: 2501-2502. February 20,
1936.
"If I had my way . . . instead of reducing the number of camps and the
number of young men in these camps I would build them up to full 600,000
and carry on this work of saving soil and saving boys." Describes the
work of the C. C. C. program and its results.

O'Neal, E. A.
Discusses the Soil Conservation Act of 1935 and the great benefits the
individual farmer and the Nation as a whole will derive from it.

Pack, A. N.
16-17. February 1936.
The writer discusses the Taylor Grazing Act and suggests the centralization
in one Federal department of the power to regulate grazing on Federal
lands.

Pan American Union.
OBBLIGATORY REFORESTATION IN CUBA. Pan Amer. Union Bull. 70: 521-522.
1936.
Describes provisions of the Cuban reforestation law passed March 21, 1936,
with regard to location of prospective plantings, nurseries, and hatcheries,
conservation and propagation of rare trees, animal and bird refuge, forest
laboratory, and cutting prohibitions. "For a period of 15 years no wood may
be cut in virgin forests on Cuban mountains without permission from the
Secretary of Agriculture . . ."

Peterson, O. C., and Norberg, E. C.
A SUMMARY OF EXISTING RURAL LAND USE LEGISLATION IN MINNESOTA. U. S.
graphed.]
"This study is a summary of existing legislation in Minnesota relating to
land use. It attempts to bring related statutes together in an orderly fashion
and present them in such a way that they can be read by laymen." Laws
governing flood control are cited, page 70. Forest conservation is treated in
section 4, pages 38-57.

Pratt, J. H.
TWELVE YEARS OF PREPARATION FOR THE PASSAGE OF THE WEEKS LAW. Jour.
An address given at the silver jubilee in observance of the passage of the
Weeks law held at Bretton Woods, N. H., September 13-15, 1936. This law
provides for the protection of streams for navigation and water power.

Reed, F.
THE QUESTION OF CONSERVATION JURISDICTION TO DATE. Jour. Forestry 34:
The Lewis bill (S. 2665) designed to change the name of the Department of
the Interior to The Department of Conservation and Works is discussed.

Ridgel, Glenn.
Includes mention of provisions of the Arkansas soil conservation districts
law, Act No. 167, recently passed by the Arkansas Legislature.

Ringland, Arthur C.
WATERSHED CONTROL IN ITALY. Soil Conserv. 2: 251, 265-266, illus. May 1937.
The law of integral land reclamation adopted in 1933 and better known as "Bonifica Integrale" is discussed. This law has for its objective the
stabilization and betterment of rural life in all its aspects.

Roberts, C.
IT MUST NOT PASS. Farmer-Stockman 49: 8. June 1, 1936.
"The initiative petition which seeks to take the soil conservation pro-
gram out of the hands of the extension division and put it under a political
board of three men is on its way to the voters of Oklahoma . . . This brazen
attempt to seduce the soil conservation program of the State should be met
with such an avalanche of votes that never again will it be attempted."

The order was signed March 30, 1936. "The acquisition by the United States of such privately owned lands will permit work and improvements thereon that will provide for the said public lands disease control and protection from fires and soil erosion, and will aid in the restoration of the country's depleted natural resources"

The bill creating a permanent Soil Erosion Service and the advantages resulting therefrom are treated. Examples of variable technique which will fit individual physical, economic, and human situations in erosion control are discussed.

The author contends that article X of the Lumber Code is an important first step in an inevitable change in the whole land policy; the exercise of public control over uses of land that destroys natural resources, impairs public works, weakens the national power of defense, injures the general welfare, and creates destitution and unemployment that drain the public treasury.

"The present bulletin discusses the principles of groundwater law and the existing law in this and neighboring states. The bulletin lays the foundation for widespread discussion and, perhaps, further legislation. The author has not made dogmatic and arbitrary recommendations but has suggested the possible lines of procedure for consideration by the many and varied interests involved." Legislation with regard to use of water in Arizona and subsequent court decisions in Arizona are presented.

"This publication has as its objective the following: 1. To acquaint the people of Montana with the idea of grazing districts. 2. To acquaint the people of Montana with similar types of organization for the use of grazing land. 3. To indicate the success which has been achieved to date with such organizations. 4. To show how these organizations can be used to advantage in better utilizing Montana lands, and finally—5. To give the details of organization for existing districts which will enable people in other localities to proceed in setting up similar organizations." Several pages are devoted to questions and answers on the subject.

UNITED STATES CONGRESS.

UNITED STATES CONGRESS.

UNITED STATES CONGRESS, HOUSE COMMITTEE ON APPROPRIATIONS.

HEARINGS . . . ON AGRICULTURAL DEPARTMENT APPROPRIATION BILL FOR 1937. 74th Cong., 2d sess. 1340 pp. 1936.

On January 28 estimates for the Soil Conservation Service appropriation were under consideration. Statements made by H. H. Bennett, W. C. Lowder-
milk, Henry D. Abbot, C. W. Collier, J. G. Lindley, and W. A. Jump are included.

Testimony on soil conservation by representatives of the Soil Conservation Service is given, pages 1027-1176.

In the estimate for research activities the principal item is $483,198 for soil erosion nurseries. This item was merely a continuation of an item given to the Department of Agriculture in public works the preceding year to set up this work. This is a continuation of it to provide the trees, grass, shrubs, etc., to be used by the various agencies of the Government that are engaged in soil-erosion work.

There are fully 18 important regions which are very susceptible to erosion throughout the United States. Information is given as to the rapidity of soil erosion and its effects, and the experiments and demonstrations conducted at Spur, Tex., are described. "It is the first comprehensive soil erosion station in the history of the world and the work done there is doing great good."

UNITED STATES CONGRESS, SENATE COMMITTEE ON AGRICULTURE AND FORESTRY. AN ACT FOR THE CONSERVATION OF RAINFALL IN THE UNITED STATES. 70th Cong., 1st sess. [S. 3454], pp. 21-27. May 8, 1928.

"Be it enacted by the Senate and House of Representatives . . . That in order to develop effective methods for the control of rainfall, for the prevention of erosion of farm, pasture, and woodlands, and for the conservation of the soil fertility of fields, pastures, and watersheds; to minimize the deposition of silt in reservoirs and the overflow of inert sands and gravels upon farm lands; to reduce the discharge of water and silt into streams from fields, pastures, and watersheds; and, in general, to aid in developing the best means of controlling, conserving, and utilizing the rain water that falls upon the land, the Secretary of Agriculture be, and he is hereby, authorized and directed to make such studies and investigations as he may deem necessary to carry out these purposes."

Statements made by H. H. Bennett, B. Youngblood, S. H. McCrory, W. R. Chapline, H. G. Knight, and A. G. McCall are included.

UNITED STATES CONGRESS, SENATE COMMITTEE ON APPROPRIATIONS. STATEMENT OF H. H. BENNETT . . . ON H. R. 11418. 74th Cong., 2d sess., pp. 373-407.

"We are . . . asking for the restoration of certain cuts that were made in the House in connection with our program, which cuts we think would militate against the conduct of our work in a properly balanced way," Mr. Bennett states. "The reductions contained in the House bill will necessitate a serious curtailment of the present work of the Soil Conservation Service in addition to prohibiting the inauguration of almost all new work. This means that experiment stations on which construction is being started this year will remain uncompleted . . . Looking to the future, and planning for the future, if Congress so desires, for several years we could probably use in the neighbourhood of an additional half a million dollars for conservation survey work, and $1,000,000 for the air pictures essential to this work . . . "

UNITED STATES CONGRESS, SENATE COMMITTEE ON APPROPRIATIONS.
UNITED STATES Congress, Senate Subcommittee on Agriculture and Forestry.

(2856)

UNITED STATES DEPARTMENT OF AGRICULTURE, OFFICE OF THE SOLICITOR. (2857)

CHRONOLOGICAL LIST OF LAWS IN FORCE WHICH AUTHORIZE THE DEPARTMENT OF AGRICULTURE OR CERTAIN OF ITS AGENCIES TO ENGAGE IN FLOOD CONTROL WORK OR TYPES OF WORK WHICH MAY CONTRIBUTE TO FLOOD CONTROL. 10 pp. Washington, D. C. January 29, 1937. [Mimeographed.]

Prepared for the Flood Control Coordinating Committee. The Soil Conservation and Domestic Allotment Act is defined in part, pages 6-10.

UNITED STATES OFFICE OF EXPERIMENT STATIONS.

The act to provide for protection of land resources against soil erosion (H. R. 7054, Public Law 46) by the Soil Conservation Service is discussed.

UNITED STATES RESSETLEMENT ADMINISTRATION.

The legislative activities of the second session of the seventy-fourth Congress with the list of bills by number, title, and by whom introduced are given, pages 31-43.

UNITED STATES SOIL CONSERVATION SERVICE.

"Early in 1936 the Department [Agriculture] reached the conclusion that while soil conservation demonstrations could point the way, the States must provide adequate legal means of spreading tested soil conservation practices to all land suffering from erosion, if the problem is to be solved. The purpose of this publication is to discuss how the Department of Agriculture, as an arm of society, may cooperate with farmers through the mechanism provided by this State legislation."

This document was prepared at the suggestion of representatives of a number of States. "The standard act provides a procedure for the organization of soil conservation districts, such districts to be governmental subdivisions of the State and to exercise in the main two types of powers: (1) the power to establish and administer erosion-control demonstration projects and preventive measures; (2) the power to prescribe land-use regulations to provide for the prevention and control of erosion. Since the operation of such a program can be genuinely effective only if it meets with the wholehearted support of land operators, provision is made for referenda at important stages of the procedure. Thus, under the provisions of the standard act, no district can be organized or land-use regulations adopted unless at least a majority of the land operators to be affected have approved such organization or adoption in a referendum."—Foreword.

During 1937 the legislatures of 22 States passed laws providing for the creation of soil conservation districts somewhat similar to the State soil conservation districts law. These States are as follows: Arkansas, Act 197 approved March 3, 1937; Colorado, H. B. 258, approved May 6, 1937; Florida, S. B. 651, approved June 10, 1937; Georgia, H. B. 676, approved March 26, 1937; Illinois, H. B. 955, approved July 1937; Indiana, Enrolled Act 300, Senate, approved March 11, 1937; Kansas, H. B. 606, approved April 2, 1937; Maryland, H. B. 578, approved May 25, 1937; Michigan, Act 297, approved July 23, 1937; Minnesota, S. F. 1117, ch. 441, approved April 26, 1937; Nebraska, Leg. bill 553, approved May 18, 1937; Nevada, S. B. 125, approved March 30, 1937; New Mexico, S. B. 209, approved March 17, 1937; New Jersey, ch. 130, approved June 2, 1937; North Carolina, S. B. 343, approved March 22, 1937; North Dakota, S. B. 222, approved March 16, 1937; Oklahoma, S. B. 268, approved April 15, 1937; Pennsylvania, 657,
The three major objectives of the new farm act are stated: (1) To conserve the soil and its fertility through wise land use; (2) to reestablish and maintain farm income at such levels as will permit national recovery to continue; (3) to protect consumers by assuring adequate supplies of food and fiber now and in the future. The author says “as to these objectives, the prospects are excellent of attaining the first and third, but in the realm of speculation as to the second.” Conservation of soil is discussed. “In comparatively few years we have destroyed soil that nature has taken thousands of years to build. Soil erosion and soil depletion exact an annual toll running into the hundreds of millions, and more probably into the billions of dollars.”

Comparison is made of the Texas Wind Erosion Act, passed May 21, 1935, with the soil drifting law passed in Kansas in 1913 which has never been enforced. The writer states that “perhaps the Texas law will be more workable since it follows the Irrigation or drainage district principle. It provides means and machinery for financing erosion control instead of relying upon 'compulsions' to be enforced by an elected board of commissioners.”

The author discusses the dissolution of the Agricultural Adjustment Administration and the enactment of the Soil Conservation and Domestic Allotment Act. The problem of soil erosion is discussed, pp. 19-20.

Brief discussion of soil impoverishment by overproduction, water, and wind erosion. Refers to laws passed by Congress in 1936 under which farmers will cooperate with the Federal Government to improve and conserve the soil.

“On those farms where farmers cooperating with the Soil Conservation Service have put in contour furrows, they report that these furrows hold back the rain and let it sink into the soil.” Directions are given for the construction of such furrows.

Contains statement of Silcox regarding range policy and the various uses of forage as a national forest resource, and, the grazing policy as approved by Secretary Wallace.
Anonymous.

The machine, built by L. C. Aicher and his associates, will be used by the Soil Conservation Service this year.

On the 140,000 acres of pasture land treated by the Soil Conservation Service in the panhandles of Texas and Oklahoma, eastern New Mexico, southwestern Kansas, and eastern Colorado, the grass is claimed to be much greener and thicker along contour rows. Tests show that moisture penetration increased more than 100 percent in some places.

Secretary Wallace approves of range-building practices and the rates of payment which stockmen may earn for them in the range-improvement program for 11 Western States. The program will apply to privately owned and privately controlled land; it is not a cattle or sheep reduction plan.

"Shallow furrows, cut by an ordinary plow furrowing the contours of sloping and hilly pastures at right angles to the slope, rank among the least expensive and most effective of erosion-control and water-conserving measures, according to Charles R. Enlow, chief agronomist of the Soil Conservation Service."

This is largely a visual presentation of erosion-control demonstrations.

"The soil conservation program with its emphasis on the shifting of land from the production of soil-depleting crops to legume hay and pasture will tend to stimulate the keeping of more dairy cattle and dual-purpose cattle." This is the summary of an address made before the American Institute of Cooperation at the University of Illinois.

Abbott, J. B.

"I know of no crop the fertilization of which is attended with so great a certainty of immediate profit as pasture in feed-deficient regions." It is also stated that upwards of 1,000,000 tons of various kinds of fertilizers might well be used during the summer and fall in fertilizing pasture land by farmers who are cooperating in the soil conservation program. Adapted from an address given at the annual convention of the National Fertilizer Association, June 10, 1936.

Aldous, A. E.

With respect to the effect of severe drought on permanent pastures, the author offers suggestions intended to cover the average conditions existing in each of the different types of pasture land in the State. Factors influencing drought injury, the improvement of drought-stricken pastures, temporary pasture crops, and pastures in western Kansas are considered.
ALLRED, B. W. (2877)
San Francisco Creek near Trinidad, Colo., was a gullied area where "labor and headwork" have effected a transformation. Once a desert ranch, it has become a highly efficient farming and pasture unit.

ALGELT, G. A. (2878)
STOPPING EROSION WITH NATIVE GRASSES. South. Agr. 67: 42. February 1937.
Disapproves of terraces in pasture lands. Author cites examples in Kentucky to emphasize his belief that sod is the main factor in erosion control and that terraces are not a factor in the reestablishment of the sod.

AMERICAN BANKERS' ASSOCIATION. (2879)
Natural revegetation, restoration measures by artificial reseeding and planting, and rehabilitation involving engineering works designed to prevent surface run-off and erosion are suggested as protective measures on range watersheds.

AUSTIN, WAYNE. (2880)
A flexible-winged, V-type harrow is shown in operation.

AYLEN, DOUGLAS. (2881)
This article describes in detail the construction of a ridging implement for erosion control. Plans and specifications are given, and instructions for operation are included.

BARNES, W. C. (2882)
The author compares conditions today with those in 1882 and 1895, and points to the San Simon Valley "as a shining example of what uncontrolled, unrestricted grazing will do to the best of ranges ... The present emergency offers a vast field for true national conservation. The loss can be stopped, forage plants can be brought back, but only with time and proper methods of control and supervision."

Reprinted from part 6 of the hearings before a subcommittee of the Committee on Public Lands and Surveys, United States Senate, 69th Cong., 1st sess., pursuant to Senate Resolution 347, to investigate all matters pertaining to national forests and the public domain and their administration. An account of the occupation of the public domain ranges by the pioneer stockmen, the effect of unrestricted grazing on the forage and land, and the attempts that have been made to regulate grazing and perpetuate the natural forage resources of the open ranges.

BELL, H. M. (2884)
Contains notes on pasture listing experiments carried out at the Spur, Tex., experiment station. Results show increase in carrying capacity the second and third years after listing, with complete sod at end of second year.

BENDER, C. B. (2885)
"Rotation management of pastures insures the cattle getting much of the grass when it is 5 inches to 6 inches high. This grass then contains better than 16 per cent protein in the dry matter."
Bennett, H. H.

This paper was presented as part of a symposium on the relation of pasture to the land-utilization program, before the annual meeting of the American Society of Agronomy, held in Washington, D. C., November 22, 1934.

Blackburn, Dean W.

The author suggests the formation of cooperative grazing districts as a “possible modification of the free range system which would preserve its main benefits to small farmers and eliminate its main evils,” overgrazing and indiscriminate burning of forests. Arguments for and against the advantages of free range are considered. A map of areas open to free range in Arkansas in 1935 is included.

Boyle, R. G.

Management of Bluegrass Pastures in Missouri. Mo. Agr. Expt. Sta. Cir. 175, 4 pp., illus. 1934.

This circular is based upon the findings of a cooperative study conducted by the Department of Agriculture, the Missouri Agricultural Experiment Station, and local farms. Deals with time and regulation of grazing, supplementary pastures, the use of commercial fertilizers, and weed control.

Brisbin, Jas. S.

The Beef Bonanza; Or, How to Get Rich on the Plains. 222 pp., illus. Philadelphia, J. B. Lippincott & Co. 1881.

“There is an American Desert in the Far West which can never be used for any other purpose than the raising of great herds. It is of these lands and the cattle upon them the following pages treat. The plains of the West, instead of being barren and worthless as early geographers supposed, have become one of the richest parts of our public domain. The vast beef reservoir they contain is now the fit subject of an interesting volume.” The book covers an era of prosperity in the livestock industry of the western plains.

Brown, E. Marion, and Comfort, Jas. E.

“Grasses and legumes to check erosion on sloping fields, legumes to enrich the soil, more and better pastures to supply forage for the several
millions of grazing animals on the farms of the state—are definite needs of Illinois agriculture." Eleven grasses and seven legumes adapted to Illinois conditions are described and their uses indicated.

Butler, Ovid.

Secretary Wallace, in transmitting a report to Congress declares western grazing lands are becoming a great American desert and recommends the transfer of the Federal public domain from the Department of the Interior to the Department of Agriculture.

Carrier, Lyman.

Discusses pasture improvement. The author maintains that too great emphasis has been placed on overgrazing as a cause of poor pasture and discusses the use of white clover and lespedeza. Four rules for pasture management are given.

Chapline, W. R.

"Over two-fifths of the land area of the United States is range land largely semi-arid or arid. This vast area forms the basis for the range livestock industry which plays a principal part in the prosperity of the West. Approximately 50 per cent of this area is not producing more than half of its potential yield of forage, and but little of it is in a high stage of productivity. Furthermore, the depletion of the natural scanty stand of vegetation has allowed an excessive erosion accompanied by serious depletion of the soil fertility. Measurements show this erosion to be far greater than is generally assumed. The maintenance of the forage stand depends upon checking this erosion; its improvement depends on restoring the fertility of the soil. Research has developed methods of range management which assure improvement in forage stand, improvement in soil conditions and a minimum of erosion. Before improved range management can be generally applied, it will be necessary for stockmen and the general public to acquire a much better appreciation of the importance of soil conservation on range lands."—Abstract, First Internat. Cong. Soil Sci. Proc. Comm. 6: 61. 1927.

"Maintenance of adequate watershed protection on forest and range lands is vital to the continued prosperity of the West." The author maintains that among the numerous factors influencing erosion, the vegetative cover is the main single controllable factor. Erosion agencies and erosion losses are discussed, and the results of erosion-control studies by the Forest Service at the Great Basin experiment station in Utah are given.

Attributes erosion on ranges to overgrazing and forest fires, states that the re-establishment of vegetative cover is of the utmost importance as a control measure, and discusses the research work of the Great Basin station in the Southwest.

Watershed Protection on Cattle Ranges. Producer 9: 3-6, illus. Dec. 1927.

"Where dense forests prevail, the greatest degree of watershed protection is afforded; but in most parts of the West really dense forests are the
exception rather than the rule.” The author shows how forestation and vegetative cover are important factors in erosion control and warns of the evils resulting from overgrazing.

Charles, Tudor. (2902)
Sheep raising in Kansas as an aid to pasture rebuilding is recommended.

Chilcott, J. S. (2903)
This article attempts to answer certain objections of farmers to contour ridging in Rhodesia. Itemized cost is given for the construction of a contour ridge 500 yards long; the cost being approximately £1.12s.

Clark, N. M. (2904)
The range country, vegetative cover, overgrazing and its effects, the four-goal program of range management, and erosion are among the points discussed.

Combs, J. F. (2905)
Growing Pastures in the South. 270 pp., Illus. Chapel Hill, Univ. of N. C. Press. [1936.]
The author contends that pasture crops will aid in saving the millions of acres of topsoil now threatened by erosion. “This book is sent forth with the hope that it may be the means of creating a greater interest in the important program of pasture improvement, and that it may furnish reliable information on how to develop pasture areas into profitable grazing lands.”

Cooper, H. P. (2906)
Since much of the land now used for pasture and hay crops is entirely too acid for the economical production of hay and pasture plants, it is necessary to apply sufficient lime to bring about a favorable soil reaction. Basic slag and phosphorus have proved valuable in pasture experiments in South Carolina.

Coventry, B. O. (2907)
Table of contents: The Forest Vegetation and Evidence of Denudation; Cause of Denudation; Effects of Denudation; Remedial Measures. “That the hills are steadily becoming denuded is the writer’s own personal conviction, based largely on observations in connection with changes observed to be taking place in the vegetation; and in this note an attempt has been made to show that the cause of their denudation is solely the result of man’s action by means of fire and grazing of his cattle, and that the obvious remedy appears to be the introduction of organized pasture management throughout the hills. The mere suggestion of a remedy may not be such a difficult matter, but to give practical effects to it is a more difficult and complex problem. Ignorance and apathy are factors difficult to contend with.”

Coville, F. V. (2908)
Arguments are presented against further sheep grazing in the Cascade Range Forest Reserve. The writer suggests that proper restrictions and regulations be put into effect in order to prevent overstocking which is found detrimental to forest reproduction and soil conditions.

The writer discusses the evils of overgrazing and the setting of forest fires to extend the range. He advocates a permit system for sheep grazing.
DAHL, Arnold S. (2910)
The author also discusses equipment used in contour furrowing.

DARLING, J. N. (2911)
THE JOKERS IN WESTERN GRAZING. Successful Farming 34: 9, 22, 47, 49, illus. April 1936.
The author says that the granting of cheap grazing rentals on the Government domain and the free range do not help the general cause of agriculture, and that the next step in working out a farm program should be a great restriction, if not the total retirement, of such lands. The different kinds of Government grazing lands are outlined, and the Taylor Grazing Act is interpreted.

DAVY, J. B. (2912)
This bulletin is the result of a thorough investigation of the grasses and forage plants of northwestern California to determine the adaptability of various species to different areas of the region. Plantings to check soil washing, wind erosion, and to control shifting sand dunes are dealt with, pages 44-63.

DAYTON, W. A. (2913)
This study of shrubs and shrub planting in the West contains considerable data on plantings for the control of soil erosion.

DOBB, D. R., AND SALTER, R. M. (2914)
Pasture problems and the procedure in providing continuous good pasture are considered. "Land areas without vegetative cover may lose, through soil erosion, 200 times as much soil as areas covered with a good bluegrass sod. Erosion control alone frequently justifies the cost of pasture improvement."

DOUTT, R. (2915)
"It is the duty of the farmer to combat this form of pasture destruction, and in order to do so several practical methods may be applied by him: (1) planting of trees; (2) erecting catchment fences; (3) bushing; (4) establishing sand-binding grasses." These four measures are discussed, and sand-binding grasses are listed.

DUTTON, W. L. (2916)
The author attributes erosion in the Fremont Forest in southeastern Oregon to three causes: (1) Disappearance of beaver and beaver dams which in the past assisted in preventing gully washing during flood periods, and (2) droughts which reduced the growth of soil-binding vegetation, and (3) rodent infestation. Legislative action for the protection of beaver, rodent extermination, range management, and intensive gully control are a few of the control methods considered.

FICK, J. C. (2917)
Describes how a certain farmer overcame the gradual destruction of a grazing area which was threatened by gullying.

FORBES, R. H. (2918)
After alluding to the administrative difficulties of range improvement the writer states in conclusion: "That the hoped for outcome of range
study is: (1) the betterment of stock interests by demonstrating methods for reclaiming grazing lands; (2) the improvement of irrigation interests, by showing how measurable control may be exerted upon the run-off of a given range; and (3) by adding to the life of reservoirs in lessening the amounts of silt carried in flood waters.

FORSLING, C. L.
(2919)
The author recommends terracing and strip cropping in areas where overgrazing has been a factor in the encroachment of soil erosion and suggests the withdrawal of steep slopes from grazing as such areas are easily eroded and thus offset any small returns from grazing.

SAVING LIVESTOCK FROM STARVATION ON SOUTHWESTERN RANGES. U. S. Dept. Agr. Farmers' Bull. 1428, 22 pp., illus. 1924.
“Cattle and sheep on Southwestern ranges are subject to severe losses from starvation during forage shortage caused by the ever-recurring droughts. To be prepared for these conditions by the establishment of range methods which anticipate them is essential . . . The practices herein recommended are based upon study and experience and should prove helpful to those engaged in livestock production in the Southwest . . .”

AND DAYTON, W. H.
(2921)
ARTIFICIAL RESEEDING ON WESTERN MOUNTAIN RANGEC LANDS. U. S. Dept. Agr. Cir. 178, 48 pp., illus. 1931.
“The purpose of this circular is to bring together the best available information regarding the conditions under which artificial range reseeding may be justified, the species that will give best results, and the methods that may be employed with the greatest success . . . The information in this circular will assist in the selection of the sites to plant, the species to use, and the practices to follow, and will at least make it possible to conduct the trials in a more intelligent manner . . .”

FULLER, GUY C.
(2922)
“Buffalo grass has demonstrated its drought resistance and its ability to stage a comeback with the return of favorable conditions.” The author explains how the vacuum principle is being employed in harvesting buffalo-grass seed.

FVYIE, T. L.
(2923)
Describes a shelterbelt and fencing lay-out that saves the soil, retains moisture, and helps both man and stock.

GERLAUGH, PAUL, AND KIRKWOOD, W. P.
(2924)
Gerlaugh states that tests from Ohio show that an acre of grass produces less beef than an acre of corn, therefore livestock units may decrease through the influence of the conservation program. At the same time, Kirkwood states that figures from Minnesota show that increased fertility from use of legumes and planting in areas best suited to their production will demand more grain-consuming units.

GORRIE, R. M.
(2925)
“Processes of desiccation, deforestation and inevitable erosion can be seen by an intelligent observer on any train journey across India from north to south or east to west.” Much of this is due to grazing conditions. Officers of the Punjab Government “ . . . are now working in areas where erosion has already reached an alarming stage and their work in the villages has been towards a combination of rotational grazing closures,
and the reservation of hay-fields, with erosion control, torrent reclamation, stream training, and afforestation projects on a scale suitable to meet the needs of each village or group of villages.”

GRABER, L. F. (2926)
RENOVATING BLUE GRASS PASTURES. Wis Col. Agr. Ext. Cir. 277, 27 pp., illus. 1936.
“Dry weather, white grubs, inadequate nitrogen in the soil, and continuous close grazing have hurt permanent bluegrass pastures in southern and western Wisconsin. The renovation of such pastures consists in establishing dry weather legumes—sweet clover, alfalfa and red clover—in bluegrass sods without plowing. Bluegrass sod strengthened by fertility and grub-proofed with dry-weather legumes are effective means of erosion control.”

HAFENRICHTEB, A. L. (2927)
“When pioneer cattlemen reached the Palouse, the bunch-grass was stirrup-high. Today, little remains in many sections except miles of sand and rock and sage. . . . The famed ‘Johnson pasture’ is an impressive relic of pioneer vegetation. This article is a tribute to the foresight of the original owner—and a warning to others.”

HALE, G. A. (2928)
Recommends the use of Bermuda grass and discusses methods of cultivation. Clover and Dallis grass are also suggested.

HALL, T. D., AND MURRAY, S. M. (2929)
Paper read before the South African Association for the Advancement of Science, July 2, 1935. “The results of a comparison of the percentage productivity method made on the same areas on intensively grazed pastures under various fertilizer treatments are recorded.”—Summary.

HANSON, H. C. (2930)
The writer explains conditions on waste areas and suggests remedial measures which should prove of value in various parts of Colorado. A deferred rotation system of grazing is among these measures.

HEGNAUER, L. (2931)
Among suggestions for pasture management are: Seed mixtures used in accordance with soil and moisture conditions; the application of liquid manures on grasslands; and rotational grazing. Combinations of grass for various types of land are discussed.

HENDRICKS, B. A. (2933)
“Vine-mesquite . . . may be regarded as one of the best native south-western grasses for use in revegetating deteriorated range lands and in
controlling soil erosion. It forms a good protective ground cover in and along drainage depressions thus indicating its suitability for such use.” Discusses the characteristics of the plant and gives suggestions on planting.

“This bulletin presents the results of experiments in which a direct comparison was made between rotational and continuous grazing of pastures where other principles generally employed in an intensive system of grass-land management were the same for both pastures . . .”

The author stresses two factors responsible for the need of more pastures in land-use planning—surplus crop production, and conservation of soils and other natural resources. Pasturing in the United States is contrasted with that in Europe.

Emphasizes importance of holding soil by holding raindrops. “In retiring eroding cultivated land to grass and in storing up raindrops, the inhabitants of that country [Great Plains] are truly anchoring their lands and themselves.”

Let the Prairies Go to Grass. Amer. Cattle Prod. 17: 3-5, illus. November 1935.

Grass must be restored if the cattle industry is to remain one of importance. Millions of acres have been lost through erosion. Contour ridges and native grasses check soil losses and conserve moisture.

The contour ridges on a farm in Nowata County, Okla., are described and illustrated.

The primary object of this bulletin is to show how logged-off lands may profitably be used for pasture and how, under proper management, this use will materially reduce the cost of clearing the land and decrease the danger of forest fires. Several grasses and mixtures are recommended.

The Mississippi Extension Service offers practical suggestions to farmers on how to build and renovate old pastures so that they will most effectively control erosion.

“The object of this publication is to aid in bringing about uniformity in range management and a better understanding of grazing use in relation to the other uses of the National Forests. The phases of range management which must be given proper attention are pointed out, and as far as practicable, rules of procedure are given.” A section on watershed protection, pages 70-71, discusses the relation of the national forests to soil conservation.
AND OTHERS.

The authors present available information, based upon experimental investigations and observations on the care and handling of ranges, for the benefit of range and grazing associations. Among the points discussed are the classes of stock to which the range is best suited, grazing periods, and management of cattle and sheep. Methods of deferred and rotation grazing are considered.

JONES, EARL.

Soil liming in preparation for crops of clover and alfalfa is explained, and the author states that "our present soil conservation and erosion-control programs are based upon the fundamental principle of keeping a good cover on the land when it is in pasture or hay."

LANGLEY, B. C.

LISTER REJUVENATES GRASS. Capper's Farmer 47: 18, illus. September 1936.

Results of studies at the Spur experiment station, Dickens County, Tex., to determine value of listing native grass pastures are briefly presented. "Results indicate the feasibility of close listing on the contour to rejuvenate native grass pastures. The conservation of water by this procedure largely accounts for the beneficial results obtained. The practices used are applicable to large areas west of the Mississippi which are subject to long summer droughts."

LINDLEY, J. G.

PROTECTING COLORADO'S RANGE LANDS. Soil Conserv. 1: 12-13, illus. April 1936.

Survey of the problems and methods of the C. C. C. camps in Colorado. "An entirely gratifying result of the program is the reaction of the farmers."

LOGAN, C. A.

Results in contour furrowing, obtained with a new type of machine developed on the Limestone Creek demonstrational area of the Soil Conservation Service near Mankato, Kans., are described. The machine and its work are illustrated, and its advantages are given in a final summary.

LUSH, R. H.

FUTURE PASTURES IN THE SOUTH. Fert. Rev. 11: 9, illus. September-October 1936.

"It is necessary to meet the plant food deficiencies of very poor soils by using fertilizer in the beginning of the pasture improvement and soil conservation programs."
McCollam, M. E.

"It is hoped that, by presenting the results of observation on the present use of our pasture land as well as indications apparent from pasture experiments at this Station [Pullman, Wash.] this bulletin may arouse interest in the great possibilities in systematic care and management of permanent pasture land."

McCoy, J. G.

"The aim and purpose of the author . . . is to convey in simple, unpretentious language, practical and correct information upon the opening, development, and present status of the Live Stock Trade of the great New West . . . with brief historic sketches of leading and characteristic men of the present day engaged in the business." Texas first attracted settlers from Mexico, as well as from the New World, and retains the ownership of her public domain. The ranges are described, and the whole story of great herds and great profits, the great fight between cattlemen and the railroads, the blizzard in 1871 which brought wholesale death to the cattle and to many men is told.

Marais, A.

Discusses soil erosion in the Indwe, Elliott, and Maclear districts in northeastern Cape Province, South Africa. Grasses recommended and described are kikuyu, rye, phalaris, rescue, cocksfoot, Rhodes, paspalum, fescue, and Yorkshire fog.

Mayton, E. L.

Results of studies made to determine the possibilities of various grasses and legumes as pasture plants on typical upland soil are given. Dallis grass, carpet grass, hop clover, centipede grass, and lespedeza proved the most promising pasture plants for sandy upland soils.

Merkle, F. G.
LIME AND FERTILIZERS IN SOIL CONSERVATION. Rural New Yorker 95: 606. illus. August 29, 1936.

"The fertilizer experiments of the Pennsylvania Experiment Station at Snowshoe, Kylerstown, and Bradford, as well as the numerous demonstration tracts conducted at various points in the State by the Extension Service prove that liming and fertilizing of pastures produce a thick sod in the course of a few years. Thick sods build up the soil and provide a ground cover that is practically erosion proof . . ."

Miller, A. E.

A number of grasses, including Indian rice grass, are listed.

Monson, O. W.

Calls attention to the possibilities of improving the range lands of Montana by conserving flood waters and reducing run-off losses. Suggests development of stock-water reservoirs, construction of small storage reservoirs, and diversion of floodwaters onto large grassy flats.

Muir, J.
GRAZING. Forester 5: 31-32. 1899.

"Not a single flock of sheep should be allowed on any of the dry mountain reservations." A part of the shrinkage of streams can be traced to sheep grazing. They destroy the undergrowth and produce aridity and desolation wherever they graze. "The forests cannot be preserved in a proper condition while sheep are allowed to range the reservation."
MÜHLEN, C. W.
(2958)
CONTORED PASTURES YIELD MORE GRASS. Farmer-Stockman 49: 5, 15, illus.
April 1, 1936.
A description of contour farming in western Oklahoma and west Texas. The experiences of a group of farmers in Castro County, Tex., with terracing and experiments at the Spur station are presented.

Deplores neglect by Oklahoma farmers of the opportunity to conserve rainfall. Suggests contour furrows.

NATIONAL LAND-USE PLANNING COMMITTEE.
(2960)
CONSERVATION OF THE GRAZING RESOURCES OF THE REMAINING PUBLIC DOMAIN.
[Mimeographed.]
States that there are in the possession of the Federal Government approximately 176,000,000 acres of unreserved public land, and in addition about 60,000,000 acres that have been withdrawn from entry for various purposes. This valuable resource has been allowed to deteriorate. Proposed practices intended to protect and improve these lands by stabilizing the livestock industry, protecting watersheds, controlling erosion, and checking floods.

NEEL, L. R.
(2961)
Discusses pasture maintenance with reference to special type of grazing for Bermuda sod, bluegrass, orchard grass and redtop, and coarse grasses such as broomsedge. "Where the soil is enriched with phosphate, stable manure or a nitrogen fertilizer, as the deficiency in the soil demands, the bluegrass or other tame grass used will grow so vigorously that control of wild grasses, weeds and even bushes is made much easier."

NELSON, E. W.
(2962)
INFLUENCE OF PRECIPITATION AND GRAZING UPON BLACK GRAAMA GRASS RANGE.
This bulletin presents the results of a 13-year study (1915-27), on the influence of variable precipitation and several intensities of grazing on the black grama range type on the Jornada Experimental Range and adjacent public-domain range in southern New Mexico. "The adoption on southwestern ranges of such principles as this study has brought to light should make the range cattle business of the region much more stable and profitable."

NEW HAMPSHIRE COLLEGE OF AGRICULTURE AND THE MECHANIC ARTS.
(2963)
BETTER HAY PRACTICES UNDER THE NEW HAMPSHIRE AGRICULTURAL CONSERVA-
Formulas for lime applications and top dressing legumes for pastures are presented.

NICHOLS, F. B.
(2964)
WANTED! PERMANENT PASTURES. Successful Farming 34: 10, 82, 83, illus.
April 1936.
Recommends a larger acreage of wheat and rye crops for pasture "...until the grasslands have had time to recover somewhat from their injuries." Also shows how burning of pastures stimulates an earlier growth in the spring. Deferred grazing is discussed.

PARKINSON, D.
(2965)
The author shows how the renewal of vegetative cover on denuded ranges in Wyoming, Colorado, and Utah will decrease siltation in Boulder Dam.

PARNES, E. R.
(2966)
Discussion of the possibilities of wheatgrass, bluestem, oatgrass, alfalfa, sweetclover, Sudan grass, and rye for soil restoration in the overgrazed Plains region.
PEARSE, C. K., AND WOOLEY, S. B.
"The study reported, which is based upon measurements with inexpensive and portable equipment, reveals that range plants exert a marked influence on the rate water is absorbed by surface soils. Moreover, because plants which are most conducive to water absorption are also of greatest value for grazing purposes, the study clearly suggests that proper range management and adequate watershed protection go hand in hand."

PETERSON, W.
"When normal erosion is disturbed the pendulum swings to destruction."

The author discusses the erosion-control activities of the C. C. C. in the West. "The call of the Western range is for conservation. A definite program and adequate administration will bring it about."

PICKFORD, G. D.
"The aim of the present study has been to determine the changes which have taken place in the character of the vegetation and the grazing capacity on the foothill area or the so-called spring-fall range type of Utah as the result of grazing, fire or other humanly induced factors, during the four score years that the region has been settled. This study is a part of a research project recently undertaken by the Intermountain Forest and Range Experiment Station of the Forest Service, to develop more suitable methods of range management for this important class of grazing land."

PIETERS, A. J.

POTTER, A. F.
"The crop of forage which grows upon this open range is one of the country's most valuable resources and can be harvested only by grazing."

The manner of handling sheep and the present rules for grazing in forest reserves are discussed. "If the plans for the regulation of grazing prove to be practical and the forage crop is thus utilized without injury to the timber or water supply, the result will be an increased sentiment in favor of the forest reserves and a great benefit to the commonwealth."

PRETORIA UNIVERSITY, GRASSLAND RESEARCH COMMITTEE.
PROGRESS REPORT ON SOIL EROSION AND GRASSLAND EXPERIMENTS. Pretoria Univ., Grassland Research Com. (not paged), illus. 1936. [Mimeographed.]

The following experiments are recorded: Run-off and erosion, percolation, evaporation, and evapotranspiration. Other experiments in grazing and pasture grasses, the fertilization and cultivation of natural veld, and the influence of time and duration of rest period on a veld sward are described.

RACHFORD, C. E.
During the past 7 years there has been extreme drought and a consequent serious deterioration in the forage crop. This entails stock reduction and cooperation in land use and planning. The problem of coordinating national, forest-grazing privileges with those of the public domain is considered, as well as the question concerning limits.
On page 304 a description is given of the ranges being devastated by cattle and of the institution of forest reserves in the West. The controversy between Government and cattlemen over the question of grazing is discussed. "As they began to get better acquainted with and to learn something of the plans of the forestry men for handling the wooded areas, the more level-headed of the stockmen realized that there was more in the idea of injury to the young timber and the watersheds by heavy grazing than they had previously cared to admit."

"Space will permit only of a generalized discussion of the subject under review. Results of experimental work are still largely unpublished and therefore cannot be given. The phases dealt with most fully will include the natural features of the organization involved in pasture-improvement work, together with a statement of the important projects that are under way." Research work and organizations involved are described, and a list of the more important lines of work being pursued at the New Brunswick station is given.

The writer reviews the history of grazing, floods, damage from floods, efforts to prevent damage, conditions affecting floods, topography, and future regulation of grazing. "There can be no reasonable doubt that the torrents which have devastated this region within the last twenty years have been caused primarily by overgrazing, and that they can be largely controlled, if not entirely eliminated, by a restoration of the natural protective cover of shrubs and grasses."

"Destruction and consumption of range forage resources by rodents not only rob domestic livestock and game of food that rightfully should be utilized by the latter animals, but such destruction further accelerates the process of denuding vast areas of plant cover and thus assists the forces of soil erosion in carrying on their devastating role."

"It is the object of this bulletin to point out what plants are reliable indicators of overgrazing in the various types and how they may be used as guides in revegetation and the maintenance of the forage crop . . . "

This book is divided into three parts: Part 1 is entitled "The Grazing Industry and Range Control;" part 2, "Pasture Revegetation and Forage Maintenance." Under chapter 9 of part 3, "Control of Erosion on Range and Pasture," there is a full discussion on the causes and kinds of erosion, its damage to the individual farm and the Nation, soil types, plant growth and revegetation, and various control measures.
SAMPSON, A. W.
THE RESEEDING OF DEPLETED GRAZING LANDS TO CULTIVATED FORAGE PLANTS.

The author gives the location of the reseeding projects in 11 States within
the national forests and says that reseeding investigations show that returns
secured fully warrant the expense. He recommends several species
of grass and gives directions for sowing. A discussion is given on investi-
gations in the Wallowa Mountains, embracing climatic consideratons, de-
scriptions of the plots, spring versus autumn seeding, relation of attitude
to reseeding, etc. Estimates are given on relative amounts and costs for
reseeding.

AND WEYL, LEON H.
RANGE PRESERVATION AND ITS RELATION TO EROSION CONTROL ON WESTERN GRASS-

"The authors discuss rather fully the causes and effects of erosion on
grazing lands in the West and recommend remedial and preventive measures
based largely upon observations begun in 1912 on two representative areas
subject to flooding on the high summer range of the Manti National Forest
in central Utah. The results of these studies are deemed applicable to
many mountain ranges in Utah, Wyoming, Idaho, Nevada, Arizona, and
New Mexico, and to a less extent in other western states . . ."—Expt. Sta.
Rec. 39: 439. 1918.

SEMPLE, A. T.
FOLLOWING CONTOUR FURROWS ACROSS THE UNITED STATES. Soil Conserv. 2:

A review of contour furrowing as it is practiced in various regions of the
United States. The author points out the low cost of contour-ridge con-
struction and refutes many objections to contour furrows, proving them
unfounded.

PASTURES THAT ARE WELL MANAGED SERVE AS MEANS OF DROUGHT INSURANCE.

Among other advantages of pasture management the author states:
"There is still another great advantage in having reserve grazing for
drought insurance. Where land has an appreciable slope and is subject to
erosion, the greater the growth of grass the less erosion occurs. On over-
grazed land, erosion may take place as fast or faster than on cultivated
soil, because loose soil absorbs water more rapidly than bare, compact soil."

AND ALLRED, B. W.
RANGE IMPROVEMENT BY WATER SPREADING. Soil Conserv. 2: 269-270, 288,
illus. June 1937.

Range improvement is illustrated by comparing land along the Frijole
Creek with that along the San Francisco Creek, both in Colorado, and only
a few miles apart. "Along Frijole Creek can be seen huge webs of gullies
and gulches, cut by the erratic torrential rains . . . until the whole drain-
age is in the incipient badland stage." Along San Francisco Creek "trees
grow along the streams, cattle fatten on the rich grasses, and dark green
fields of alfalfa thrive on the lower better-watered lands."

VINALL, H. N., ENLOW, C. R., and WOODWARD, T. E.

This publication contains two parts. Part 1, entitled "The Establish-
ment, Maintenance, and Improvement of Pastures," by H. N. Vinall and C. R.
Enlow, discusses the various kinds of pasture together with the type of
pasture plants best suited to each kind in the various sections of the coun-
try. The discussion is confined chiefly to tame pastures, and is concerned
almost entirely with cultivable lands; part 2, Utilization of Pastures, by A.
T. Simple and T. E. Woodward, considers the following major features:
Hohenheim system of pasture management; use of permanent pastures in
winter; stock-poisoning plants; pastures for beef and dual-purpose cattle;
pastures for horses and mules; pastures for dairy cattle; pastures for sheep
and goats; pastures for swine; and pastures for poultry.
SHEAR, C. L. (2987)
CONSERVATION OF PUBLIC LANDS. Science 83: 204-205. February 28, 1936.
The author points out that enthusiasm for conservation is belated and in this connection presents an unpublished section of Bulletin 25 of the United States Department of Agriculture, 1901, entitled "Field Work of the Division of Agrostology." This unpublished section relates to Government control of grazing land and the serious consequence traceable to the present lack of land control. "It is not clear why the government should not derive some revenue from the use of its public lands and any such income might be advantageously expended in the building of reservoirs or other improvements which would facilitate the development of the country."

SKOTT, H. E. (2988)
The author recounts his personal experience of operating a hilly farm in the upper Mississippi Valley entailing the use of limestone, phosphates, legumes, terraces, brush dams, tree plantings in gullies, and other soil-conserving practices. He points out that soil conservation will result in more legume hay and grass, more cattle, and consequently more dairy products.

SPILLMAN, W. J. (2989)
"The methods of management on a 15-acre farm that raises all the roughage for 30 head of stock, 17 of which are cows in milk, can not fail to be of interest to farmers in all parts of the country. The farm in question is situated in southeastern Pennsylvania." How the soil was improved, crops, and management are described.

STAPLETON, D. V. (2990)
"Contour furrowing in pastures—with which this article is particularly concerned—is proving its several values on the Okatibbee River (Miss.) project, where it is rapidly gaining headway as a farming practice."

STEPHENSON, J. B. (2991)
The author discusses a 5-year experience with grasses on areas of higher rainfall in Australia. Subterranean clover is emphasized, and instructions are given for its cultivation.

STRONG, HELEN M. (2992)
Shows the contrast between regulated and unregulated grazing. Specific examples in the States of Washington, Wyoming, and Utah are discussed.

SUTTON, M. J., SUTTON, M. H. F., AND PERCIVAL, J. (2993)
PERMANENT AND TEMPORARY PASTURES. Ed. 9, 202 pp., illus. London, Simpkin Marshall, Ltd. 1929.
"During recent years much attention has been paid to the possibilities of breeding improved strains of grasses and clovers, with the object of attaining increased productivity and higher feeding value in the herbage, and considerable success has already been achieved." The drainage of grassland, cultural preparations, the selection of grasses and clovers, the immediate after-management of new pastures, the management and improvement of old grassland, breaking up old grassland, and temporary pastures are all considered. Agricultural grasses, clovers, and other leguminous plants are listed and illustrated.

TALBOTT, M. W. (2994)
"This bulletin presents the results of over three years' study and observation, under varying conditions, of more than 200 reservoirs, 50 wells, and numerous water developments of other types in Arizona and New Mexico. Although the methods and practices outlined may require modifica-
tion to meet local conditions, the conclusions will apply generally. The conservation of storm water in reservoirs, or ‘tanks’ as they are known in the Southwest, and the spacing of range watering places are emphasized as being of particular importance.” The relation of the subject to soil conservation is brought out on page 5. “The cumulative effect on the range of overgrazing and drought is reflected in killed sod, reduced vitality of surviving plants, increased erosion, and, on certain forest ranges, in serious injury to timber reproduction.”

Thalmann, R. R.

“A grass program for the farm looking toward soil conservation and a stabilized agriculture cannot succeed in the absence of a livestock program. The latter cannot succeed unless plans are so laid that the business can continue from year to year. A feed reserve is the answer to this problem. When accomplished, good feeding methods, efficient production, and good livestock management will result.”

Tower, Harold.

A study of the Plum Creek project in Nebraska showing that overgrazing not only reduces the amount of pasturage produced but also affects erosion.

United States Agricultural Adjustment Administration.

Range conservation is mentioned as a special problem. “The range program for each State is adaptable to the requirements of each ranch as shown by facts determined through a field examination of the range land in the ranching unit concerned. The program is a cooperative project designed to secure specific results for the individual ranch.” Range-building practices and rates of payment, water-conservation practices, the building of range fences, and natural reseeding by deferred grazing are all discussed.

United States Congress.

A report on the range problem of the western part of the United States prepared by the Forest Service in response to Senate Resolution No. 289 (74th Cong., 2d sess.). Literature cited, pages 557–566. Subject-matter headings are: Southern Forest Ranges, pages 567–580; Alaska, pages 581–590; Range Types, page 590.

United States Department of Agriculture.

“Excessive grazing, which injures the vegetative cover, will frequently permit erosion to get a start on the range . . . Three or four seasons of excessively heavy grazing on a watershed will usually give the elements a chance to start their destructive work . . .” Prevention of erosion is better than curing it.

United States Extension Service.

The author describes the results of the Nebraska state-wide pasture-improvement contest of 1935. The results indicate that many farmers were able to withstand the 1934 drought by having much of their land seeded down to grass. Never before had there been so much interest shown in bromegrass.

United States Soil Conservation Service.

Papers presented at this conference were: The place of agronomy and range management in soil conservation, by C. R. Enlow; Relationships with other agencies, by D. S. Myer; The place of range management in soil and water conservation, by T. G. Taylor; Grazing control as a means of improv-
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

ing cover, by J. L. Lantow; Revegetation for soil and water conservation, J. H. Christ; The use of contour furrows and related structures on pasture and range land, by Fred C. Newport; Soil and water conservation in the production of cultivated crops, by Charles B. Ahlson; The importance of supplemental feed in western range conservation work, by A. T. Semple; Costs of conservation operation, by R. L. McGrath; and Range surveys, by W. T. White and Liter E. Spence.

FENCING MANUAL. 39 pp., illus. 1937. [Mimeographed.]

"The inclusion of fence building, or the supplying of materials for their construction in the cooperative, demonstrational program of the Soil Conservation Service is predicated on the fact that in developing acceptable soil husbandry and farm management practices on cooperating farms, some protective measures must be provided to protect or reduce injury to soil and vegetation that arises from the grazing and trampling of livestock. Thus fence building is entirely a protective measure and should always be considered as such." Complete designs, specifications, and construction data are given.

Recommends the planting of wild white clover in pastures.

VAN REENEN, R.

A paper read before the Soil Erosion Council at Pretoria. Emphasizes the responsibility of the stock farmer with regard to regulated grazing as a soil-erosion preventive. The dangers of overstocking grazing land are stressed.

WELCH, J. S.

This bulletin describes the results of studies in grass pasture management at the Gooding experiment substation in Idaho.

WHITE, J. H.

COLORADO STOCKMEN MEET. GROWERS AND FEEDERS POSTPONE ACTION ON A. A. A. RANGE PROGRAM UNTIL LATER CONVENTION. West. Farm Life 38: 2. July 1, 1936.

Outlines the proceedings of the 69th annual convention of Colorado Stock Growers and Feeders, held at Fort Collins, Colo., June 11, 12, and 13. Quotes as follows from address of George E. Farrell, of A. A. A. "Let me emphasize that the purpose of a range program, if put into effect, will not be to reduce the number of livestock, but to improve grazing resources. In many cases the most practical methods will be to adjust the livestock load for grazing lands for several years. In other sections rotation grazing or resting grazing lands during certain months may prove practical."

WILKINS, F. S.

"This study was made in order to determine the manner in which cultivated legumes and grasses respond to treatment under meadow and pasture conditions on two soil types on the Iowa Agricultural Experiment Station farms at Ames. Since Kentucky bluegrass—the dominant species in these studies—is also dominant in most pastures of Iowa, it is believed that the results here reported may be applicable to most parts of the State."

Throughout a survey made in October 1934, in the severe drought area of southwestern Iowa, it was observed that pastures most closely grazed
WILSON, B. THE WASTE OF NATIONAL RESOURCES. Amer. Cattle Prod. 18: 3-7, 21, illus. April 1937. Discusses overgrazing, forest denudation, and wind erosion in New Mexico. In reviewing control practices the writer says that the present soil conservation program is inadequate and proposes a new policy of range and pasture management.

WILSON, C. P., NEALE, P. E., PARKER, K. W., AND WATENPAUGH, H. N. SOIL AND RAINFALL CONSERVATION IN NEW MEXICO. N. Mex. Agr. Expt. Sta. Bull. 238, 45 pp., illus. 1936. "Range management and erosion control are so closely allied that one often implies the other. . . Perennial forage plants that would endure drought, grazing and the depredations of rodents well and that would form a solid mass of vegetation on or very close to the ground would be the ideal sort."

WOEHLKE, W. V. THE BATTLE FOR GRASS. Sat. Evening Post 206: 10-11, 79-81, 84, illus. November 25, 1933. A description of soil-erosion conditions in northwestern New Mexico. Shows how negligence of the local Navajo Indians has resulted in overgrazing with its consequent erosion, and reviews the work and program of the Indian Bureau, the Forest Service, and the Civilian Conservation Corps in instituting control measures.

WOODMAN, V. W. PASTURE DEVELOPMENT IN TEXAS. 6th Southwest Soil and Water Conservation Conf., Tyler, Tex., Proc. pp. 55-60. 1935. "Both permanent and temporary pastures, or supplementary feed crops, are necessary for the maximum benefit from the grazing areas, and to establish a proper rotation and strip-cropping system which in turn fits into a program of maintaining soil fertility and the prevention of soil erosion . . . In general, the methods outlined here in the establishment and management of pastures can be applied to all lands in Texas."

YOUNG, G. E. ECONOMIC UTILIZATION OF LAND FOR PASTURE IN SOUTHERN INDIANA. Ind. Agr. Expt. Sta. Bull. 359, 24 pp., illus. 1932. "Of the total land in farms in Washington County, pasture occupied 36 per cent, harvested crops 31 per cent, idle and waste and woods 33 per cent, according to the 1930 census." Percentage yields from these divisions are given with the average cost of maintenance.

ZINK, F. J. DESIGN OF A MACHINE FOR HARVESTING BUFFALO GRASS SEED. Agr. Engin. 17: 197-198, illus. May 1936. This article describes the final design of a suction machine for harvesting buffalo grass seed. States that "results in harvesting efficiency were
determined by counting the seed on a small area, then sweeping the area and counting the seed remaining . . . While only experimental results are available, there appears to be no reason to doubt the applicability of this machine for extended use.

RUN-OFF AND SOIL LOSS

Anonymous.

"AN ARTIFICIAL "RAINSTORMER" TO STUDY FLOOD RUN-OFFS." Bull. Amer. Met. Soc. 18: 139-140. March 1937.

Tests made in the Boise, Idaho, section with a rainstorm machine developed by the United States Forest Service show that plant cover has a decided influence upon the amount and character of the flow of mountain streams, which, in the Boise section, are utilized for irrigation. "As one outstanding result, the studies showed that the kind and density of the vegetation is more important in influencing run-off and erosion than is steepness of slope or intensity of rainfall." Not examined.

Missouri experiments show that an acre of plow land lost 41.2 tons of soil in a year. The author contends that the same process of devastation is going on in the United States as that which caused the destruction of ancient civilizations in other parts of the world—soil erosion. The practical efforts of farmers in Van Buren County, Iowa, to stop soil erosion are described. The need for sound farming practices is emphasized.

The author points out that rushing rain water sweeping over the fields carries away 20 times as much plant food material as does growing crops. "There is need at once for a nationwide awakening to the evils of erosion . . ." Not examined.

This is the first of five articles on the Tennessee Valley Authority, the creation of which in 1933 initiated the first attempt ever made to control and utilize a large river for the benefit of the surrounding region. It was found that the fine-textured soil absorbs water slowly, has rapid run-off, and erodes freely unless protected by adequate ground cover. Soil erosion is startlingly common on the cleared and farmed lands.

Soil washing and the need for better farm practices to control erosion are stressed. Experiments at Zanesville, Ohio, and in the Mississippi Valley are cited.

Allison, R. V.

Presents results of experiment work at the erosion stations. Specific data are given on the Red Plains station at Guthrie, Okla., as to relation of type of vegetation to run-off and erosion over a 4-year period. The action of organic matter in the soil, gully control, and rotation crops in field practice are discussed. The author suggests a system of differential taxation which would penalize misuse of land.

A report of the committee on conservation of water, Irrigation Division, American Society of Civil Engineers. Partial contents: Resolutions Adopted by Conference on Water Conservation, p. 2; Economic Limits of Conser-
vation of Flood Water by Spreading, by K. Q. Volk, pp. 42-44; Runoff from Small Experimental Plots, by F. B. Laverty, pp. 45-63; Measurement of Debris Transported from Burned Areas, by C. W. Sopp, pp. 63-73; The Physical Crisis of Land Use, by W. C. Lowdermilk, pp. 73-77; Safeguards on Denuded Watersheds, by W. V. Mendenhall, pp. 82-87; Runoff and Erosion Experiments in Mountain Areas, by C. J. Kraebl, pp. 87-95; Erosion and Runoff Experiments from Cultivated Areas, by L. A. Jones, pp. 95-101.

ASHFORD, H.

"With the object of getting definite quantitative information on the amount of soil lost by wash on rubber estates, an experiment was started shortly before the 1927 monsoon." Tables giving full details of soil wash recorded by the Mundakayam Experiment Station are shown. "Reference to Table I shows the loss of soil from an acre of clean weeded rubber to have amounted to 22.22 tons . . ." The comparative influence of legumes and cultural measures in preventing soil erosion are discussed. It was found that "for preventing soil erosion there is not better than a natural cover of weeds though it will be apparent that the result from the legumes were quite satisfactory, once the cover had been dense enough."

BARR, R. W.

"One of the problems in the laying out of any system of terraces is the determination of the correct vertical distances between terraces for any given field slope." Data on tests made in Oklahoma for precipitation and run-off are presented in tables.

A paper read at the second Southwest Soil and Water Conservation Conference. Describes an experiment at the Oklahoma Experiment Station beginning in 1927, "... with the idea of determining which of the various grades and intervals in use for terraces were most effective in retaining soil and water and also noting the ponding caused by flat grades and consequent damage to crops and loss of time in cultivation ..." The results of the experiment during the year 1929 are presented in four tables.

BARTLETT, F. O.

"Experiments conducted by the North Carolina Experiment Station in cooperation with the U.S. D.A. Bureau of Public Roads to determine the amount of run-off and soil eroded from plots of Cecil fine sandy loam soil of varying lengths and also from plots of equal length when growing different crops are reported . . ."—Expt. Sta. Rec. 55: 778. 1926.

Research conducted at the Statesville Soil Erosion Farm included studies of effects of various crops and soil conditions on run-off water and erosional material. Results of rotation cropping of 12 plots is given together with gully treatment through utilization of brush and black locust seedlings.

"The equipment and layout for this experiment as described in detail in the first progress report remained unchanged during the second year." A more detailed description of the soil is given than in the first report."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BANTEL, F. O.
Experiments in Piedmont, North Carolina, measuring run-off and erosion from plots of varying lengths and from straight crops, the effect of winter cover crops, and the run-off from terraces are described.

This report covers the third year of experimental work in North Carolina. A 3-year period of experiments is summarized and tabulated in which the run-off and soil loss from seven plots were measured.

BAXTER, E. O.
The author presents formulas to eliminate possible errors in run-off calculation. He discusses rainfall intensity duration curves and variations of instantaneous intensity and gives equations on the coordination of rainfall-intensity-duration curves.

BENNETT, H. H.
"More than all other physical agencies with which man has any causative association, accelerated erosion is responsible for soil-impoverishment and eventual soil-destruction." This paper discusses "those processes of erosion that pertinently relate to rates of rainfall-absorption, runoff, and soil-removal, and with some of the more important of the numerous variables involved."

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BBAKTO, C. E. P.
"Reviewing the work of others on this subject, the author sums up the influence of forests on rainfall and run-off as follows: "The replacement of forests by field crops or grassland probably tends to increase the general rainfall of the district slightly; their replacement by bare ground probably tends to decrease the general rainfall slightly . . ." — Expt. Sta. Rec. 59: 507. 1928.
Clyde, G. D.

"The object of this study is to determine those factors which affect the snow-melting characteristics and the relationship of these characteristics to run-off and watershed losses."

Conner, A. B., Dickson, R. E., and Scoates, D.

"This bulletin reports results so far available from three years' work at Substation No. 7, located near Spur, Dickens County, in a study of factors influencing run-off and soil erosion and the effects of conservation on the increase in crop yields. The results are directly applicable to an area of about 14 million acres in which Miles and Abilene soils predominate and indirectly applicable to all of Texas. The equipment used is fully described..."

Danforth, G. C.

Deeter, E. B.

"The rainfall of April 2, [1935] ranging at different places from 1.09 to 1.72 inches, produced some striking results. The rate of intensity was approximately 4 inches per hour." Discusses resultant washing away of soil. Data compiled at the soil erosion experiment station, Temple, Tex.

Devereaux, W. C.

Some of the different phases of this question are considered as applied to the Wisconsin River Valley above Portage and the Wolf River Valley above New London. Topography and soil, the original forest and the clearing of the forests, together with rainfall data and run-off, are all discussed. In his conclusions the writer states that deforestation has had no appreciable effect on the precipitation, and that deforestation proper has not changed the stream flow, but farm drainage and the improvement of the small streams may have increased the rate of run-off slightly.

Dickson, R. E.

The plan of experiment and the results are described in detail by the author in a paper read at the meeting of the American Society of Agronomy, Washington, D. C., November 23, 1928. Distribution of rainfall during the major portion of 3 crop years, in relation to water and soil loss, is shown by tables. In summing up, the author states: "With a better understanding of the nature and character of the rainfall and... development of practical methods of holding the water on the land where it falls, there will be more permanently anchored acres and the risk element of crop farming will have been materially reduced."

"There is probably no other service that the engineers of the country can render agriculture that is comparable with a complete study of the water and soil conservation problems. There is certainly no other way in which the agricultural wealth of the country can be so quickly and materially increased, and there is no program so lasting in its good results." Experiments to determine the duty of water as applied to the growing of crops have been made at Spur, Tex., since 1926. Rainfall data, records of run-off, and the tons of soil eroded per acre are given.
DICKSON, R. E. AND LANGLEY, B. C. (3044)

"This project which has been under way five years, has for its purpose the study of factors influencing run-off-water losses and soil erosion and the effect of run-off and erosion on crop production." Results obtained from terraces, contour rows, and the use of alfalfa for diverting run-off water are given.

AND LANGLEY, B. C. (3045)

Reports the results of studies conducted at agricultural experiment substation No. 7, at Spur, Tex. The experiments are conducted on small plots one seventy-fifth of an acre in size and large field areas from 6 to 120 acres.

AND SCAOTES, D. (3046)

"The results obtained to date in these studies show that rapidity of rainfall is a factor involved in losses of both water and soil and that the greatest losses occur from torrential rains . . . Tillage has increased the absorptive power of the soil for water and consequently has been effective in storing water in the soil." Vegetative cover of cotton, milo, and grass on terraced land is advocated.

SCOATES, D., AND LANGLEY, B. C. (3047)

"The purpose of this project is to study some of the factors influencing run-off and soil erosion and the effects of preventing the losses of water by run-off on crop production. The work includes terraces with different slopes and vertical spacing, different crops as vegetative cover, different slopes on land, and the diversion of water on diked areas."

DISKER, E. G., AND YODER, R. E. (3048)

"It is apparent that sheet erosion control must be considered as a 'between-terrace' problem since the land between terraces constitutes the unit areas from which run-off occurs." The authors advocate three supplemental measures from which erosion control may be developed; (1) Increased and improved use of vegetation; (2) improved methods of tillage and mechanical manipulation of the soil; and (3) a wiser selection and use of land for the production of clean-cultivated crops. Results of 6 years' experimentation on the measurement and control of the sheet erosion process on Cecil clay are reported.

DODGE, A. F. (3049)

"Little is known concerning the influence of plant cover density on run-off and erosional losses in southern Iowa, where farming practice has greatly reduced the area of undisturbed forest litter and the original prairie vegetation, both of which were efficient in maintaining the soil in a stable and water-receptive state . . . In 1932 an attempt was made to measure the value of different vegetative covers in preventing run-off losses. The observations and data obtained are recorded, following a description of the methods and plots."

DRUMMOND, G. B. (3050)
DUCKER, H. C.

This is a report on the results of studies conducted at the Makwapala station on run-off and soil washing, terracing, and resistance crops. Soil conditions at the Port Herald station are discussed.

DULEY, F. L.

"This report presents the practical features of studies conducted over a 6-year period on the measurement of run-off and losses from soil erosion previously reported in Research Bull. 63 (E. S. R. 51, p. 210). It has been found that deep plowing to 8 inches is only slightly more effective than shallow plowing to 4 inches in preventing run-off and erosion. A growing crop on the land, particularly a small grain or sod crop, furnished the most effective means of reducing erosion. The character of the rainfall largely determined the amount of soil loss. A heavy dashing rain removed more soil within a few hours than was lost during a whole year when the rainfall was well distributed. Grass or clover land absorbed much more water than cultivated land."—Expt. Sta. Rec. 51: 618. 1924.

"This paper covers determinations made on the run-off water from the erosion plots having different cultural and crop treatments during the year May 1, 1924 to April 30, 1925. This must be considered as a progress report, since the samples are still being collected and further determinations will be made in the future." The plan of the work is given, and the treatments of the various plots in the experiment. Results are given in tables and are followed by a summary.

Experiments in measuring loss of soil under soybean cultivation in Missouri have shown that the loss from this land was relatively high as compared with sod or corn after clover. Tables give the amounts of soil lost during different periods, and the amounts of nitrogen lost in eroded soil from soybean land.

AND ACKERMAN, F. G.

This article describes two sets of experiments conducted at the Kansas Experiment Station. "In each, 4 plots 3 feet wide and 10, 20, 40, and 100 feet long were used . . . The slope of the land was 4 percent in experiment 1 and 4.4 percent in experiment 2 . . . A table on the effect of length of slope on run-off and soil erosion for each experiment is included with a brief summary of data.

AND HAYS, O. E.

"Studies conducted at the Kansas Experiment Station are reported in which determinations of run-off and erosion were made by means of water applied to soil artificially to simulate rainfall . . ."—Expt. Sta. Rec. 68: 389. 1933.

AND MILLER, M. F.

"Experiments covering a 6-year period are described in which the amount of run-off and soil eroded were measured after each rain from seven plots having different cropping systems or tillage treatment . . . The results as a whole are taken to indicate that much can be done in the Corn Belt toward reducing run-off and the disastrous effects of erosion by planning.
crop rotation in such a way that the land will be covered with a growing crop a very large portion of the time."—Expt. Sta. Rec. 51: 210. 1924.

Effert, C. H.

"The purpose of this article is to make the data and the methods employed more helpful and to urge engineers to use and test them more extensively." Reference is made to Storm Rainfall of Eastern United States issued by the Miami Conservancy District, chapter V of which deals with frequency of excessive precipitation, making use of isoluvial charts and pluvial indices.

Finnell, H. H.

"The 1930 results from terracing, average of all plots, showed an increase in crop production of 16 percent ... Additional work was begun in 1929 to determine the efficiency of various spacings of level terraces for moisture conservation ..."

Fitzgerald, O. A.

Describes portable fire pump devised to produce artificial rains for run-off study. An outstanding result of the study was that kind and density of vegetation is a more important influence on run-off and erosion than is steepness of slope or intensity of rainfall.

Follansbee, Robert.

"For the last nine years the United States Geological Survey has made a special study of the run-off of mountain streams, particularly in Colorado and Wyoming. The gradual installation of water-stage recorders on the larger streams has made available sufficient data to permit a study of the characteristics of these streams. During this period 40 or more stations located in the mountains and above practically all diversions, have been maintained for periods ranging from two to eight years or more, and the records thus obtained, together with studies of the topography of the drainage basins, form the basis of this report."

"The data presented in this report show that the variation in annual run-off differs in different areas in the Rocky Mountain region, owing to the differences in the sources of the precipitation on those areas." Tables give comparative figures on run-off for streams in Montana, Wyoming, and Colorado. The influence of topography upon variation in annual run-off is also discussed.

Forrester, C. L.

"This is a contribution from the Intermountain Forest and Range Experiment Station of the U. S. D. A. Forest Service. It presents the results of 15 years' measurements of precipitation, surface run-off, and erosion from summer rains and 7 years' measurements of melted snow run-off and erosion on two experimental watersheds on the Wasatch Plateau in central Utah."—Expt. Sta. Rec. 65: 477. 1931.

Frazee, G. R.

Describes experiments carried out at the soil erosion experiment station, Clarinda, Iowa, to determine soil and water losses from corn, bluegrass sod,
and other crops. Results are presented in tables. The conclusion is that
"soil moisture in a 3-foot profile under continuous corn has been signifi-
cantly more than that under bluegrass sod despite a difference in run-off of
3.51 surface inches."

FREE, G. R., AND MUSORAVE, G. W.
A PRELIMINARY REPORT OF AN INFILTRATION STUDY OF SOME PIEDMONT AND
COASTAL PLAIN SOILS. U. S. Soil Conserv. Serv. SCS-TP-13, 8 pp. Wash-
ington, D. C. May 1937. [mimeographed.]

"These considerations give rise to the possibility that on the soils with
high infiltration rates wider spacings of terraces may be used, that outlet
ditches may be constructed to care for a lesser volume of water, that wider
intervals in strip cropping are practicable, and that, in general, treatments
to control erosion and run-off may be less vigorous provided rainfall, vegeta-
tive cover, degree of slope, and similar factors are the same as on soils
with lower infiltration rates."

GEIR, H. V.
A NEW TYPE OF INSTALLATION FOR MEASURING SOIL AND WATER LOSSES FROM

A description is given of divisor boxes and their installation now being
used on soil-erosion and moisture-conservation control plots on the Black-
land experiment station at Temple, Tex.

GLASSPOOLE, J.
April 1928.

Discussion of a paper by Axel Wallen, Eau Tombee, Debit et Evaporation
Dans la Suede Meridionale (Geografiska Ann. 9: 181-208. 1927). Mea-
surements were taken in 11 catchment areas in the southern half of Sweden.
It is stated that the presence of snow has a tendency to affect the accuracy
of such experiments.

GREGORY, R. L., AND ARNOLD, C. E.
(paper 1812): 1038-1099. 1932.

"A discussion of methods of estimating storm-water run-off, statements,
conclusions and comparisons, weighing of errors, advantages and disadvan-
tages, and suggestions for improvement form an important part of this
paper . . . the paper is divided into two parts. Part I contains an analysis
of the factors involved; it presents conclusions, and proposes changes in the
present methods of estimating run-off. Part II contains a series of deriv-
ations, introducing and advocating new factors and formulas."

GRIFFITH, J. R.
RUNOFF FOR CULVERT DESIGN IN FARMING COUNTRY. Highway Mag. 27: 113,
illus. May 1936.

The Burkll-Ziegler formula for computing the run-off expectancy from a
given watershed is presented as the one of most universal application.

GRUNSKY, C. E.
1922.

Paper presented at the meeting of October 5, 1921, gives data showing
the range of precipitation in central California. The effect of altitude
on intensity of rainfall and on run-off is presented along with formulas
for calculating storm-water flow.

GUTMANN, L.
1936.

"A proposed discharge formula for limited areas that fits well with
run-off records of phenomenal floods in this country and abroad."

The formula contained in Gutmann's article is discredited by J. W.
Pritchett and G. C. Commons in a letter to the editor, page 655. They
think that the use of this formula would sooner or later lead to disaster.
An accompanying table gives maximum measured peak discharges in Texas.
Run-off data plotted from this table indicates a maximum expected flow
six times greater than that shown in the originally proposed formula.
Precipitation has a similar effect on both tree growth and stream run-off, which can be estimated from tree growth. Tree-growth curves show constantly recurring periods of varying length when the precipitation and run-off may be either far above or below the average.

HATHAWAY, G. A.
“Stream discharges in upper Missouri River Valley accurately forecast last year from studies or condition of snowfields, which will be continued as guide to future operation of Fort Peck reservoir.”

HAY, OVILLE E.
LAND USAGE AND EROSION. Save Our Soil 1: 3-4. June 1936.
Describes experimental research data on run-off control plots at the Upper Mississippi Valley Soil Conservation Experiment Station, La Crosse, Wis.

HAZEN, L. E.
A paper read at the second Southwest Soil and Water Conservation Conference. Emphasizes five major factors in the construction of terraces and discusses supplementary structures for disposing of run-off.

“The Oklahoma Agricultural Experiment Station is establishing setups to determine the relative influence of vertical interval and gradient on the run-off and silt content of water at the point of discharge. Twelve gauging stations equipped with weirs and clock actuated float gauges have been established . . .” The results of the experiment are briefly outlined, and a table on effect of gradient and vertical interval on high flood stage at terrace outlets is included.

HENDRICKSON, B. H.
Investigations in progress at the soil erosion station at Tyler, Tex. Results and laboratory experiments for studying the rate of infiltration of water are also discussed. Controlled plot experiments are described in detail with tables giving data on run-off and erosion.

— AND BAIRD, R. W.
Run-off and erosion data on several control plats are given. “It is apparent that run off and erosion losses are highest on corn and cotton land, moderate in the case of lespedeza, and very low with sod. Extensive tests are in progress in an attempt to find practical means of establishing good upland permanent pastures, or substitute upland hay and feed crop rotations of erosion-resistant types.” Studies on types of terraces are presented.

HINDERLIDER, M. C.
Reports the results of special investigations to accumulate hydrographic data of heavy rainfall and run-off in drainage basins in eastern Colorado, the data to be used in designing future storage reservoirs for areas of unusual rainfall intensities.
HOLAND, T. H.

"It is proposed to build cemented pits of a size to be determined by previous experiment with earth pits, to catch the wash at the bottom of each plot... The pits must be fully large enough to take all water and silt which comes down the slope and roofed in to prevent direct entrance of water. They must be impervious but provided with a drain plug; absolutely level and of uniform cross section." A method for measuring results is suggested.

AND, T. H.

HORNER, W. W., AND FLYNT, L. K.

Includes discussions by F. F. Snyder, M. M. Bernard, L. K. Sherman, W. W. Horner, and F. J. Flyn, Part I.—Study of the Run-Off Factor by the Unit-Graph Method. Part II—Frequency Study of Run-Off Rates. The results of research into the relation between rainfall and run-off from small urban areas in St Louis are here presented as specific studies of the run-off from parts of two different city blocks tributary to street inlets and from both roofs and ground surface of another entire city block. Results from measurements of rainfall and storm flow for practically all heavy rains occurring from 1914 to 1933 are recorded.

HOUR, ROBERT E.

"Describes five methods for extending and estimating runoff records: (1) the standard river method, (2) direct comparative method, (3) rainfall percentage method, (4) the use of runoff formulas, (5) rainfall-water loss methods."—Horton Hydrologic Lab. Pub. 112: 17. 1937.

HOUK, IVAN E.

This is a study of heavy rains, total run-off, and soil absorption on small plots in Ohio.

HOYT, W. G., AND OTHERS.

"Early in its consideration of Public Works water projects, the Mississippi Valley Committee realized the great need for more information on the conditions affecting rainfall, run-off, and related factors... It was with an appreciation of the need and opportunity thus afforded that the present studies were undertaken... The objective has been primarily the presentation of facts, generally elementary and basic, as disclosed by
observed data or by their simple analysis. It is believed that the results contained in this report present much fundamental information, an understanding of which is essential to adequate long-time planning and execution of projects for the use and control of the water resources of the country."

Interstate Committee on the Red River of the North Drainage Basin.

(3087)

Report... December 1, 1936. 124 pp., Illus. [Minneapolis, Minn.] 1936. [Mimeographed.]

Headings are: Physical Characteristics; Climatology; Economic History; Present Status and Trends; Water Problems and Water Plan; Projects and Program. Data on run-off are given on page 11.

Jacobs, Joseph.

(3088)

Abstract by L. C. Fisher of paper read at Seattle meeting, American Meteorological Society, 1936.

Jones, L. A.

(3089)

Paper delivered before the fiftieth anniversary convention of the Illinois Society of Engineers at Urbana, Ill., January 30, 1936. Subjects covered are: Run-off investigations; hydraulic factors of drainage channels; rainfall intensity-frequency data; and soil-erosion control.

Krus, George.

(3090)

Describes development of an irrigation system on the author's ranch which is located at the mouth of Cabin Creek which joins the Yellowstone River 16 miles southwest of Glendive, Mont. Not examined.

Leach, H. R., Cook, H. L., and Horton, Robert E.

(3091)

"The purpose of this paper is to show the utility of a small runoff plat or plats on a drainage basin in predicting total runoff in a given storm. Such plats, by providing surface runoff coincident with rainfall, and eliminating time lag, afford a basis for determining total runoff quickly and accurately as soon as rain ends. Details of the method, including separation of ground water from surface runoff, and determination of infiltration-capacity, are given; also an example of the application of the method to estimation of storm runoff on Iowa River from Ralston Creek gaggings. Estimation of runoff from melting snow under winter conditions is also considered."—Horton Hydrologic Lab. Pub. 112: 22. 1937.

Lewis, H. G., and Riesbol, H. S.

(3092)

This 5-year study embraced the following investigations: The relation of soil type, slope, cultivation, and treatment, to run-off and soil losses; the relation of vegetative cover such as grass, forest, or other natural protection, to run-off and soil losses; the relation of mechanical methods, to run-off and soil losses. A year's additional data is presented in a supplement.

Lowerdink, W. C.

(3093)

The author found erosion of slope soils in the mountains and plains of Shantung "... to be far above the normal, or above what would occur if the vegetative cover of the prehuman era had remained unmodified ..." Results are shown of investigations made to determine quantitatively the difference in the capacities to absorb rain waters by soil layers derived from natural vegetation and by denuded slopes.
LOWDERMILL, W. C.

"Experiments conducted by the California Forest Experiment Station showed that burned surfaces had a greater run-off in every instance than did litter-covered areas. The litter was most effective when overlying fine-textured soil. After a year's service litter apparently gained in effectiveness in aiding rain penetration, a fact associated with the activity of soil fauna. Forest litter continued to function in approximately the same degree irrespective of the length of the rain... The capacity of forest litter to absorb rainfall is deemed an insignificant factor as compared with its function in maintaining the maximum percolating capacity of the underlying soil."—Expt. Sta. Rec. 63: 739. 1930.

"The object of the studies reported in part in this paper is to evaluate, in accordance with scientific method, factors affecting surficial run-off and erosion chiefly from forest soils." The author treats of interdependence of vegetation and soil, accelerated erosion, gradient of slope and intensity of rain, erosion pavement, and the place of cultivation on surficial run-off and erosion.

"The studies begun in China by the senior author in 1924... have been continued in California." Conclusions from these studies and experimentation by the California Forest Experiment Station at the North Fork installations are discussed. Tables are given of profile characteristics of Sierra soil series, and the experimental procedure and results are described and illustrated. "From the data yielded... it may be concluded that a mantle of undisturbed vegetation serves in heavy rain storms to maintain the soil at high rates of absorption of rainfall, and that baring the soil of its natural cover of vegetation under the conditions of the experiment increases surficial run-off. With increase of surficial run-off soil-erosion is increased, or accelerated far above the rate which took place under the control of a mantle of natural vegetation of the woodland brush type."

LUTZ, H. J.

Discusses a paper by Weaver and Noll on the influence of grassland vegetation upon surface run-off and erosion and gives a brief description of experiment procedure used in run-off plots.

LYNDE, H. M.

"The Investigations upon which this report is based were conducted for the purpose of determining the relation existing between rainfall and run-off from drainage districts in the Piedmont section of the southern States. They were conducted on a canal dredged through Third Creek Valley, Iredell County, N. C., and cover a period of approximately five years and nine months, from March 17, 1913 to December 31, 1918..."

A study was made of the practical relation of soil character, rate of lowering of the water table, size, depth, spacing, and grade of drains, rates of run-off and rainfall, climate, and topography, to the successful operation of the drainage system. Results of experiments are diagrammatically presented.
MOCRORY, S. H.

(3100)

The first investigations were undertaken in 1911 in southeastern Missouri and western Tennessee. It later became apparent that the ditches must be enlarged and cleaned out if adequate drainage was to be secured. Studies were made in the Boquephalla drainage district from which valuable information was secured for the designing of ditches and in determining the necessary amount of run-off. "The control of soil-erosion is, in the last analysis, largely a matter of the control of surface-runoff." Experiments on cultivated terraced and unterraced lands are being made at various stations, and "valuable information as to the effect of tillth of the soil, effect of different types of cover, and cultural practices upon runoff from agricultural lands" will be forthcoming. A table shows the relation of rainfall to surface run-off for given storm periods.

MCHARGUE, J. S., AND PETER, A. M.

(3101)

Experiments conducted at the Kentucky Agricultural Experiment Station proving that greater quantities of the mineral nutrients are leached from a bare soil by drainage than from a similar soil bearing a crop. "... It is a very common practice among farmers to allow a part, if not all, of the land on which corn has been grown to remain without a cover crop until the following spring, with the result that very serious losses of mineral nutrients occur, in the meantime, thru erosion and leaching by drainage waters."

MEBBINIS, H. G.

(3102)

Run-off and erosion measurements made by the Southern Forest Experiment Station in 1920 are presented.

MILLER, M. F., AND DULEY, F. L.

(3103)

"The results of 2 years experiments by Miller and Duley on run-off and absorption of rain water showed that land plowed 8 inches deep lost nearly two and one-half times as much soil as land having no cultivation. Land plowed 4 inches deep lost nearly as much as that plowed 8 inches deep. Sod land was most efficient in preventing erosion and absorbed a greater percentage of the rainfall than any of the other soils. Land continuously cropped to wheat was almost as efficient in this respect as sod land, but lost considerable soil when the land was first broken. Land having rotations of corn, wheat, and clover lost very little soil except during the time it was growing corn. Land continuously cropped to corn lost about the same amount of soil as uncultivated land and less than half as much as that plowed to the same depth and having no crop."—Expt. Sta. Rec. 43: 721. 1920.

"Studies by Miller and Duley on water absorption, run-off, percolation, evaporation, capillary water movement, and soil erosion under field conditions showed at the end of the fourth year that land which had been plowed 4 inches deep in the spring and fallowed during the remainder of the year lost over 1-inch of the surface soil by erosion. Land in corn every year lost about 0.5 inch, while land in sod lost only 0.01 Inch."—Expt. Sta. Rec. 48: 315. 1922.

DUDLEY, F. L., AND PRICE, O. B.

(3104)

"The experiment having to do with soil erosion was designed to determine the effect of different systems of cropping and different systems of soil management upon the amount of run-off and the amount of eroded ma-
terial." Contains a table of comparative losses from erosion with various crops and treatments. A brief analysis of the table is given.

Miller, M. F., and Krusekoff, H. H.

A summary of data collected in an 11-year study of soil erosion and runoff at the Missouri Agricultural Experiment Station.

Miller, M. F., and Krusekoff, H. H.

"An investigation covering a 14-year period is described, the object of which was to determine the influence of different systems of cropping and cultural treatment on surface runoff and soil erosion . . ."—Expt. Sta. Rec. 69: 118. 1933.

Miller, M. F., and Krusekoff, H. H.

"In 1927 erosion under corn exceeded that under soybeans by 50 percent, but, according to all the data available, the average erosion of the soybean plot was as bad as that of the plot in continuous corn. The greatest losses in the erosion waters were those of calcium, sulfur, magnesium, and potassium in the order in which the elements are named. Comparatively, the nitrogen loss was small. The percentage of runoff was approximately the same from plots of 6° slope as from plots with 8.5°, but the slightly greater slope underwent more than twice the erosion loss."—Expt. Sta. Rec. 62: 16. 1930.

Bulletin 300 reports that after a 12-year study it was found that the losses from land in continuous corn were almost seven times greater than those from land in rotations. Data are furnished on the erodibility of varying degrees of slopes planted in corn.

In Bulletin 310, a resume of runoff and erosion studies at the Bethany, Mo. experiment station is given.

Musorave, G. W.

The author discusses the many factors affecting infiltration rates and reports the results for uncultivated moist soil without vegetative cover.

"Control measures have been recommended that are practically uniform for entire States, whereas the soils within such areas may require entirely different treatment . . . Before erosion control measures are designed and recommended for general application in the field, their probable effect should first be calculated and the degree of protection which they afford compared with the rainfall records of the area." Illustrations of infiltration apparatus and tables are presented.

Shows that the relative runoff from slopes of different length is dependent largely upon ratios of rainfall intensity to soil infiltration.

Pearsall, C. K.

"The Intermountain Forest and Range Experiment Station has developed an apparatus to measure the rate of absorption with a minimum of disturbance to the soil. The unit is inexpensive to construct, simple to operate, and its small size and light weight permit the study of soils in their undisturbed state on areas accessible only by foot." A description of the apparatus is given. The author states that this device will be useful in runoff and erosion studies.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

PHILLIPS, SAMUEL W. (3111)
A paper read at the second Southwest Soil and Water Conservation Conference. Describes the four major projects contained in the program of the Bureau of Chemistry and Soils, which began in 1929 and presents considerable material on the results of the first year's work. Three tables contain data on percentage of run-off and wash, and cotton yields from erosion-control plots.

RAFTER, GEORGE W. (3112)
Deals with rainfall, its causes and measurement, and its relation to altitude; discusses under run-off, the laws of stream flow, units of measurement, division of streams into classes, and storage in lakes. In computing run-off, Dickens', Ryves', Kutter's, and Cooley's formulas are considered. Vermeule's formula is given for determining the relation between evaporation and annual precipitation. Russeila's formula is given for the run-off of the Ohio, upper Mississippi, and middle Missouri Valleys in terms of annual rainfall. Considerable data are given on the movements of ground water, and the relation of forestation to run-off. Tables on run-off and relative data are given for the Muskingum, Genesee, Croton, Sudbury, Hudson, Pequannock, and Connecticut Rivers.

RAMSER, C. E. (3113)
This article presents practical information on the disposal of run-off water at the ends of terraces. A system of checks for disposal channels is recommended and described.

"The rational method is based on the theory that the maximum rate of run-off from a watershed occurs when rainfall from every portion of the watershed is contributing to the flow at the outlet." It is expressed by the formula, \(Q = CIA \), which is explained in detail. The frequency and intensity of rainfall for storms of various duration are shown by a diagram. A table gives the results of the measurements of rainfall and run-off for watershed No. 1 on the Murchison farm, near Jackson, Tenn., and illustrates the method employed in tabulating results and the application of the data to a practical problem.

A paper read at the second Southwest Soil and Water Conservation Conference. "The experimental work consists principally of a study of run-off water and eroded material from various slopes and soils to determine the plant food, organic matter and soil losses; and of other investigations on different slopes and soils to determine the rates of run-off and extent of erosion on terraced and unterraced lands from which the proper fall, size, vertical spacing and permissible length for terraces can be determined. The effectiveness of terraces in conserving soil-moisture is also being studied on fields where the terraces are laid out level and the ends are closed to retain all the water. Investigations on the design and construction of various types of soil-saving dams built of different materials are also being made in their application to reclaiming and controlling gullies . . ." The results of a year's work in these investigations are discussed.

"The purpose of the experiments herein recorded was to determine the rates of run-off from small agricultural areas. The results are specially 59893°—38—28
applicable to the design of open-ditch drainage systems, terrace systems, small diversion ditches, storm-water sewers draining areas consisting partly of farm lands, tile drains with surface inlets, and road culverts where characteristics of the watersheds and other conditions are similar to those herein described." The experiments were conducted near Jackson, Madison County, Tenn.

ROTHROCK, J. T. (3117)
A popular discussion of the fertilizing value of the material removed from soil by surface washing and the means of preventing loss from this source. "The two sovereign remedies against washing on the farm are, first, a dense well-matted sward, which should be kept in good condition by frequent top-dressing; or if this fails, a prompt restoration of land rendered unproductive to a forest condition."—Expt. Sta. Rec. 9: 932, 1897-98.

SCOATES, D. (3118)
Information as to rainfall and run-off in relation to soil erosion is supplied by the Missouri Agricultural Experiment Station. The loss of soil fertility due to the silting of reservoirs, the need for proper terracing and drainage of lands, and methods for the elimination of soil erosion are discussed. The improvement of agricultural conditions by wide use of the Mangum terrace is stressed.

SHRIVE, FORREST. (3119)
"Under arid conditions the character and seasonal distribution of the precipitation is more important than under moist ones, both with reference to its agency in remodeling the land surface and its role in supplying water for plant and animal life. The influence of rainfall on physiographic processes is direct and immediate, but its relation to the vegetation is through the medium of the soil and is therefore subject to a number of modifying circumstances . . . The following pages embody the results of an investigation of some of the influences operative in a desert of the less pronounced type . . . The investigation of run-off and soil moisture has been made on the part of the grounds of the Desert Laboratory which lies in the floodplain of the Santa Cruz River, and on the adjacent bajada soil."

STEWART, P. H. (3120)
Run-off losses, winter losses of water, and water storage in the soil are considered by the writer who also discusses the root system of field crops. "We are justified in giving careful thought and consideration to soil moisture conservation and relationships."

STIEFF, ABRAHAM. (3121)
States that the design of works for control of water requires the estimate of future run-off and outlines an improved procedure for analyzing "long term trends" in rainfall and run-off.

TEXAS AGRICULTURAL EXPERIMENT STATION. (3122)
"Measurements of water losses from control plats during the past three years show that 60 per cent of the total losses occurred during the months of July and August, or at a time of the year when plants were making the heaviest demand on the water supply in the soil." Native grass, milo, cotton, and fallowing were found to be most effective in preventing run-off and erosion. Level terraces were found more effective in saving water than were sloped terraces.
TEXAS AGRICULTURAL EXPERIMENT STATION.

(3123)

"The progress results of this study (E. S. R., 57, p. 186) indicate that one of the most important factors concerned in the loss of run-off is the rapidity of the fall of water. The physical condition of the land is apparently another important factor in the water loss, and there seems to be a considerable difference in the losses from lands under different crops. Results indicate that milo is more efficient in this respect than cotton early in the season, depending probably upon the extent to which the crop is taking water from the soil."—Expt. Sta. Rec. 59: 782. 1928.

The total rainfall for the year is given in Report 41. "With every inch of water lost, there was lost approximately three tons per acre of soil by erosion . . ." The influence of land slope in relation to water losses is discussed.

UHLAND, R. E.

(2134)

The divisor flume for measuring soil and water losses from large areas is illustrated. The writer believes that large tanks placed at the lower end of controlled plats, so that all the run-off water and contained soil are caught, is the most accurate method for making such measurements.

VANCE, A. M.

(3125)

Data on major storms in Texas for the last 40 years are given. Statistics on run-off are presented in chart form, pages 141-149.

WEAVER, J. E., AND NOLL, W. C.

(3126)

With overgrazing considered a chief cause of erosion, studies are presented in tables of run-off and erosion from prairie, wheat, alfalfa fields, and bare areas. "Runoff and erosion have been measured from entire watersheds, and, more recently, by the runoff-plot method. Soil is as much a product of vegetation as vegetation is a product of the soil."

AND NOLL, WILLIAM.

"Water content of soil is not only a factor affecting plants and vegetation directly but one of the most important factors . . . Hence a complete study of water relations should include measurements of run-off as well as water accumulation or run-in from surrounding areas . . ."

WHITE, W. F., JR.

(3128)

Gives data on the rainfall and run-off in various drainage basins of the United States, discussing whether there are any definite relations between them. Among other findings the conclusion is drawn that "... if, of two similar watersheds, one is heavily forested and the other is not, the run-off from the forested basin will exceed that of the other."

WINTERS, N. B.

(3129)

"An erosion survey was carried through 48 out of 77 counties, both gullying and sheet erosion being found a serious danger. The rough land was found to have suffered an erosion damage more severe than that noted on smooth land in the same rainfall belt. Suitable cropping appeared an important aid in the control of erosion. Soil under cotton without winter cover crop lost 15.9 tons from an acre where oats reduced the loss to 3.9 tons, and a sweetclover field lost but 0.5 ton. A part of the same field cultivated clean and weed-free lost more than 17 tons from each acre."—Expt. Sta. Rec. 64: 715. 1931.
Wisconsin Agricultural Experiment Station. (3130)

Although the work of the new Upper Mississippi Valley Soil Erosion Experiment station near La Crosse is only partially underway, already there has been secured much new information which throws light on the factors responsible for variations in the amount of erosion under different farm conditions. This experiment station is operated cooperatively by three bureaus of the United States Department of Agriculture and the Wisconsin Agricultural Experiment Station... Phases of the work described are relation of run-off to degree of slope, percentage of run-off in timbered areas, rotation crops, and terracing.

Yarnell, D. L. (3131)

This paper, presented before the soil and water conservation division of the American Society of Agricultural Engineers at Chicago, December 1935, discusses several factors, such as the run-off coefficient in the rational formula, the time of concentration of a given watershed, and the construction of flood-frequency curves from rainfall data.

The purpose of this investigation was to determine the frequency at which excessive rates of precipitation occur in different sections of the United States, and the intensity and duration of those rates. Such data are fundamental for the adequate and economical design of farm-terrace systems, farm-drainage systems, highway and railway culverts, municipal storm-sewer systems, and other engineering works that must care for storm run-off.

SOIL STRUCTURE, FERTILITY, AND MOISTURE STUDIES

Anonymous. (3133)

Drawings illustrate an improved sampler which is a product of the materials and research department of the California Division of Highways. It requires no casing for deep foundation tests; retractable plug in end of tube permits driving to desired depth; greatly decreases cost and time of sampling.

Suggestions are given for the new and easy way to spread lime or superphosphate on spring grain or pasture that is not too hilly. A practical procedure for mulching apple orchards, and windbreak construction on muck or sandy soils for erosion control are outlined.

Adams, J. E., Roller, E. M., and Boggs, H. M. (3125)

The authors give results obtained at the South Carolina Agricultural Branch Experiment Station from a comparison made of legume stubble with the full crops of the legumes turned under as green manures, when used in rotation with corn and cotton. "Yields were influenced more by the nitrogen of the fertilizer than by the management of the legumes. The winter cover was apparently more effective in influencing yields than was the legume green manure or legume stubble."

Alexander, A. E. (3136)

"Snow falling at Buffalo...was discovered to be discolored." The top few inches of fresh snow were collected and melted, then examined through a microscope. The organic and inorganic substances present are listed.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

AlicantE, M. M. (3137)

IMPORTANCE OF SOIL SURVEYS IN THE PHILIPPINES. Sugar News 17: 323-324, August 1936.

The author describes some of the most important considerations regarding the value of soil surveys in the Philippines. The methods employed in making an inventory of the soil resources in the Islands are also fully described.

Alway, F. J. (3138)

"To what extent has the fertility of the soil of Nebraska been depleted and what will be the result of the continuance of the present methods of farming? It is as a preliminary answer to this question that the present bulletin is published. The analyses reported indicate wherein the chief changes in composition have taken place during the past thirty to fifty years of cultivation and also wherein the most rapid changes of the future are to be expected." The methods of sampling and of analysis are described, and results given in tables.

And Neler, Joseph R. (3139)

This paper reports a detailed study of moisture conditions found on two adjoining plots at the Minnesota Agricultural Experiment Station, both of which had a silt loam soil, uniform in texture, but differing widely in content of organic matter as a result of differences in cultural treatment.

ANTHONY, R. D. (3140)

MAKING THE MOST OF RAINFALL IN THE ORCHARD. Hoosier Hort. 16: 76-78, May 1934.

Studies in soil erosion in the corn and wheat area of Missouri, and soil-moisture studies at the State College experiment orchard in Pennsylvania are described. The writer summarizes the data obtained from these studies.

Bailey, L. H. (3141)

The author stresses the need for restoration of land to its original producing power. This bulletin gives several reasons why lands become impoverished, e. g., too high acid content, lack of useful plant food, insufficient tillage, and improper drainage.

Barbour, G. B. (3142)

"The true Chinese loess is a yellow-gray poorly consolidated loam deposit of the fineness of silt, which shows a characteristic absence of horizontal layer structure, being essentially nonstratified, and a tendency to split along roughly vertical joint planes, so as to form perpendicular cliffs and walls." The chemical analysis of various loess soils is given as well as the mineralogical and mechanical analysis. The soil characteristics of loess are described and compared with the loess of Europe and the United States. The origin and mode of accumulation of loess are discussed.

Barnette, R. M., and Hester, J. B. (3143)

"The possible utilization of thousands of acres of the poorer sand lands in the southeastern coastal plains has focussed attention on reforestation and the possible revenues to be obtained by following a system of logical and protected reforestation. One of the greatest problems in the utilization of these poorer lands has been the burning of forests and cut-over lands." Experiments made and their results are described.
BARTHOLOMEW, R. P.

This bulletin contains a report of work done since 1925 to determine the effects of different methods of cultivation upon the nitrate and moisture content of soils. Methods of cultivation selected were those which could be adapted for actual use on farms. In his conclusion the author says: "The nitrate and moisture content of the soils are greatly lowered, when weeds are permitted to grow, by utilization of these compounds by the weeds. Cover crops prevented loss of large quantities of available nitrogen and in addition added considerable active organic matter to the soil when plowed under in the spring."

BATjer, L. P.

In an address delivered before the West Virginia Horticultural Society's forty-fourth convention, Martinsburg, February 11, 1937, the author discussed some of the aspects of soil management and fertilization in the established orchard, and the relation of these factors to moisture conservation and the nutrition of the tree.

BAVEr, L. D.

Physical soil factors affecting erosion are considered under the classification of meteorological, environmental, and inherent.

BENNETT, H. H.

"The author of this paper has seen in no other part of the Western Hemisphere greater soil variety, considering the area, than that characterizing the lands of Cuba, nor any other region where good agricultural practice is more acutely dependent on recognition of the cultural significance of these variables, especially with respect to sugar cane." Certain soils peculiar to Cuba are discussed, and the need for erosion-control measures in certain parts of Cuba is pointed out.

The terms "the soil" and "cultural changes", as used in this article, are clearly defined. Abnormal or unnatural erosion is the object of discussion. Experiments for the measurement of soil loss made in Texas, Missouri, southern Iowa, southeastern Nebraska, northeastern Kansas, and the Piedmont, are described, as are also soil changes in the Black Belt of Alabama, Mississippi, and Texas. The texture of the topsoil, losses of organic matter, and other constituents are discussed, with tables of chemical and mechanical analyses of eroded and uneroded soils. "Soil erosion is a scientific problem, as well as a business problem, that must be attended to now", the author maintains.

In his preface and introduction the author says: "Making better use of the soils by using them more in accordance with their adaptations and requirements... is a means of improving agricultural efficiency which this volume attempts to emphasize and undertakes to encourage... It is the purpose of this volume to describe the important agricultural lands of the Southern States; to tell, in so far as space and the information at hand permit, what the soils are, where they occur, what crops they are used for, what crops they may be used for, what methods of soil treatment are employed on them, and what methods are essential to their most efficient use." A list of publications on soils, soil physics, soil chemistry, soil management, crops, livestock, etc., is given, pages 354-360.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BENNETT, H. H. (3150)
The physiography and geology of the limestone valleys and the limestone uplands are considered. The drainage, climate, soils, and agriculture are described. A key as to the use of soils of this area is presented in tabular form.

The value of soil-survey reports and soil maps now being published by the Department of Agriculture is stressed. Land could be saved from erosion if the owners understood its strong tendency to erode and protected the slopes with terraces. The farmer must get acquainted with the soil types of his farm.

"This paper correlates the friability and plasticity of certain heavy clay soils as determined by field methods with the $\frac{SiO_2}{Al_2O_3+Fe_2O_3}$ ratio of the same soils obtained by chemical analyses made in the laboratories of the bureau of soils. The analytical results cited show the composition of the whole soil and not that of the colloidal constituent alone, but since these soils are very heavy and undoubtedly high in colloidal content, it is believed that the results may be accepted for the purposes of this paper as essentially equivalent to the results that would be obtained by separating and analyzing the contained colloids."

AND ALLISON, R. V. (3152)
THE SOILS OF CUBA. 410 pp., illus. Baltimore, Monumental Printing Co. 1928.
"This work is the outcome of cooperation between the Tropical Plant Research Foundation and the Bureau of Soils of the United States Department of Agriculture, undertaken, on the part of the Foundation, to secure information for its guidance in locating experimental fields and in planning and conducting investigations on the production of sugar cane, and on the part of the Bureau of Soils, for the purpose of extending its knowledge of the soils of the tropics."—W. A. Orton. Partial table of contents: General Soil Characteristics; Soil Series Descriptions; Middle Cuba; Eastern Cuba; Western Cuba; Isle of Pines; Salt in Cuban Soils; Soil Moisture Studies; Climate; and The Relation of Soils to Agriculture in Cuba.

BODMAN, G. B. (3153)

BouYoucos, G. J. (3155)
In studying slaking, ultimate structure of soils, the relative dispersibility of soils, and in a mechanical analysis of the aggregate structure of soils the writer was convinced "that probably the major and fundamental principle governing and underlying the relative erosiveness of soils is the relation between the content of total sand plus silt and the total clay content."

BRACKEN, A. F., AND CARBON, P. V. (3156)
The author points out the importance of profitable utilization of western dry-farm land under the cropping system of alternate wheat and fallow.
"The particular phase of the problem dealt with in this study is that of measuring the percentage of rainfall saved in the soil over a whole period of a fallow-crop cycle and fraction of a cycle as related to water cost of crop production." Environmental factors, methods, and results are given in tables. Literature is cited.

BRADFIELF, RICHARD. (3157)
Discuss soil conditions during the colonization period and compares them with our modern period of accelerated erosion. Factors responsible for the change are summarized. Some physical aspects of soil structure and its relation to absorption are considered. Presented at annual meeting, American Society of Agronomy, Washington, D. C., November 19, 1936, as part of a symposium on the scientific aspects of soil conservation.

BRAND, C. J. (3158)
conservation of our soil and fertilizer resources. Amer. Fert. 80: 5-7, 26. April 21, 1934.
Discusses soil losses from erosion throughout the United States and the effects of erosion on soil fertility. Fertilizer resources and prices are considered.

BRIGOS, L. J. (3159)
Surface tension of water, capillary movement of water, and the influence of texture of soils upon movement of water are discussed and illustrated.

BROWN, IRVIN C., AND BYERS, HORACE G. (3160)
This bulletin presents data on the mechanical and chemical composition of 33 soil profiles. A field description is given of each soil series.

BRIGGS, T. D., AND BYERS, HORACE G. (3161)
This investigation of chemical and physical properties of groups of soils was undertaken as a continuing study of the relation between the chemical characteristics of soils and their classification. "It was also expected that light might be thrown on the processes of production of claypan. It was at first intended to limit the study to the claypan soils of Nebraska, but as the work developed it seemed wise to include three profiles from other sources."

BROWN, P. E. (3162)
The author presents the philosophic and religious relations of primitive man to the soil, showing how the inquiring and investigational nature of man gradually developed to present-day scientific soil research. This address covers various qualities of soil, legume, bacteria, acids, and fertilizers; the physical, chemical, and biological forces at work together with the complex problems of organic matter, crop rotation, drainage, irrigation, and cultivation. "One of the most interesting observations to be made at the present time, as Soil Science develops and as Crop Science develops, is that these two sciences are not growing apart, but they are coming to depend more and more upon each other."

BUCKINGHAM, EDGAR. (3163)
"The movement of the water in the soil, whether by the capillary forces exerted in the finer soil spaces at soil surfaces, or by distillation from one point to another, has long been regarded as very important phe-nomenon and has often been investigated... In the present bulletin it is shown that the loss of water by evaporation from points below the surface...is nevertheless quite small, and is negligible in comparison with the losses taking place at or very near the surface..." The drying
of soils under arid and humid conditions is discussed, and the capillary action in soils is treated at length under four headings: (1) Nature of the problem; (2) the capillary potential; (3) the capillary conductivity; and (4) the capillary flow of water.

BUE, T. S. (3164)
An address given at the convention of the National Fertilizer Association, White Sulphur Springs, W. Va., on June 8, 1937. Gives estimates on plant-food losses from leaching, erosion, and grazing in the United States and shows the importance of fertilizer in the soil conservation program. The use of fertilizers in erosion control is discussed.

Burr, W. A. (3165)
POWER OF SOILS TO RESIST EROSION BY WATER. Irrig. Age 8: 235-236, Illus. December 1895.
Classification of soils with a table showing resistance of soils to erosion.

Burr, W. W. (3166)
"In this paper we have attempted to sum up the main facts indicated by the study that has been carried on at The North Platte Substation for a number of years relative to the storage and use of soil moisture. The entire discussion is based upon results of work which has been done in the field, exposed to the same climatic conditions to which all fields in that immediate locality are exposed . . . Accurate climatic records have been kept so as to properly interpret the results."

Methods for the best use of precipitation for development of the tablelands in western Nebraska are discussed. "We show conclusively that moisture can be stored by summer tillage and that surface evaporation is checked by all thorough cultivation; that the amount of moisture which can be held in this way is sufficient to assist very greatly during a dry season or during a short period of drought."

CALIFORNIA AGRICULTURAL EXPERIMENT STATION. (3168)
Investigations made in the cooperative soil survey of California are described and the findings presented. Measurements on subsidence of peat land in the Sacramento-San Joaquin delta, soil-temperature studies, and the value of paper mulches as a soil cover are discussed.

CALL, L. E. (3169)
A brief report of studies on the yields of wheat, oats, and corn, the effect of alfalfa on the protein content of wheat, fertilizers, terracing, runoff, and erosion.

CAMERON, F. K., AND GALLAGHER, F. E. (3170)
The authors give the results of an investigation on the relation of physical condition of soil to moisture content. Soils of different chemical properties and with varying amounts of water present were subjected to various chemical tests yielding measurable results.

CARTER, W. T. (3171)
This bulletin describes soils and soil types, agricultural practices and soil utilization, surface, relief, climate, and natural vegetation in the entire State. Considerable data are given on erosion and control practices in the different areas.
“It is not an exaggeration to state that throughout history and into the present day faulty designs have caused more loss of life and property in the field of earth and foundation engineering than in any other branch of engineering. In this field the largest share of these have been caused by failures of dams and dykes.” The author defines the meaning of the term “stability” and those volume changes associated with the deformation of soils affecting stability.

CHILCOTT, E. C.

Presents data on the relation of crop yields to precipitation and gives the findings of 23 experimental stations in the western part of the United States. Comparisons are made between the data furnished by the different stations.

COBB, WILLIAM BATTLE.
A description of the differences in soils of the coastal plain of North Carolina.

COLE, T. S.
Describes two types of cylinders devised and used with success in studying some of the physical properties of soils, with particular reference to those influencing the movement and availability of water, when it is desirable to obtain soil samples, the natural structure of which is undisturbed.

CONGER, CARL C.
Stafford County farmers demonstrate that the depth of soil moisture at seeding time has a direct relationship to the yield of wheat.

COOK, R. L.
Discusses harm done to soil bacteria by excessive moisture, and value of proper drainage especially on alfalfa and clover lands.

COPELAND, J. T.
“The agricultural practices in Mississippi, together with the climatic conditions, offer a wide range of variables to influence the behavior of a soil, of which there are ten general areas and more than 150 types.”

CORNELL, H. H.
Run-off water and its speed are controlled by the following factors: (1) The texture and structure of the soil; (2) physical condition of the soil surface; (3) total amount of rain; (4) nature (distribution) of rain; (5) vegetal cover on the soil; and (6) slope or gradient of the surface. These are discussed separately stressing the importance of the time factor. 1936.

A brief account of Gericke’s experiments in producing artificial soil and plant-food solutions.

CURRIE, J. H.
DANIEL, H. A. (3181)

Presents in detail findings of mechanical analyses of a large number of cropped and virgin surface and subsurface soils of the southern high plains and their comparison with the sand, silt, and clay contents of the soil drifts. Shows how the greatest difference between drift material and the cropped and virgin surfaces occurs in the coarse- and medium-textured types. Data indicate little relation between the clay ratio and wind erosion.

DE TURK, E. E. (3182)

Presented at annual meeting of the American Society of Agronomy, Washington, D. C., November 19, 1936, as part of a symposium on the scientific aspects of soil conservation. An analysis of soil deterioration factors of the humid temperate region, particularly as exemplified by Illinois conditions.

Literature cited, pages 111-112.

EDLEFSEN, N. E., AND COLE, R. C. (3183)

A series of tests were made on dispersed soil. With the aid of tables the authors show the results obtained.

FERGUS, E. N. (3184)

Discusses the serious consequences of adapting poor-land crops to depleted soils unattended by liming, manuring, and fertilizing. Contains information concerning diseases of mineral malnutrition, in humans and animals, resulting from continuous subsistence upon food grown in impoverished soils.

FINNELL, H. H. (3185)

"The observations and suggestions given in this bulletin apply to the heavy soils of Panhandle Oklahoma and the adjacent region. The soil referred to is commonly known as hard land, tight land, black land, wheat land, clay soil, or heavy soil to distinguish it from the sandy or loam soils also found in this region." Getting moisture into the soil and making use of soil water are discussed and 11 rules for dry farming on heavy soils are given.

The author points out a number of superficial ideas relating to farm methods in crop production. "It is true that when soil is moist a deep plowing will use more moisture than a crop in the early stages of growth ... Moderately deep plowing may be used to the advantage of the fertility condition more often than it usually is." Description of soils, climatic features, factors affecting the behavior of soil moisture, and the relation of factors affecting crop yields are among the points covered.

GARDNER, WILLARD. (3187)

The author presents a formulary discussion of flow of soil moisture.
GLINKA, K. D. (3188)
The translator, in his preface, says: "The fact that the soils of our own country are so much like those found in Russia and Siberia makes the results of Russian Soil investigation peculiarly interesting to American investigators." The author states: "In the following work I attempt to sum up all observations which have been made by Russian investigators in the field of soil genesis and the geography of soil types as well as the conclusions they have drawn from them ... I do not undertake in this work to discuss the fundamental physical or chemical principles involved in soil investigation." On pages 7-31 the subject matter, and aims of pedology are set forth; pages 32-80 deal with soil classification.

Hale, G. A. (3189)
"In the future, commercial fertilizer is destined to assume a new role, that of maintaining present crop yields by increasing vegetal cover for holding topsoil in place and keeping fertility at present and higher levels ... Its use will be as one of many other good Soil Conservation practices rather than as a substitute for these practices."

Hallett, A. L., and Matthews, O. R. (3190)
"The purpose of this publication is to acquaint farmers with methods of determining at seeding time their chances of obtaining a paying crop and of ascertaining relatively early in the spring whether or not the crop should be abandoned ... The results presented in this bulletin were obtained at the Kansas branch stations located at Hays, Colby, and Garden City ... Soil moisture determinations were carried on in connection with the crop rotation and cultural method experiments throughout the period of seedbed preparation and growth of the wheat crop, but only those made at seeding time are considered here."

Harmer, P. M. (3191)
"In connection with a study of the composition of virgin soils developed upon the hill plains of the late Wisconsin glaciation, the density was determined for each of the four 3-inch sections of the surface foot in six woods and in six prairie fields—remnants of the original prairies." The fields, and the method of investigation are described.

Harris, J. E. (3192)
"The experiments described in this paper have been undertaken to obtain more evidence concerning the phenomena of soil acidity and of absorption by soils." Properties of acid soils together with a review of various theories concerning the cause of acidity are discussed. Treatment of soils with salt solutions is summarized.

Hawks, Emma B., and Trollnoer, Charlotte. (3193)

Hendrick, J. (3194)
This paper reviews the notable features in the Russian philosophy of soils and mentions importance of soil moisture, soil studies of drain gages, soil colloids, and humus.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

HENDMCK, J., AND SHELTON, F. A. (3195)
Discusses nitrogen content; organic matter and phosphorus availability; soil colloid composition and aluminum solubility; soil organic matter and aluminum solubility, base holding power, microbiological activity; cover-crop rotation and potato production; the yield and composition of cover crops; yield and composition of cash crops; and suggested rotations.

HESTER, J. B. (3196)
Maryland soils form the basis of this discussion.

HEYWARD, FRANK (3197)
Three different types of soil sampling tubes and their construction are described: (1) A tube for collecting samples for moisture determination of the 0- to 7-inch soil depth; (2) tube for collecting a large number of cores in undisturbed field condition from the 0- to 6-inch soil depth of a size large enough to grow tree seedlings; and (3) tube for obtaining a large number of samples of constant volume from the 0- to 3-inch soil depth.

HILGARD, E. W., AND LOUGHBIDGE, R. H. (3198)
The exceptionally dry season of 1897-98 was the reason for making experimental studies for "the limits of endurance of drought on the part of several crop plants, and ... to determine the minimum of water that will suffice for their satisfactory growth in the several soils." Results are given as to the amount of water required by crops and the probable causes of the endurance of drought. The utilization of winter rains and winter irrigation, a knowledge of the subsoil, the employment of proper means to prevent evaporation are advocated for the necessary conservation of soil moisture.

HOCHMEYER, L. C. (3199)
"The maintenance of soil fertility depends upon the control of erosion, the amount removed by crops, and the amount of leaching and volatilization. The control of these depleting forces is also essential for the conservation of the soil."

HODENSON, J. C. (3200)
The author discusses important factors of soil fertility, texture of soil, conservation of moisture, organic matter and humus, soluble plant foods and salts, soil ventilation, soil temperature, and bacteria in soil.

HOPKINS, E. S. (3201)
Results of experiments conducted in deep tanks at the Dominion experimental farms in Canada to learn what crops would prove the most satisfactory and what rotations and cultural methods for combating droughts would give best results. "In order to make conditions in the tanks resemble field conditions insofar as wind and light are concerned a small area around each tank is seeded with the same crop as used in the tank."

HOSKING, J. EVERARD. (3202)
"With proper allowance for the differences between the English and the American types of agriculture, Mr. Hosking's article is arresting and stimulative in the emphasis it throws on certain more or less neglected aspects of soil husbandry ..." A recent report of the Missouri Agricultural
Experiment Station, Bulletin 369, refers to the production of manure artificially in England, and makes interesting reading in connection with Mr. Hosking's contribution."—Editor.

HOWARD, A., AND HOWARD, G. L. C. (3203)

Experiments in growing crops in the botanical area at Pusa, Bihar (India), demonstrated that "the first condition of progress in any scheme of improvement in the crop-producing power of the soils of Bihar is a system of surface drainage by which each field deals with its own rainfall only. In this way all lands are benefited. On high lands green manuring... can be carried out with safety while the cultivation of crop-producing power of lower lands are materially increased. The Pusa system of drainage also prevents the denudation of the soil by rain-wash and the loss of fine particles which are now carried away every year from the high to the low-lying areas. The cost of this system is small..." Experiments with green manure for tobacco growing and results are described in detail.

HUTCHESON, T. B. (3204)

The author is of the opinion that much of the erosion commonly attributed to tillage is due to poor land, and is "quite certain that little progress will be made in establishing ground cover on erosive soil until we realize that soil-conserving crops, like all other crops, must have plant food."

HUTCHINSON, W. L. (3205)

Soil management is discussed with reference to drainage, good tillage, soil washing on uplands, humus, and neat farming. "Mississippi farmers have grown up with the idea that cultivated land must needs wear out and be abandoned for nature to again make it fit for cultivation... Properly managed, soil may be cultivated forever and be better at the end than it was in the beginning." Terraces and sod for uplands that suffer from erosion are advocated.

INTERNATIONAL CONGRESS OF SOIL SCIENCE. (3206)

Volume 3 contains papers on soil biology, biochemistry, and soil fertility. "Microbiological Aspects of Green Manuring", by J. G. Lipman and A. W. Blair, pp. 312-316, presents data on the effects of green manuring on corn, soil conservation being considered in the experiments.

Volumes 4 and 5 contain miscellaneous papers. Those related to the study of soil conservation are: A Scheme for Soil Classification, by C. F. Marbut; A Uniform International System of Soil Nomenclature; A Definition of Terms Used in Soil Literature; and The Basis of Classification and Key to the Soils of California, by C. F. Shaw; The Classification of Organic Soils, by J. O. Veatch; The Important Types of Cuban Soil Profiles, by H. H. Bennett; The Use of Soil Surveys in Forestry, by J. Kittredge, Jr.; The Special Problems of Forest Soils, by C. G. Bates; Silviculture as a Factor in Maintaining the Fertility of Forest Soils, by R. Zon.

Volume 1 contains the papers of commission 1 (soil physics). On pp. 71-75 the question of water-holding capacity of soils in relation to its structure and drying is discussed by A. I. Apromelko.

Papers in Volume 5 which have a bearing on soil erosion and related subjects are: The Asymmetry of the Erosion and Sculptural Forms of the Relief of the Plains of the Moderate Belt, by R. S. Ilyin; Relation of Soil Type to the Environment, by C. F. Marbut; A Soil Formation Formula, by C. F. Shaw; Geobotany and Ecology of Plants in Connection With Soil Science, by B. A. Keller; Organization of Soil Scientific Zone Stations on an

ISBAELSEN, O. W., AND WEST, F. L. (3208)
WATER-HOLDING CAPACITY OF IRRIGATED SOILS. Utah Agr. Expt Sta Bull. 183, 24 pp., illus. 1922.

The experiments reported were planned to measure the capacity of some soils to retain water, whereby the irrigator could determine the proper amount of water to apply to such soils in a single irrigation. There is also a summary of field and laboratory water-capacity tests made in various Western States.

JACOT, A. P. (3209)

Describes soil channeling and tree ramifying by microarthropods, minute ants, and earthworms, as related to soil structure, fertility, and rainwater percolation. When these minute soil animals are removed by intensive erosion they must become reestablished for the maintenance of tilth and fertility.

JEFFERY, J. A. (3210)

"To discuss the management of soils so that they shall hold the most nearly proper amounts of moisture for crop production and at the same time retain these amounts as far as possible from unnecessary losses is the object of this bulletin." After indicating what may be done to give to the soil its maximum capacity for capillary water, the writer goes on to consider certain methods of moisture management.

JENNY, HANS. (3211)

"The presentation of several soil nitrogen-moisture curves is the main object of this paper In the present study 628 nitrogen analyses (6 to 8 inches of surface soil) were correlated with N. S. Quotients. The values used were drawn from three sources." A map shows the location of the counties from which soil-nitrogen analyses were obtained.

JOFFE, JACOB S. (3212)

Divided into two parts. Part 1 deals with soil genetics, discussing soil morphology and soil-forming processes. Part 2 deals with various soil profiles and types of soil formation. The effects of forestation on flood control and erosion are discussed, pages 105-106.

JOSEPH, A. F. (3213)
NOTE ON EROSION AND SOIL ALKALI. REPORT OF CONFERENCE ON COTTON GROWING PROBLEMS. Empire Cotton Growing Corp. [London.] pp. 144-146. [Discussion, pp. 46-52.] 1930.

Soil erosion and soil alkali have in common one thing of great importance, that is "the significance of the composition of the soil, and particularly of the chemical composition of the soil in its relation to important practical properties such as are involved in alkali and erosion studies." Experimental studies of soil erosion in the United States, Ceylon, and South Africa are discussed.
KACHINSKY, N. A.

“Solonchak and solonetz soils were used for these experiments. Permeability for a given soil tended to increase with the decrease in size of the irrigated square.”

KANSAS AGRICULTURAL EXPERIMENT STATION.

A brief discussion of a cooperative study conducted by the United States Bureaus of Agricultural Engineering and Chemistry and Soils at the Kansas Agricultural Experiment Station.

KARRAKER, P. E.

“From 1923 to 1933, small plats were handled in duplicate as follows on the Experiment Station farm at Lexington: (1) kept bare by scraping, (2) in continuous bluegrass, and (3) in continuous bluegrass and white clover. Sweet clover grew in the bluegrass-white clover plats in the first half of 1925 and an appreciable part of the vegetation in the bluegrass plats during the latter years of the experiment was volunteer non-legume plants. Vegetation was vigorous on the bluegrass-white clover plats during the experiment, but poor on the bluegrass plats after the first few years of the experiment. Vegetation was removed from the plats at certain times through 1928. Thereafter, the plats were clipped several times a year and the clippings left on the plats. Nitrogen was determined in the 0 to 6 and 6 to 18 inch soil layers of the plats at the beginning of the experiment and again in 1931.”—Summary.

KELLOGG, C. E.

The nature of soils and the environmental factors responsible for their genesis are discussed. “The practical implications of a knowledge of the great soil regions and their relationship to the biological complex, and consequently to human institutions, are pointed out.”

A lecture given at the University of Wisconsin April 8, 1936. The author discusses the nature of soils, their formation, and the influence of climate. Soil-building processes are considered, and soil technique is divided into two general classifications (1) changing the soil, and (2) choosing plants to fit the soil.

W. H.

“The following subjects are included: (1) Influence of spring plowing in checking the evaporation of soil water; (2) Early tillage to prevent formation of clods; (3) Rise of water in natural field soil from below a depth of 5 feet; (4) Influence of surface tillage upon the rate of evaporation; (5) Influence of farmyard manure on the movement and amount of water in the soil; (6) Manured and unmanured corn ground; (7) Influence of fallowing ground on the water content of the soil; (8) The amount of water required to produce a pound of barley, oats, and corn in Wisconsin; and (9) the vertical extent of root-feeding.”—Expt. Sta. Rec. 4: 122. 1892-93.

SOIL MANAGEMENT. 311 pp., illus. New York and London, Orange-Judd Co. 1914.

The author presents a study of soil management in China, Japan, and the United States. Among the subjects treated are: Soil Moisture and Plant Feeding; Functions, Availability and Conservation of Soil Moisture
in Crop Production; Conservation and Application of Water in Crop Production; and Reclamation of Swamp Lands. "Complete and rapid under-drainage is one of the prime essentials to both the development and the maintenance of the highest productive capacity of any field or soil . . ." The use of reservoirs, canals, and ridge planting are recommended for preventing soil washing.

KOSTIAKOV, A. N. (3221)

"In the domain of melioration and hydrology one had constantly to deal with phenomena of the water absorption by soils, and to base a great many important calculations and deductions in this domain on these phenomena. The basis laid for these calculations is generally the coefficient of filtration of corresponding soils, after Darcy, i. e., one characterizing the rate of water-filtration under conditions of a soil saturated with water. However, a very vast domain of melioration and hydrological problems—such as norms and methods of irrigation, losses of water in channels, phenomena of the water-drainage, and so on—cannot be based on filtration phenomena, as we have to deal with water percolating into soils unsaturated with water, and not into saturated soils."

LIPMAN, J. G. (3222)

History and development of soil science under the American Society of Agronomy since its establishment in 1907. It contains frequent quotations from American writers on this subject and mentions some European surveys and maps notably those in the Union of Soviet Socialist Republics. Estimates on expenditures for Federal research in soil erosion are given for the years 1920-31.

LOWDERMILK, W. C. (3223)

This paper, presented at the American Geophysical Union, April 29, 1937, Washington, D. C., contains a discussion on two types of Cecil soil series profiles—leached and unleached.

LUTZ, J. F. (3224)

A discussion of studies conducted on Iredell, Davidson, and Putnam soils at the Missouri Agricultural Experiment Station.

LOTZ, J. F. (3225)

"It is the object of this paper to present the results of a laboratory study of the physical and chemical properties of several soils that are known to vary in their erosiveness, and to show that certain of these properties play an important role in determining the susceptibility of a soil to erosion." The Iredell sandy clay loam and the Davidson clay were selected, as well as Bentonite and Putnam.

LYON, T. L., AND BUCKMAN, H. O. (3226)

Soils are grouped on the basis of a scheme worked out by Glinka and other Russian workers, and adapted to this country by Marbut. Other inclusions are the newer concepts of ionic alkalinity, trace elements as fertilizers, artificial farm manure, and rapid tests for determining available nutrients in soils.
The "debris of rock and plant residue that has accumulated through the centuries of struggle is the arable soil from which man obtains his bread. The study of this soil is a history of strife and struggle..." Soil-forming processes, the organic matter of the soil, soil structure, the forms of soil water and their movement, the water of the soil in its relation to plants, the control of soil moisture, the absorptive properties of soils, acid or sour soils, commercial fertilizers, farm manures, land drainage, tillage, irrigation, and dry farming are among the subjects discussed. The last chapter deals with the soil survey and its use.

McCool, M. M., Millar, C. E., and Grantham, G. M.
"A popular version of the summarized results of work by the station on the maintenance of the fertility of Michigan soils is presented in this bulletin. While dealing primarily with the use of fertilizers and the maintenance of a sufficient and well balanced amount of nutrient material in the soil, it also takes up the prevention of soil erosion, the use of soil amendments such as lime and organic matter, and draws special attention to the importance of maintaining the nitrogen supply by the growing and plowing under of leguminous crops."—Expt. Sta. Rec. 44: 815. 1921.

McGee, W. J.
The author states that the general purpose of this field work was to ascertain the relations between soil and water where the local rainfall is less than that required for crop production.

McLaughlin, W. W.
As a basis for this information experiments were undertaken in 1915, and the data are given here in the form of a progress report. "The object of these experiments is to furnish specific data as to the capillary movement of moisture in the soils of the arid region... These data were obtained for different soils and under different conditions."

Marbut, C. F.
This paper describes the soils of the Great Plains region. General features of the soil, boundaries of the Great Plains, and soil belts are also given attention.

The soil maps in this publication with descriptions of soils are based almost exclusively on the accumulated results of the soil survey of the United States Department of Agriculture and the general information obtained regarding soil characteristics. "Although the actual data presented in this report are contained mainly in the reports and maps of the Soil Survey, the principles of pedology, according to which the material has been interpreted and arranged, are contained in pedological literature."—Foreword.

AND OTHERS.
This bulletin contains material under the following headings: Introduction, by Curtis F. Marbut; Soils of the Piedmont Plateau Province; Soils of the Appalachian Mountain and Plateau Province; Soils of the Limestone Valleys and Uplands Province; Soils of the Atlantic and Gulf Coastal Plains Province; and Soils of the River Flood Plains Province, by H. H. Bennett; Soils of the Glacial and Loessial Province; Soils of the Glacial...
Lake and River Terrace Province, by J. E. Lapham and Curtis F. Marbut; Soils of the Great Plains Region; Soils of Rocky Mountain and Plateau Region; Soils of the Northwestern Intermountain Region; Soils of the Great Basin Region; Soils of the Arid Southwest Region; and Soils of the Pacific Coast Region, by Macy H. Lapham. Two appendices of soil data are included.

MARTIN, JACK. (3234)

Report of results observed on fertilizer test plots, Las Posas project, Ventura County, Calif., during the 1936-37 season "substantiates the frequently recommended practice of applying fertilizers, particularly the nitrogenous forms, in establishing cover crops and other types of vegetation in erosion control."

MATHEWS, O. R. (3235)

"The gumbo soil of the Balle Fourche (S. Dak.) Reclamation Project offers problems in water penetration materially different from those in soils of other types. These differences are due largely to its peculiar physical characteristics."

MERRILL, G. P. (3236)
A TREATISE ON ROCKS, ROCK WEATHERING AND SOILS. 400 pp., illus. New York, Macmillan Co. 1903.

"In the work here presented the writer has endeavored to bring together in systematic form the results of several years' study of the phenomena attendant upon rock degeneration and soil formation." In part III the principles involved in rock weathering are considered, among them erosion by water, and the action of plants and animals. Part V deals with the regolith and is divided into sedentary materials, transported materials (aeolian deposits, windblown sand, sand dunes, volcanic dust), and the soil. Soil is considered from many points: chemical nature, mineral composition, physical condition, weight, kinds and classification, color, age, and soils affected by plant and animal life.

MIDDLETON, H. E. (3237)

The importance of the binding power of soil colloids in relation to tillage operations, foundations, and the construction of dams and roads is discussed. "The influence of the soil colloids on the physical and chemical properties of soil is no doubt coming to be one of the most important studies in soil science."

"Certain of the physical and chemical properties of three soil types classed as erosive and of three types classed as nonerosive were studied and compared. "The properties having the greatest influence on soil erosion are indicated by the dispersion ratio, the ratio of colloid to moisture equivalent, the erosion ratio, and the silica-sesquioxide ratio."—Expt. Sta. Rec. 63: 213. 1930.

AND BYERS, H. G. (3239)

"A new soil-water, and a new soil colloid-water relation is defined and a method for its determination is described. The relation of this soil property to the colloid, silt, and clay content is discussed, as well as its relation to colloid, composition, organic matter content, and the erosion ratio. This soil-water relation, the settling volume of soils, is measured for 10 soils of widely different character. The soils are from the Erosion Experiment Stations and their general chemical and physical properties are known."
MIDDLETON, H. E., AND SLATER, C. S. (3240)

Laboratory studies of soils of varying degrees of erosibility are considered. "Because erosion in its simplest expression is, after all, one of the effects of the action of water on soil, particular attention has been given to measurable soil-water relationships as a means of determining the relative erosibility of soils . . .”

SLATER, C. S., AND BYEBS, H. G. (3241)

The data presented in this bulletin concern the chemical and physical properties of eight soil profiles: Houston, Kirvin, Vernon, Shelby, Colby, Cecil, Palouse, and Marshall series. Considerable information on run-off and erosion is given for four of the series, the Houston at Temple, Tex., the Colby at Hays, Kans., the Vernon at Guthrie, Okla., and the Kirvin at Tyler, Tex.

SLATER, C. S., AND BYEBS, H. G. (3242)

"In Technical Bulletin 316 of the United States Department of Agriculture . . . a report was given on the physical and chemical characteristics of the soils from the erosion experiment stations which had been established up to 1932. Since that bulletin was completed early in 1932, two new stations have been established, one on Clinton silt loam at La Crosse, Wis., and the other on Muskingum silt loam at Zanesville, Ohio. In addition, a series of plots have been established on Nacogdoches fine sandy loam at Tyler (Tex.) Station. The physical and chemical characteristics of these three soils, together with other data bearing on the erosional characteristics of all the soils, are presented in this bulletin.”

MILLER, E. C. (3243)

The purpose of the investigations was to study relative water requirement of corn and sorghums when grown under the same environmental conditions. "The results of these experiments indicate that there is little or no relationship between the water requirement of plants and their ability to produce a yield of grain in agricultural practice under conditions of limited and uncertain rainfall.”

MILLER, M. F. (3244)

"It has been said that the degree of intelligence shown by a nation in the use of its land serves as an index to its civilization. It would seem highly important, therefore, that the whole problem of soil conservation be faced squarely and that every effort be made to apply such conservation measures as investigations have shown to be feasible.” Soil deterioration through leaching, crop removal, and erosion is discussed, and important principles of soil conservation through proper cropping, development of pastures, and replacement of nutrients are stressed.

"In 1905 the University of Missouri began a soil survey of the State, the object of which is to map the various soil types and to determine the most profitable methods of soil management for each . . . The great variety of soils existing in this region has naturally resulted in a great variation in the systems of cropping practiced.” A table is given showing the composition of characteristic Ozark soils. Recommendations regarding
the handling of the border Ozark soils, including systematic crop rotation, are presented. The handling of grasses and pastures and the use of soil-forming crops are discussed. A soil map of the Ozark region is included.

Miller, M. F., and Duley, F. L. (19324)

"The preliminary results of an experiment in which a series of plots was subjected to different systems of cropping and cultivation to determine their effects upon water entering the soil and upon soil erosion ..."

Moyer, R. T. (19247)

Presents a study of the soils of the Province of Shansi, China, and includes topographic and climatic descriptions of the Province. Soils are grouped as plain soils, Tatung plain soils, soils of the north and central basins and the western plateau, and southeastern soils. Presents also, soil-use improvement methods practiced.

Murphy, H. F., and Daniel, H. A. (19248)

"Soils locally designated as 'alkali spots' or 'slick spots' are found rather frequently in central Oklahoma bordering the Permian-Pennsylvania contact ... The presence of these so-called 'alkali spots' is probably due to the accumulation of sodium salts in the sediments laid down by the receding sea, as the water in the deeper surface reservoirs evaporated as a result of arid conditions." Experimental data in tables indicate the rapidity at which Solonetz soils may erode. Gully and sheet erosion on these soils and the problems connected with terracing them are discussed.

Musgrave, G. W., and Free, G. R. (19249)

"The study as a whole would indicate that, although the infiltration rate may be greatly modified by changes in porosity induced by one or another means and relatively by soil moisture content or vegetative cover, yet the dominant factor may well be the soil type, at least insofar as comparison between the permeable Marshall and the relatively impermeable Shelby are concerned." The authors discuss literature pertaining to this subject and give methods and results in tables and diagrams.

Myers, H. E. (19250)

Studies on subsoil moisture depletion at the Kansas Experiment Station show that: "The results obtained are so conclusive as to warrant the generalization that alfalfa growing on the soil for several years under conditions of limited rainfall reduces the available supply of moisture in the subsoil to depths much below the normal penetration of seasonal precipitation." Results are presented in tabular form.

Neal, J. H. (19251)

"For the purpose of studying some of the moisture properties of soils in their undisturbed natural position, and their relationship to the drainage of these soils, fifteen sets of 6-inch cubes [of soil] were taken at alternate 6-inch intervals to a depth of 4 feet." The findings of this investigation are given and considerable technical data presented.
The following is an attempt to summarize the formation of soils, to consider the close connection between climate and soil in greater detail, to indicate how soils are related to one another and so lead up to a classification of soil types, a system of soils, which rests on a true scientific basis.

THE EVOLUTION AND CLASSIFICATION OF SOILS. 127 pp. illus. 1903. [Translated by C. L. Whittles, Cambridge, W. Heffer & Sons., Ltd., 1928.]

PERCOLATION STUDIES AND INFUENCE OF MOISTURE ON THE DECOMPOSITION OF ORGANIC MATTER ARE INCLUDED.

A number of separate investigations are presented in this report because they all pertain to soil-moisture constants within the capillary range and because most of the soil samples used in each investigation were the profile samples of the erosion experiment stations of the Department of Agriculture . . . The work on centrifugal moisture concerns the effect of high centrifugal forces on the moisture content of soils.

Literature cited, pages 42-44.

THE NEED OF COMPLETE INFORMATION IN ONE HANDY VOLUME . . . COVERING THE VARIOUS PHASES PERTAINING TO THE PROTECTION AND IMPROVEMENT OF OUR...
soils, influenced the author in compiling the subject matter herewith set forth. The value of tile underdrainage in the upbuilding of the farm lands was considered of such vital importance that it is treated at length, showing the treatment and the results obtained in different types of soils

ROBERTS, G. (3260)

The writer gives statistics on erosion control and discusses prevention of leaching, tillage and drainage, fertilizers, planning, and establishing rotation crops. After a summary and recommendations, a bibliography on soils and crops is given.

ROBINSON, G. W. (3261)

In this introduction to the science of pedology, the subject of soil erosion is treated, pages 51-53 and 62-70.

ROGERS, H. T. (3262)

"The claypan nature of the B horizon of the Iredell, White Store, Helena, and Orange soils of the Piedmont Plateau Region, linked with their apparent susceptibility to severe erosion, suggested a comparative study of their profiles . . . An analysis of the data obtained in this investigation reveals some significant relationships existing between certain physical and chemical properties of these soils. These relationships, with some of the supporting data, are presented and discussed herein."

RUFFIN, EDMUND. (3263)
FSAAY ON CALCAREOUS MANURES. 242 pp., illus. Petersburg, Va., J. W. Campbell. 1832.

"The object of this essay is to investigate the peculiar features and qualities of the soils of our tide-water district, to show the causes of their general unproductiveness, and to point out means, as yet but little used, for their effectual and profitable improvement . . . The theoretical opinions supported in this essay, together with my earliest experiments, with calcareous manure, were published in the 'American Farmer' in 1821. Instructions for the digging and carting of marl, and for the use of lime are given, and experiments in the use of both are described. Machines for the raising of both wet and dry marl are illustrated.

SALTER, R. M., LEWIS, R. D., AND SLIPPER, J. A. (3264)

Factors involving soil deterioration and improvement, also standards established to evaluate these factors are discussed and data offered showing methods of calculating annual soil productivity balance as applied to the State of Ohio based on studies in 1929.

SHREVE, FORREST, AND TURNAGE, W. V. (3265)

Describes experiments to determine moisture content, dry-weight basis, for layers of alluvial clay at different stages during a 2-year period. Results presented in tabular form indicated that the movement at the low percentages prevailing in desert soils is very small, at least in heavy soils. The authors show how the only rapid changes in moisture content are the increases due to heavy rainfall and the decreases at the surface by evaporation or at lower levels by root absorption.

SCHOFIELD, CARL S., MOON, C. LLOYD, AND KNIGHT, ELMER W. (3266)

"The purpose of this report is to discuss conditions in respect to the subsoil water that constitutes one of the features of the problem of crop
production not only on the Newlands Field Station but elsewhere on the Newlands reclamation project." Deals chiefly with investigations inaugurated to obtain information on the annual or seasonal fluctuations in the position of the water-saturated zone of the subsoil and the nature and concentration of the salinity of the subsoil water.

Shaler, N. S.

"The object of this report is to set before the general reader a somewhat popular account of the origin and nature of soils; to show the importance of their relations not only to the well being of men but their influence on the course of the physical and organic events which have determined the geologic history of the planet." Contents: Processes of Soil Formation; Physiology of Soils; Certain Peculiar Soil Conditions; Action and Reaction of Man and the Soil.

Shantz, H. L.

Not examined.

Shaw, C. F.

Résumé of papers given at the congress held at Oxford, England, July 30 to August 7, 1935, and a description of exhibits and excursions.

Shear, G. M., and Stewart, W. D.

Data presented here have been collected chiefly from reforested areas. "The effect of forest planting on the pH of the soil is of great ecological significance. Most of the research that has been done to determine soil moisture in forested areas is limited to the upper layers of soil, generally in connection with successful studies."

Shutt, F. T.

The necessity for the farmer "by proper methods of culture, to store up a large portion of the year's precipitation for the use of the crops of the succeeding year" is stressed, and data obtained at the experimental farms in Manitoba and the Northwest Territories are given in the report for 1900. The report for 1912 describes plan for continuous series of experiments, inaugurated in the autumn of 1910, on certain of the western experimental farms from which data on the yields of grain, etc., would be obtained. In the 1913 report the writer states: "Though final conclusions must be deferred it is possible to indicate some of the more striking results obtained in prairie breaking; the influence on moisture content of depth and time of ploughing; and subsoil-packing."

Shear, G. M., and Stewart, W. D.

Two series of experiments on the control of soil moisture instituted at the experimental farm at Ottawa, Ontario, are described and results discussed. Data from other experiments at Nappan, Nova Scotia, farther west are also given of the effect of growing rye on the moisture content of the soil, and the effect on the moisture content of varying periods of cultivation.

Shear, G. M., and Stewart, W. D.

Experiments at the experimental farm, Ottawa, Ontario, and Nappan, Nova Scotia, are described and results given.
"Further observations (E. S. R. 24, p. 421) on the effect of subsurface packing in conserving soil moisture showed no very great advantage from this practice, although it appeared that the packed land started the season with slightly more moisture than that which had not been so treated."—Expt. Sta. Rec. 27: 320, 1912.

"The soil in the area covered by this bulletin is in the main a silt loam and practically all of the investigational work used as a basis was conducted on the Experiment Station Farm at Pullman, Wash. The results properly interpreted will apply to all silt loam soils in Eastern Washington receiving more than 15 inches of rain annually . . . Subjects treated are climate, cropping system, relation between available nitrogen and quality of grain, soil erosion, crop rotation, drainage, etc.

Data on percolation rates of various soil types, erosion, and soil permeability are presented. The summary states in part: "The ratios for erosion and for the permeability of soils show that these properties are inversely proportional in terms of the factors of the percolation ratio."

The purpose of the present work was to study the influence of organic matter through use of the method employed by Musgrave and Free. Experiments were conducted at the Iowa Agricultural Experiment Station.
"The infiltration capacity of Clarion loam in a 4-year rotation of corn, corn, oats and clover was found to be relatively high, but it was increased materially by additions of manure."

Capillary condensation is, for most ideal soils, chiefly responsible for the sorbed liquid. Surface absorption is important and need not be considered excepting when the grains approach colloidal size. Actual soils are a mixture, and the predominant sorption process will be determined by the amount of colloidal water present. Includes eight figures and a table which summarizes vapor pressures associated with King's experiments.

SNOW, L. M. (1926).
"Although a considerable amount of work has been done upon the bacteria in soil, no one apparently has made a comparative study of the number and type of bacteria in ecologically equivalent types of soil in different regions. It was, therefore, with this aim in view that the series of studies . . . was started. The type of soil selected for the study was arid, wind-blown soil, such as is found in the dunes along the coast and around Lake Michigan, and in the dry regions in the interior of the continent. In order to facilitate the handling of such a comprehensive piece of work, the approach was made through the study of certain types of aerobic bacteria that grow in ordinary culture conditions." Methods and materials, experiments and results with all other data are described and followed by a discussion of the work done, and a summary.

STAUFFER, R. S. (1936).
Studies at Illinois Agricultural Experiment Station show that " . . . soil on which poor cropping systems have been followed are much more sub-
ject to destruction by erosion than soils on which good systems have been followed... Results indicate that good physical condition of a soil can be maintained if good systems of cropping and management are followed.

STEPHENSON, R. E. (3281)
Explains changes in physical properties that occur in soils long under cultivation and subjected to some degree of erosion, through bad tillage practices.

Explains the effect upon soil organisms when soil organic matter is depleted, and humus renewal as cure for depleted soils.

The writer discusses various types of tight, sticky, waxy, clay soils and their potential improvement through irrigation. "The conclusion is unavoidable that soils are only as deep as roots penetrate and utilize moisture and nutrients... Irrigation may control only surface soil moisture or the moisture of a natural shallow root zone..."

Points out the advantages of removal of soil capillary water before irrigation.

STEVENSON, W. H., BROWN, P. E., AND FORMAN, I. W. (3286)
The experiments reported in this work show that applications of various fertilizing materials bring about increases in crop production and that without treatment there is a gradual decline in crop yields. "No soil can remain permanently fertile unless care is taken that all plant food removed by the crops grown is returned to the soil and the physical condition of the soil is kept favorable for crops." Phosphorus, potassium, manuring, drainage, cultivation, liming, and crop rotation are among the recommendations for Carrington loam in Iowa.

TEXAS AGRICULTURAL EXPERIMENT STATION. (3287)
"Data from rotation, soil improvement, and soil moisture and fertility conservation experiments are briefly reported."—Expt. Sta. Rec. 55: 320. 1926.

"The importance of terracing for the conservation of fertility and the prevention of loss of soil by erosion is noted, together with the recommendation that organic matter be incorporated at every possible opportunity, and that as frequent a rotation of crops as possible be made. Fertilizer experiments mostly of the usual type included applications of 250 and 500 lbs. per acre of sulfur, resulting in an apparent slight gain in the yield of cowpeas. This gain was not sufficient, however, to pay for the sulfur used."—Expt. Sta. Rec. 59: 719. 1928.

The work reported in this bulletin was undertaken with a view to determining somewhat in detail the relative amounts of water used by different crops and the factors influencing the same under existing climatic and soil conditions. The investigations of the relative water requirement of different crops were carried on in large tanks placed in the field, and also in field crops. The authors find that numerous conditions surrounding plants influencing growth, water requirements, adaptability, and plant habits make it impossible to give definite water requirement for any plant, or even the relative order in which a given number of varieties will stand in respect to this factor. Results of all findings are presented.

MOISTURE AND FARMING IN SOUTH AFRICA. 260 pp., illus. [Johannesburg], Central News Agency, Ltd. 1936.

The author's task has been to scrutinize available evidence as to the correlation between the proper utilization of available rainfall and successful agriculture in the Union of South Africa. "This book . . . should be of very material assistance in effecting a proper adjustment of farming to our natural resources."

Bibliography, pages 249-255.

States that the farmers of China have made great efforts to check soil washing and deposition by terracing the loess hills from top to bottom, but their efforts can only temporarily stave off disaster.

SOILS OF NORTHERN AND NORTHWESTERN CHINA. Geol. Survey of China (Peiping) Soil Bull. 12, 155 pp., illus. July 1935.

"Data for this report was [were] collected by the authors during the summer and early autumn of 1934 . . .” soil erosion and its control are discussed, pages 92-98.

The more important soil regions and soil groups of Kansas are shown on a soil map. The authors discuss trends of fertility and crop yields, composition of the soil, available and unavailable material for plants, chemical analysis of the soil, biological inhabitants of the soil, the way in which soils lose or gain fertility, and the maintenance of fertility through soil erosion control. Crop rotations and other means are suggested. Commercial fertilizers, their value and use, are discussed at length.

"Destruction of the soil structure in the surface layer is caused by atmospheric agencies and the physico-chemical changes in the absorbing complex. At 3-8 cm. depth it is caused principally by the changes in the absorbing complex."

UNITED STATES DEPARTMENT OF AGRICULTURE, LIBRARY.

Lists Marbut's writings from 1895 to 1935.

UNITED STATES EXTENSION SERVICE.

A description of the Purdue kit for making rapid chemical soil and plant tests in Indiana. A number of the kits have gone to the Soil Conservation Service for use in the 11 Hoosier camps.
VAN DERLINDEN, LEE. (3297)
METALS IN SOILS, FERTILIZER, FOODS AND HEALTH. Amer. Fert. 84: 10, 24, 26.
May 30, 1936.
Discusses importance of such elements as iron, copper, zinc, manganese,
barium, vanadium, and nickel with reference to food for growing plants on
worn-out soils. From an address before the Farm Chemurgic Council,
Fresno, Calif., March 28, 1936.

VEHMEYER, F. J., AND HENDRICKSON, A. H. (3298)
SOIL MOISTURE AT PERMANENT WILTING POINT OF PLANTS. Plant Physiol. 3:
355-357. July 1928.
"In extensive experiments extending over a period of years, the writers
have observed a remarkable constancy of the residual moisture content for
a given soil when permanent wilting is attained under widely varying
evaporating conditions." The results of experiments with sunflowers are
given in tabular form.

VERMONT AGRICULTURAL EXPERIMENT STATION. (3299)
Discusses the fundamentals of soil development from rock and organic
matter.

WAKSMAN, SELMAN A. (3300)
SOIL DETERIORATION AND SOIL CONSERVATION FROM THE VIEWPOINT OF
Presented at meeting of American Society of Agronomy, Washington,
D. C., November 18, 1936, as part of symposium on the scientific aspects of
soil conservation.
Literature cited, pp. 121-122.

WEAVER, J. E., AND HARMON, G. W. (3301)
QUANTITY OF LIVING MATERIALS IN PRAIRIE SOILS IN RELATION TO RUN-OFF
illus. 1935.
A study of the quantity and types of living plant material in native
prairies and pastures and the parts played by living underground plants
in promoting absorption of water by soil. These materials "are composed
of roots, rhizomes, and the bases of stems. In the case of non-grassy species
of forbs, they sometimes include corms, bulbs, and certain other under-
ground plant structures."

WEST, E. S., AND HOWARD, A. (3302)
A NOTE ON THE EFFECT OF GREEN MANURING ON THE WATERHOLDING
ary 1936.
"Nine years of continued use of green manure has increased the sticky
point of the top 30 cms. of the soil by about 1.25 percent (of oven-dry
weight soil). This represents an increase in the field capacity of the
soil as a whole, equivalent to about 6 mms. (0.25 inches) of rain, so that
green manuring under these conditions is of little importance from the
point of view of increasing the water-holding capacity of the soil. Its
beneficial effects lie in other directions."—Summary.

WHITFIELD, A. F. (3303)
"The object of this paper is to describe the natural soil . . . to show
the sources from whence materials that form this soil were obtained, and
to show nature's method of putting them together to make a perfect soil;
then to tell how a soil similar is rapidly being artificially made by regu-
lating the amount and distribution of sand, and by impounding the
muddy waters of swollen streams between terraces." A map of a soil-
building project for a truck patch is included.

WHITSON, A. R., AND HENDRICK, H. B. (3304)
The writers discuss water-holding capacity of soils, organic matter, water
required by growing crops, rainfall in relation to water requirements of
crops, and other questions on water supply.
WHITSON, A. R., AND WALSTER, H. L. (3305)

In this study, outlining the principles of soil fertility, the subject of soil erosion is treated in chapter XIII, pages 204-211. Erosion of hillsides is discussed, pages 108-109.

WISCONSIN AGRICULTURAL EXPERIMENT STATION. (3306)

"The gravity of the erosion problem, in the western and southwestern sections of the State especially, is stressed, the aggravating effect of cultivation and the normal character and progress of erosion damage are briefly described, and the advising of various control measures is reported, together with the projected cooperation of the station with the Lake States Forest Experiment Station in a study of erosion . . ."—Expt. Sta. Rec. 63: 16—1930.

STREAM FLOW, SEDIMENTATION, AND RELATED SUBJECTS

ANONYMOUS. (3307)

A report of an investigation into the relative scouring effects of clear and muddy water in swiftly flowing rivers; part of a study in connection with Boulder Dam.

The work on Farmers Ditch and Drainage District No. 1, of Woodbury County, Iowa, is summarized.

"Comparative study of calibration curves for circular, rectangular, and triangular weirs, including results of original experiments performed at Hydraulic Institute of University of Padua, Italy."

New earth-handling problems arise with the necessity to clear reservoirs of silt. Patient study and large-scale experimenting are called for "so that the requirements of the problem may be clearly defined in practical terms."

EFFECT OF DEFORESTATION. Forestry and Irrig. 8: 146. April 1902.

Results of observations on discharge and sediment of two contiguous basins at the Salt River Reservoir are presented.

Includes a table showing peak stages and discharges of various rivers that were affected during the spring floods of 1936. Data prepared from records collected by the United States Geological Survey.

"According to the plan, the Federal government would establish a basic network of stations to measure precipitation, snowfall, streamflow, groundwater levels, evaporation, and water supply."

Studies in India convinced R. G. Kennedy that there is a "critical velocity" in any stream in which all silt already in suspension is carried
without further deposition and at which also no further silt is scoured from
the sides or bottom. His formula for this velocity is reviewed.

ANONYMOUS, (3315)

LAND DRAINAGE; OBSERVATIONS ON THE EFFECTS OF LOWERING THE LEVEL OF A

Experience acquired in the course of preparing schemes of drainage after
systematically watching the behavior of rivers in flood is described. The
object of the proposed drainage works was to relieve from risk of flooding
the area usually inundated in times of heavy rainfall and to improve the
gradient of the river. Some observations made on the process and effects
of the erosion of riverbanks are given.

LARGEST IRRIGATION LABORATORY DEDICATED. West. Farm Life 38: 7, illus.
July 1, 1936.

Announces completion of modern hydraulics laboratory at Colorado State
College. "Besides being equipped to study and check problems related to
the construction of huge dams, the laboratory will be used to solve irriga-
tion and water problems for farmers, ditch companies, and cities, and to
develop useful irrigation devices such as the Parshall flume and sand traps.
There are also facilities for fundamental scientific research, and a station
for conditioning meters for measuring the rate of water flow in streams."

"Neubert Springs Dam, a 15-ft. earth embankment built in 1921 to form a
millpond of 2 1/2 acres 7 miles south of Knoxville, Tenn., when washed out
by a flood on March 24 was found to have accumulated silt in the 15 years
of its existence to within about 2 ft. of pond level, or 85 per cent full. The
deposit totaled about 25,000 cu. yd. or 15 1/2 acre-feet—about 1 acre-foot of
deposit per year, according to estimates made by engineers of the Tennessee
Valley Authority."

November 1934.

This article describes three different types of sand traps developed by
R. L. Parshall, by means of which a small part of the stream can be diverted
through them to carry out of the main stream a concentrated load of sand,
silt, and debris.

70,000 TONS OF SILT DAILY. Sci. Amer. 154: 91. February 1936.

Describes desludging plant to be constructed 15 miles northeast of Yuma,
Ariz., at Imperial Dam. As planned, the plant will consist of 6 settling
basins to be fed by an influent channel, 4 flow-control roller gates, and 72
Dorr clarifiers for the removal of deposited silt. Sluicing channels will
return the silt to the Colorado River below the diversion dam.

SOIL EROSION SURVEY IN SOUTHEASTERN STATES. Science 83 (Sup.): 6-7.
January 17, 1936.

The relation between soil erosion and the silting of six reservoirs under
study in a new survey in Virginia, North Carolina, South Carolina, and
Georgia is discussed.

May-June 1936.

Discusses silting of reservoirs in the Piedmont, with special reference to
the Lake Murray earthen dam.

STREAM CONTROL WORK. Reedy Creek Farm Coop. 3 (2): 3-4. February
1936. [Mimeographed.]

This article recommends small stream control for the protection of valu-
able bottom land. Straightening a channel is the wrong procedure, as it
means a sharper grade with greater flow velocity and cutting of banks.
more satisfactory method is the clearing of channels and bank protection by means of brush or rock riprap, rock or log cribbing, and carefully placed plantings.

ANONYMOUS.

Levels of the Mississippi, Missouri, Arkansas, and Red Rivers during the fifth month of the drought of 1934 are discussed.

AMERICAN GEOPHYSICAL UNION.

ALLIS, JOHN A.

HOW SILT IS MEASURED ON PROJECT STREAMS. Soil Conserv. 1: 5-6, illus. August 1935.

Describes methods for measuring silt at Stillwater Creek project in Oklahoma.

ANDERSON, G. E.

EXPERIMENTS ON THE RATE OF WEAR OF SAND GRAINS. Jour. Geol. 34 (2): 144-158. 1926.

"The experiments described in this paper were made to obtain more definite data on the relative rates of mechanical wear, on sand grains, by wind and water under constant conditions. The results show, contrary to the general belief, that sand submerged in water wears down more rapidly than dry sand transported over the same distance."

ANDREWS, ERNEST C.

"The present note is an attempt to coordinate our knowledge of stream processes, and to assign them their proper place in the sculpturing of land forms." Erosion and its processes, transportation, and floods are considered. The main thesis of this paper is that in areas of homogeneous rocks or of rocks comparable in hardness, such as dense sandstones, quartzites, granites, or crystalline schists, the existence of two peneplain surfaces in association but separated by youthful topography must be explained by activities other than those of ordinary corrosion.

ASHE, W. W.

This paper begins with a general discussion on the effect of soils on the turbidity of water, with direct reference to the Potomac River. The soils east of the Allegheny front are considered: Cecil and Chester, Penn, limestone, shale, and sandstone, and also the soils west of the Allegheny front. In discussing the erosion of farm land the writer states that the primary cause of erosion is the failure of the soil to absorb the rain water which falls upon it. "The eroding and transporting action of water is increased by the increase in its volume; it is also increased four times by doubling the gradient." The effect of forest cover on stream flow, and the extent and influence of forest cover are discussed. "The forests are influential in improving the potability of the Potomac water in 3 ways: They prevent greater erosion from certain soil types on steep slopes which are yet partly in forest and which wash badly when deforested, and lessen in this way the very high turbidity of the water. They maintain the volume,
already very low, of the summer and autumn run-off, which by dilution adds to the real purity of the water . . . They also steady and equalize the flow of the smaller streams and lessen the erosion of their banks.” Forest types are listed in respect to their humus-forming capacity. Turbidity in reservoirs at Washington, D. C., is discussed, and turbidity records of the Washington water supply are given.

ASHE, W. W. (3329)
SOIL EROSION AND FOREST COVER IN RELATION TO UTILIZATION OF WATER POWER, WITH SPECIAL REFERENCE TO THE SOUTHEAST. Engin. World 23: 73-75. August 1923.
The silting of reservoirs is discussed as “a condition produced very largely and in many cases entirely through exposure of the naked soil—the removal of the protective cover of forest, with its litter and humus.” Such erosion need not take place; a reservoir site when developed should have such protection as will insure its permanence. A summary on surface conditions, rainfall, and amount of solid matter carried by streams in different sections of the United States is given.

Discusses varying influences of forests upon stream flow in six different river groups of the United States. The groups are: Rivers of the Northeastern States and the Great Lakes region; rivers of the Middle Atlantic coast region; rivers of the Appalachians; rivers flowing from the eastern and southern slopes of the Rocky Mountains; Sacramento and San Joaquin Rivers; and the Columbia River. Considerable data on erosion and silting for each group are given.

AYRES, Q. C. (3331)
The purpose of this paper is to show that in the flow and sedimentation of drainage ditches there is a close relation between velocity, depth, and width, particularly at junctions and sharp breaks in grade, and if the velocity can be controlled at these critical points it is possible to eliminate much sedimentation with reduced maintenance cost.

BABBR, C. C. (3332)
“The United States Geological Survey in May, 1891, established a gauging station on the Potomac River at Chain Bridge, D. C., for the measurement of the discharge of the river at that place.” This article deals with the relation of the river discharge to rainfall in the basin, and resultant sedimentation.

BAKHMETEFF, BORIS A. (3333)
“The present book is an attempt to supply the need, at least in part, and to offer a manual presenting the subject of varied flow in a manner which makes it useful for engineering practice and design.” Divided into three parts: The Theory of Gradually Varied Flow; Practical Applications; and The Hydraulic Jump.

BALLESTER, R. E., and LACEY, GERALD. (3334)
Discussion of a paper by E. W. Lane published in proceedings for November 1935. Contains additional data obtained from observations in the Rio Negro, Argentina, on channel silting and silt transport.

BARBER, SOLON R. (3335)
An account of Soil Conservation Service survey along 55 miles of Lower Granite Gorge of the Colorado River. Preliminary reports show that the bulk of the silt washed into Boulder Reservoir comes from a relatively
small area of watershed and that it has been blown or washed down into
the river from the high plateau watersheds in the Navajo Indian Reserva-
tion in northeastern Arizona and the Ute Indian country in northwestern
New Mexico.

BARNES, FARRELL F.
ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAY RESERVOIR, CLANTON,
ALABAMA. U. S. Soil Conserv. Serv. SCS–SS–13, 13 pp., illus. 1937.
[Mimeographed.]

Original storage capacity at crest level, 156,525 acre-feet; present ca-
pacity, 138,520 acre-feet; loss by siltation, 18,005 acre-feet. Reservoir built
December 1913; survey made January 27–July 24, 1936.

BARNES, G. A.
SOIL CONSERVATION IN REGARD TO WATER SUPPLIES IN THE SOUTHWESTERN
Contains reports of silt surveys by Soil Conservation Service on nine
reservoirs of Texas, Oklahoma, and Arkansas. Surveys of White Rock
Reservoir and Lake Waco are given in detail. States that “examples cited
... show that the reservoirs through the south-central states are filling
at an alarming and excessive rate due to the widespread lack of erosion
control measures in the watersheds.”

BATES, 0. G., AND HENRY, A. J.
FOREST AND STREAMFLOW EXPERIMENT AT WAGON WHEEL GAP, COLORADO. U. S.
Monthly Weather Rev. (Sup. 30), 79 pp., illus. 1928.

This is the final report on the second phase of the experiment, of which
the history and description are given. “The attempt made in this report
is to present the data accumulated in 15 years of study in the simplest
possible form for the comparison of the two periods, the first comprising the
8 years before watershed B was denuded and the second the 7 years subse-
quently.”

BENNETT, H. H.
STUDIES ON SOILS WHICH BEAR ON SEDIMENTATION. Natl. Research Council,

“This is a brief statement regarding the work of the Bureau of Chemistry
and Soils of the United States Department of Agriculture, especially on
soil erosion as related to sedimentation.”—Expt. Sta. Rec. 60: 713. 1929.

AND LOWDERMILK, W. C.
PRELIMINARY REPORT ON BENEFICIAL USES OF WATER RESOURCES, PRINCIPAL
STREAMS OF THE UNITED STATES. 52 pp. March 19, 1934. [Mimeo-
graphed.]

“Herewith is a copy of a hastily prepared preliminary report which the
Soil Erosion Service has submitted to the Subcommittee dealing with the
Atlantic Seaboard Division set up under the Cabinet Council for the purpose
of reporting upon the matter of beneficial uses of water. [It] includes
brief outlines of the problem of accelerated erosion, runoff and silting of
stream channels and reservoirs, in relation to all six of the divisions of the
country considered by the six subcommittees”

BERKEY, CHARLES PETER.
May 20, 1932.

Brief review of the desirable features attached to the selection of the
Hoover Dam site in comparison with other nearby locations. A disad-
vantage cited, however, is the heavy load of silt, tending by its accumula-
tion in the reservoir to reduce its storage capacity.

BERNARD, M. M.
AN APPROACH TO DETERMINATE STREAM FLOW. Amer. Soc. Civ. Engin. 60:
2–18, January 1934.

The purpose of this paper is to indicate the possibility of stream-flow
studies through the use of published Weather Bureau and Geological Sur-
vey data, “. . . by which regional coefficients may be developed and made
59893”—38—30

BISSELL, C. A.

(3343)

Discusses sources of silt and gives data on percentages of silt in suspension at San Marcial, Tex. The effect of the 1929 flood on siltation is also discussed.

BLACKWELDER, ELIOT.

(3344)

BLaney, H. F.

(3345)

Discusses tables on mechanical analyses of suspended silt at various depths in the Colorado River at Yuma, Ariz., and in the canal at Hanlon, Calif.

Boston Society of Civil Engineers.

(3346)

This report discusses use of the current meter in stream gaging; 0.2 and 0.8 method in power canals; precipitation, evaporation and run-off; effects of ice on river discharge; and methods to be used in compilation of data. A glossary of terms is included.

Bottomley, W. T.

(3347)

"The silt-transporting power of a current of water, according to the late Mr. P. A. M. Parker, is one of the least understood subjects in hydraulics." Considering the theories of various engineers the author says: "Several phenomena of silting and scouring can be understood when the effects of gradient are considered. For example, the general tendency of rivers carrying silt is for the gradient to be uniform throughout and equal to the average gradient between source and sink."

Bowen, Edward.

(3348)

States that the Sweetwater, Lake Chahot, and La Grange Reservoirs show little capacity loss, the Sweetwater losing only 4 percent of capacity in 12 years, and the Lake Chahot 101/2 percent in 36 years. Discusses a sedimentation survey of the La Grange Reservoir.

Bowman, Isaiah.

(3349)

"The drought of the past three years has exposed lake floors that have been covered with water for many decades and that have been exposed to view probably not more than once or twice since white occupation of the West." The necessity of making sedimentation studies on dry lake beds before they again become covered with water is urged.

BreaZeAeLE, J. F.

(3350)

This bulletin is the result of an extensive study of silt and soil in the Colorado River. The problem of silt in streams which supply irrigation water is emphasized.
BROWN, C. B. (3351)
FROM FARM FIELDS TO CITY STREETS. Soil Conserv. 2: 189-190, 198, illus.
March 1937.

Describes reclamation work in the Ohio Valley as a result of the 1937
flood. Outlines surveys being made to determine the amount of the sediment
deposited by flood waters and gives preliminary estimates on flood acreage
and amount of sediment within the boundaries of Wheeling and Huntington,
W. Va., and Marietta, Portsmouth, and Cincinnati, Ohio.

"... reservoir surveys and related special studies are undertaken
to determine present silting rates and predict future trends, so that we
may be prepared to take steps necessary to lessen silting rates by recom-
mending watersheds most needful of soil-conservation planning, and by
developing methods for abating the silting rate supplementary to established
erosion-control practices."

AND BARNES, FARRELL F. (3353)
ADVANCE REPORT ON THE SEDIMENTATION INVESTIGATIONS OF RESERVOIRS AND
NAVIGATION IMPROVEMENTS ON THE NEW RIVER, VIRGINIA AND WEST VIRGINIA.
U. S. Soil Conserv. Serv. SCS-SS-6, 24 pp., illus. 1936. [Mimeographed.]

Summary of sedimentation in Fields Reservoir: Original storage capacity
at crest level, 183.51 acre-feet; present capacity, 103.22 acre-feet; loss by
siltation 74.59 acre-feet; dam was completed August 1930, survey made April
14-May 22, 1936. Summary of sedimentation in Washington Mills Reservoir:
Original storage capacity at crest level, 2,954.24 acre-feet; present capacity
511.47 acre-feet; loss by siltation, 2,442.77 acre-feet; dam built November
1902, survey made April 14-May 22, 1936. Summary of sedimentation in
Bylesby Reservoir: Original storage capacity at crest level, 8,382.16 acre-
feet; present capacity, 3,538.35 acre-feet; loss by siltation, 5,353.81 acre-
feet; dam built August 1912, survey made April 14-May 22, 1936. Summary
of sedimentation in Buck Reservoir: Original storage capacity at
crest level, 1,225.33 acre-feet; present capacity, 941.51 acre-feet; loss by siltation,
283.82 acre-feet; dam built August 1912, survey made April 14-May 22,
1936.

AND BARNES, FARRELL F. (3354)
RESERVOIR SITING IN THE NEW RIVER WATERSHED. Soil Conserv. 2: 95, 106,
ilus. November 1936.

This article treats of investigations of erosion conditions on the New
River watershed by measurements of silting in the Washington Mills, Bylesby,
and Buck Reservoirs in the New River watershed of Virginia. "A
special feature was a study of the effect of one or more reservoirs on the
silting rate of other reservoirs downstream." The authors point out that
excessive silting greatly reduces storage capacity.

BROWN, MARK H. (3355)

Observations on flood damage in the Ohio Valley are reported. The result
of sedimentation studies to investigate the condition of farm lands and
urban areas in the flooded areas from Pittsburgh, Pa., to Cairo, Ill., are
reviewed. Three factors were involved in these studies and were recorded
on maps: "1. Estimated amount of deposit or removal. 2. Nature of deposits
or estimated removals (fine sandy loam, silt, silty clay, etc.). 3. Land use
or cover—clean-cultivated, pasture, weedy fields, timber, etc."

BROWN, R. M. (3356)
THE MOVEMENT OF LOAD IN STREAMS OF VARIABLE FLOW. Amer. Geogr. Soc.
Bull. 39: 147-158. 1907.

This article reviews the report of 1882 issued by the Mississippi River
Commission, dealing with the movement of detritus, and discusses the regu-
lation of low-water channels by confinement and by dredging. The location
of deposits in a meandering river are also considered.

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION 461
BRYAN, K.

"The Rio Puerco, a tributary of the Rio Grande in New Mexico, has deepened and widened its channel, or arroyo, since the settlement of the region. This process of accelerated erosion still continues. Historical evidence, largely the notes and maps of government land surveyors is cited to show that the cutting began between 1885 and 1890. The deepening of the arroyos has decreased the agricultural and grazing value of the country, resulting in the abandonment of six small towns and numerous ranches. The coincidence between the introduction of large numbers of stock and the cutting of arroyos indicates that overgrazing precipitated this form of destructive erosion. The ultimate cause, not completely discussed in this paper, appears to lie in cyclic fluctuations in climate."

BRYAN, KIRK.

Findings of studies conducted by various engineers on Elephant Butte Reservoir on the Rio Grande are here recorded.

AND ROBINSON, H. F.

The Zuni Dam, built in 1904-7, created a reservoir having a capacity of 15,511 acre-feet. In the 22 years since 1906 wind and sand (silt) have entered the reservoir to the extent of 69 percent of its original capacity. "Most of the silt comes from the open valleys of a broad syncline of cretaceous rocks at the foot of the mountains. Here the production of rock waste has always been large, but it has since about 1880, been much accelerated by the erosion of a deep and everwidening channel or arroyo in the broad valley floors" The rapid filling of Zuni Reservoir was checked in 1923 by measures designed to control excessive erosion.

CHAPLINE, W. R.

[Also in Sci. Amer. 146: 34-36. January 1932.]

"The silting of reservoirs and other irrigation works in the west is already seriously endangering established projects; and at the rate erosion is increasing, it is making prospective ones uncertain. The Zuni Reservoir in New Mexico . . . has in twenty-two years filled with erosion debris to over seventy percent of its capacity, practically destroying its usefulness." Similar examples in Utah and Idaho are described and illustrated.

CHRISTIANSEN, J. E.

This paper gives the results of a study conducted for the purpose of comparing observed silt distribution with Schmidt's theory.

CHURCH, J. E.

A snow sampler devised for use on Mount Rose, Nev., to meet all conditions of mountain snow is described, and the relative value of different methods of forecasting is discussed. "The purpose of snow sampling is to obtain an inelastic standard of measuring snow. Notwithstanding its limitations, snow surveying is valuable in forecasting the minimum run-off from a watershed. Such is its purpose where the snow cover is regarded merely as a supplement to ground-water storage and summer rains."
CLAXTON, P.
The author states that "movements and changes in amount of silt held in suspension are similar on streams flowing through alluvial plains." Several examples of alluvial river meanderings are cited.

CODE, W. E.
WHEN MEASURING WATER, USE A PROVED ACCURATE DEVICE, PROPERLY INSTALLED AND OPERATED TO MAKE FAIR DIVISIONS. West. Farm. Life 38: 6. June 1, 1936.
Recommendsthe Parshall measuring flume for ditch measurements of all ordinary flows. Describes also the best type of dividing box (the weir type) in which divisions are made at and below the crest.

COFFEY, G. N.
Embodies a plan for measuring the amount of material that is removed in drainage waters from the surface of a given area. Experiment made at Wooster, Ohio.

COMMONS, G. G.
In a letter to the editor the writer suggests the means by which a rational formula for open channels might be obtained. He hopes to start discussions for real development in flow formulas.

COOK, H. L.
"The purpose of this paper is to indicate a line of attack on the problem of stream transportation of solids through consideration of energy relations. The treatment is brief and necessarily superficial in many respects. However, it is felt that this analysis will (a) show the real nature of the various difficult problems involved, (b) indicate possible methods of solution, and (c) afford a rational basis for the systematic interpretation of experimental results."

COOPERHIDE, O. K., AND HENDRICKS, B. A.
Partial contents: General description of the upper Rio Grande watershed; Land resources; Striking evidence of accelerated erosion; Destructive effects of accelerated runoff; Causes of deterioration of range and forest lands; Source of destructive flood waters and silt; Vegetation-erosion relationships; Soil erosion in relation to range values; The Colorado part of the watershed; Solution of the watershed problem; The immediate need. Literature cited, pages 87–88.

DAVIS, A. P.
Discusses two methods of measuring the amount of sediment held in suspension by streams in Arizona. Necessary equipment is described.

WATER STORAGE ON SALT RIVER, ARIZONA. U. S. Geol. Survey Water-Supply and Irrig. Paper 73, 54 pp., illus. 1903.
Describes character of drainage basin, water supply, and gives designs, specifications, and general data on methods of constructing the Salt River Reservoir. Figures on sedimentation in the river water are tabulated and discussed, pages 41–42.
DEACON, G. F.

Describes the findings of an investigation on the transport of sand by running water, summarizing the results of a series of observations made in the estuary of the Mersey River in England. The velocity of the moving sand is the chief consideration.

DOSSON, G. C.

"The formula described in this article was developed specifically for computing original and present capacity and silt volumes in storage reservoirs."

AND BROWN, CARL B.

INSTRUCTIONS FOR RESERVOIR SEDIMENTATION SURVEYS. U. S. Soil Conserv. Serv. SCS-SS-2, 87 pp., illus. 1936. [Mimeographed.]

Gives instructions on how to determine the volume and distribution of sediment accumulated in an original storage basin during a specific period of time. Two procedures are described—the range method and the contour method. Instructions are also given on the preparation of maps, illustrations, and supplemental material.

DODGE, R. A., and THOMPSON, M. J.

Deals with statics of fluids, accelerated liquids in relative equilibrium, dynamics of fluids, impulse and momentum in fluids, the flow of viscous fluids, thermodynamics of compressible viscous fluids, and special problems in fluid mechanics.

DOWD, M. J.

Experiments and results with culverts and drains are discussed.

DUNN, H. H.

"The Mississippi will be able to brush its own teeth and keep its own mouth clean of mud and silt and sand, which for so many generations have kept the government dredges and other boats busy down at Port Eads holding open that mouth so that ships might pass in and out . . ."

EAKIN, H. M.

Presents data to show that the systematic divergency of current direction on stream bends is apparently indicated by the fact of superelevation of waters toward the outer bank of the bend. "Such cross-channel slopes would appear, necessarily, to impose a constant deflective force from surface to bed throughout each water column. Constant centrifugal resistance to this deflective force in cross-channel direction seems necessarily established by variation in paths of curvilinear motion distributed according to velocity-variations in the vertical column."

Previous studies and fluvial aspects of this problem are considered togethether with the influence of deforestation through accelerated erosion. "It is with regard to these fundamental problems of soil conservation that the present program of sedimentation and hydraulic studies of the Soil Conservation Service has been laid"

Shows how the influence of the earth's rotation unbalances the lateral erosion of streams, in the Northern Hemisphere directing the stronger erosion on the right bank, and in the southern Hemisphere, on the left. States that the "deflective force" is much stronger in the higher latitudes. Data are compiled from observations made on Alaskan rivers and the Mississippi.

"Comprehensive flood control includes not only the simple confinement and guidance of waters but control of erosion and the transportation and redistribution of sediment as well."

Gives data on significant reservoirs in the southeastern, southern Great Plains, and southwestern type areas of the United States and shows that silting of reservoirs is an important problem in all three regions wherever accelerated erosion is present. Data are taken from previous investigations of 25 reservoirs and reconnaissance surveys conducted by the Soil Conservation Service in 1934-35.

This paper deals with changes in water and sediment output from upland areas, and reduction of levee freeboard due to loss of overbank area.

EARGLE, D. HOYE. (3384) ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF HIGH ROCK RESERVOIR, SALISBURY, NORTH CAROLINA. U. S. Soil Conserv. Serv. SCS-SS-10, 23 pp., illus. 1937. [Mimeographed.]

Original storage capacity at crest level, 259,432 acre-feet; present capacity, 275,516 acre-feet; loss by siltation, 13,916 acre-feet. Reservoir built November 1027, survey made May 18-October 25, 1935.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE HARRIS, TUSCALOOSA, ALABAMA. U. S. Soil Conserv. Serv. SCS-SS-4, 7 pp., illus. 1936. [Mimeographed.]

Original storage capacity at crest level, 2,421 acre-feet; present capacity, 2,373 acre-feet; loss by siltation, 48 acre-feet. Dam completed February 1629; survey made October 30-November 6, 1935.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE PURDY, BIRMINGHAM, ALABAMA. U. S. Soil Conserv. Serv. SCS-SS-5, 11 pp., illus. 1936. [Mimeographed.]

Original storage capacity at crest stage, 19,990 acre-feet; present capacity 18,594 acre-feet; loss by siltation, 486 acre-feet. Dam built September 1910 (raised 20 feet, June 1929); survey made November 6-25, 1935.

AND BARNES, FARRELL F. ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF RAYVIEW RESERVOIR, BIRMINGHAM, ALABAMA. U. S. Soil Conserv. Serv. SCS-SS-11, 12 pp., illus. 1837. [Mimeographed.]

Original storage capacity at crest stage, 11,866 acre-feet; present capacity, 9,514 acre-feet; loss by siltation, 2,352 acre-feet. Reservoir built May 1911; survey made November 30, 1933-January 25, 1936.

Some of the results of silt investigation and methods of conducting surveys are described dealing specifically with municipal sanitary engineering problems of water supply and refuse disposal in Columbus, Ohio.

The author discusses the penetration of colored light and the limits of visible light penetrations into waters carrying silt. Retention of organic matter and other material by erosion silt which produces high mortality among fresh-water mussels living in gravel and sand beds is also pointed out.

"The watershed and hydrologic studies project of the U. S. D. A. Soil Conservation Service was established at Coshocton, Ohio, in November 1935. Since that date engineers (agricultural and hydraulic), soil scientists, foresters, geologists, and meteorologists have been studying the watersheds of this area, planning a program of research, and designing and installing equipment for scientific studies." Work at Coshocton is described.

The suggestion that the right-hand deflection of moving bodies might produce excessive erosion of the right banks of the rivers is discussed.

This is a detailed study of silt deposition conducted at various points along the Brazos River and reservoirs in Texas. A description is given of plans and methods of study, sampling equipment, method of sampling, and laboratory methods. Discusses bed silt, velocity and silt percentage curves, comparisons of discharge and silt percentage, mechanical analyses of suspended silt, determination of the silt load, and prevention of silting.

LITERATURE CITED, pages 56-57.

Describes the function and operation of the hydraulic dredge Imperial. Plans, designs, and specification for construction are given with itemized costs, totaling $63,559.93.

"Silt in the flow of the Rio Grande has been under observation, and records of the amount carried are available for a longer continuous period than for any other southwest stream . . . Values for the net dry weight of a cubic foot of deposited silt have been determined or assumed for use in
the computations of the volume of silt carried by the Rio Grande ranging all the way from 50 to 100 pounds . . . Two reservoir silt-surveys have been conducted, one in 1920 and another in 1925." The results of these surveys are given, and conditions productive of a silt flow through the reservoir are discussed.

FISON, DAVID.

With the aid of diagrams, tables, and equations a method of delineating flood flow is illustrated, which enables the behavior of the flood waters to be studied in accurate detail.

FLYNN, H. H., AND FLYNN, M. S.

"This paper treats of the natural features and development of the areas drained by the Maumee, Sandusky, Miami, and Muskingum Rivers and contains valuable data with reference to the flow of these streams and the natural advantages they offer with reference to water power and domestic water supply."

FOLLANSBEE, R., AND SPIEGEL, J. B.

Data on rainfall, topography of the river basin, flood discharges, and daily discharge at gaging stations are included.

FOLLETT, W. W.

"The following compilation and discussion of the silt determinations of Rio Grande waters made prior to January 1, 1913, is for the purpose of putting into tangible and accessible shape the information which is now hidden away in filing cases and record books." In conclusion the writer says: "The fact brought out most prominently by this study is that no hard and fast rule, not even an approximate one, can be made as to what silt the river will carry in future years . . . It is also shown that the silt is a factor which must be seriously considered in the building of any reservoir on the Rio Grande."

Gives a brief historical outline of silt determination experiments which were begun in 1889 and continued with little interruption till 1912. Considerable data are given on determination of the weight of a cubic foot of silt, sediment movement on bottom of river, and stream flow.

FORBES, R. H.

"The writer began an inquiry into the relations between irrigating sediments and farm crops, giving particular attention to the effects upon crops of mine tailings which, finding their way into the Gila River from concentrating plants upstream, are carried down upon irrigated lands below . . . The fertilizing and physical effects of sediments upon soils are discussed in this bulletin . . . Unusual palms have been taken to present an accurate, impartial and systematic statement of facts relating to the subject of this bulletin."

FORTIER, SAMUEL, AND BLAKEY, HARRY F.

This study on siltation in the lower Colorado River Basin has a twofold purpose, one being to aid the irrigators of the lower basin in the better control of silt, and the other to pave the way for a more complete control of silt by means of storage reservoirs in the middle and upper sections of the Colorado River system.
In the following paper two methods are presented whereby it is possible to obtain an undisturbed and representative sample of an incoherent sediment in its natural condition; and methods whereby from these samples precise determinations may be made of the porosity, apparent specific gravity or lump density of the sample and the actual specific gravity of the component grains.

The thorough figures of Dole and Stabler are deduced ... from the examination of river waters, and are based upon the assumption that all material which is removed from the land to the sea is carried in suspension or solution by outward-flowing water. Recent studies of the magnitude of aeolian transport cast some doubt upon the validity of this assumption ... Udden has calculated on very conservative data, that the transport capacity of the winds blowing outward from the Mississippi Basin is at least one thousand times greater than that of the river ..." The writer believes that the present estimates of the rapidity of denudation are far too low.

In a letter to the editor the writer states that his knowledge of stream-flow records contains no proof that forests materially influence stream flow. Various generally accepted theories on this subject are discussed, and evidence is presented.

"The experiments described in this report were ... instigated by the common needs of physiographic geology and hydraulic engineering. A laboratory was established at Berkeley, Cal., and the investigation became the guest of the University of California." This report considers stream and evidence as to the harmful effect the material eroded from the headwaters of the Tennessee River Basin had on the navigable portion of that stream.

Original storage capacity at crest level, 422 acre-feet; present capacity, 488 acre-feet; loss by siltation, 4 acre-feet. Dam completed, June 1935; survey made November 2-22, 1935.

Original storage capacity at crest stage, 290.45 acre-feet; present capacity, 281.57 acre-feet; loss by siltation, 7.88 acre-feet. Water storage began in March 1929; survey made November 22-December 4, 1925.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

GLYPH, LOUIS M., AND JONES, VICTOR H. (3410)
ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE CALHOUN, ILLINOIS. U. S. Soil Conserv. Serv. SCS–SS–16, 9 pp., illus. 1937.
[Mimeographed.]
Original storage capacity at crest level, 286 acre-feet; present capacity, 137 acre-feet; loss by siltation, 149 acre-feet. Dam built September 1924; survey made July 23–August 6, 1936.

AND JONES, VICTOR H. (3411)
ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE DECATURE, ILLINOIS. U. S. Soil Conserv. Serv. SCS–SS–12, 23 pp., illus. 1937.
[Mimeographed.]
Original storage capacity at crest stage, 19,738 acre-feet; present capacity, 16,930 acre-feet; loss by siltation, 2,808 acre-feet. Dam built April 1922; survey made April 8–July 3, 1936.

AND JONES, VICTOR H. (3412)
ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE SAPULPA, OKLAHOMA. U. S. Soil Conserv. Serv. SCS–SS–7, 9 pp., illus. 1936.
[Mimeographed.]
Original storage capacity at crest level, 1,004 acre-feet; present capacity, 911 acre-feet; loss by siltation, 183 acre-feet. Dam built 1913, survey made December 5, 1935–January 10, 1936.

GRIFFITH, W. M. (3413)
In discussing R. G. Kennedy's general law the author points out that the power of a stream to transport silt in suspension is derived from vertical eddies. Outlining his formula he says: "The application of this theory is made to the design of bridge-foundations and finally to river-training works. The theory is also advanced that there is a particular width of river which will give the minimum of shoaling or scour action under varying flood-volumes."

GROVER, N. C. (3414)
Reviews the work of the Geological Survey in measuring discharge and suspended matter in American rivers since 1902, and tells why the survey was allotted funds in January 1934, primarily for the establishment and operation of stream-flow-measurement stations and for obtaining records of movement of suspended matter at eight erosion-control projects.

FOLLANSBEE, ROBERT, JACOB, C. C., PURTON, A. B., AND ELSWORTH, C. E. (3415)
SURFACE WATER SUPPLY OF THE UNITED STATES 1918, PART IX. COLORADO RIVER BASIN. U. S. Geol. Survey Water-Supply Paper 479, 189 pp., illus. 1922.
In this report the data collected at various gaging stations consist of records of stage, measurements of discharge, and general information used to supplement the gage heights and discharge measurements in determining the daily flow.

AND HOWARD, C. S. (3416)
A record and description of silt flow from Lake Mead above Boulder Dam from March 1 to October 31, 1935. "Turbid water carrying a considerable load of fine silt was discharged from Lake Mead, above Boulder Dam, in Arizona and Nevada, at three different periods during 1935 when the reservoir was 70 to 90 miles long and contained from 4,000,000 to 5,000,000 acre-feet of water. Apparently, it flowed through the reservoir essentially unmixed. Chemical analyses of the water entering into, and discharged from, the reservoir corroborate the conclusions drawn from the observations of silt as to the occasional discharge of essentially unmixed water. The phe-
nomenon is ascribed to the greater specific gravity of the incoming water relative to the generally clear water at the surface of the lake, due probably, in part, to its silt load. A practical significance is suggested with respect to the possibility of increasing the passage of fine silt through a reservoir, thereby prolonging its effective life. References are made to other known occurrences of similar phenomena.

"The factors which influence streamflow and erosion on Java are quite different from those in the Alps... In general we may expect that the soil cover in the tropics has a greater effect on streamflow and erosion than in the Alps."

"The Soil Conservation Service is concerned with stream and valley sedimentation, both as a down-stream effect of accelerated upland erosion, and because of the direct damage to major valley soils." Data are given on the Wells drainage district in Lafayette County, Miss. "The history of the Wells district emphasizes the futility of attempting control of drainage and sedimentation problems without consideration of the upland erosion which is the fundamental cause... Thus, there is need and opportunity for improvement of the valleys, by some direct attention to the problems and processes of stream transportation and sedimentation."

Shows how gravel, sand, and silt in streams originating in glaciers must be handled effectively to obtain satisfactory results. Discusses methods of disposing of gravel in the supply canal and shows how the location of settling basins is important.
HARPER, H. J., AND MURPHY, H. F. (3421)
"As a result of the interest which has been developed in soil conservation many interesting statements have been made in regard to the rate of soil losses . . ." Relative data are presented in tabular form.

HARRINGTON, ARTHUR W. (3122)
Data on rainfall and run-off due to a series of thunderstorms of July 7 and 8, 1935, centered in area of 7,000 square miles in central and southern New York. Flood flows and inadequate gaging stations are also discussed.

HARRIS, E. G. (3422)
For the purpose of this study the author has divided streams into two classes: "(1) Those flowing by and over material that the water cannot cut away (as rock) . . . (2) streams flowing through material that can be cut away by moving water, as the alluvium, or 'bottom land.'" The need for a better understanding of this subject is stressed. "It is of vital importance to agriculture along such streams, and it should be used with good effect in reading decisions in suits for damage resulting from the erection of milldams and the like."

HEMPHILL, R. G. (3423)
This paper refers to the silt load of several of the principal streams of the Southwest to indicate the importance of the silt problem in that region and the necessity for a comprehensive study of it to meet adequately water-storage problems of the future.

HILL, L. C. (3425)
Reservoirs are suggested for muddy streams of the Southwest. "A number of causes could materially reduce the quantity of silt carried by the Colorado below the canyon, chief among which are control of flood waters, resulting in more uniform flow in the lower river; more extended use of water for irrigation, both on the tributaries and on the main stream, and a regulated, permanent channel."

HOLMQVIST, F. N. (3426)

HOOKER, E. H. (3427)
"Considerable space in this paper is devoted to the historical side of the subject because the sources of information are widely scattered, and it is desired to indicate, so far as possible, the origin of the ideas and observation upon sedimentary movements which have become common knowledge. In the second part of the paper a comparison of particular facts and observations leads to certain general conclusions with reference to the manifestation of the phenomena studied. The concluding portion is devoted to an analysis of the different explanations of the causes of suspension, for the purpose of building up a satisfactory theory."

HOWARD, C. S. (3428)
"The quantity of suspended matter carried by the Colorado River varies considerably from year to year, and the uncertainty of its effect on the
life of reservoirs is shown by the estimates given above. The differences in the quantities carried at different stations during a 3-year period are shown in the results given in this paper."

Howard, C. S.

In connection with the operation of regional projects of the Soil Conservation Service, it was desired to obtain records of the quantities of water and suspended matter carried out of the drainage basins in which erosion-control work was to be done and the quantities carried out of similar drainage basins on which the control methods were not used. This paper gives data on discharge and suspended matter for the Colorado River at the Grand Canyon gaging station.

Hoyt, W. G., and Others.

The effects of change in vegetable cover on stream-flow characteristics are discussed in this paper and conclusions presented.

Hunter, J. F.

"Owing to the great mechanical labor and the long time necessary for such an investigation, the writer has contented himself with the study of a very small test area on the eastern shore of the bay around the mouth of the Choptank River . . . This small area affords an excellent opportunity to establish certain local rates of erosion and sedimentation, but of course gives no data for many of the larger and more general conclusions that would be expected from a study of the entire bay." The quantitative results of the study are presented in tabular form.

Innis, C. C.

Two methods of excluding heavy bed silt from off-takes are described and compared. The open flow method is defined as "... the partial opening of a few undersluice gates near the bed at the side of the approach channel farthest from the Canal off-take, near the divide wall — with the idea of drawing bed silt away from the Canal face." The still-pond method is keeping the undersluices closed while the canal is flowing, the velocity in the approach channel thus being kept down to such a low velocity that silt is deposited in the approach channel. When the deposit becomes considerable the canal is closed and the undersluices opened to scour out the silt.

Iowa Engineering Society.

PROCEEDINGS . . . Iowa Engin. Soc. Proc. 35, 118 pp., illus. 1923.

"At this meeting held at Des Moines, Iowa, January 23–26, 1923, the following special reports, among other features, were presented: Rainfall and the Run-off from some Iowa Drainage Districts, by W. J. Schlick; Drainage Assessments against Highways and Railroads, by W. H. Root; Highway Drainage, by J. L. Parsons; Iowa Highway Transportation Problems and Suggested Solution, by C. C. Coykendall; and Experiments on Nebraska Pit-run Gravels, by W. H. Campen."—Expt. Sta. Rec. 50: 516. 1924.

Iowa State Planning Board.

"This report has been compiled to provide for ready reference and use the available records of flow of Iowa streams. It contains . . . substantially all such records collected by either public or private agencies up to and including December 1932."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

JIBWIN, G. M. (3435)
Discusses sanitary regulations governing watersheds, citing the Province of British Columbia Health Act; comments on a paper by Hoyt and Troxell on forests and stream flow; outlines the investigations of the United States Forest Service in stream-flow measurements and discusses their findings in erosion research in southern California and southern Colorado. The opinions of Federal engineers on stream flow and its relation to forests are given.

JAGGAR, T. A., JR. (3436)
Table of contents: Catchment Basins and Water-bearing Strata; Imitative Character of Rills; Purpose of Experiments; Previous Studies of Rill Drainage; Seepage Rills; Underground Drainage Areas and Stream Shadow; Flood Rills; "Grand Canyon" Model; Trickle Pattern in Clay; Models Sprayed with Atomizers; Stream-Robbery Model; Discussion of Principles; Bibliography; Explanation of Plates. "The present study deals with a series of experiments designed to perfect apparatus for reproducing rill patterns in the laboratory. In the later of these experiments some success was attained, and meanders, piracy, digitation, corrosion, aggradation, and delta building have been reproduced in miniature. Some account is here given of these experiments, which have been carried on from time to time in the Harvard laboratory for eight years. In addition, the author's last models are described in detail, as they illustrate the argument outlined."

JARVIS, C. S. (3437)
This paper presented at the meeting, May 6, 1925, shows characteristics of flood flow with data that may have either general or special application for protecting a given locality.

JOACHIM, A. W. R., AND PANDITTESORE, D. G. (3439)
An investigation of a preliminary nature to determine the amounts of silt carried in the water of a Ceylon river at different seasons of the year, begun in August 1900, is described. In a table are shown the results of the total solid determinations on the surface and 2-foot depth samples, respectively, the surface velocity measurements, and the rainfall in the catchment areas on the 2 days prior to sampling and on the date of sampling.

JOHNSON, DOUGLAS W. (3440)
"The pages which follow first review some established principles of Appalachian geomorphology, and then briefly set forth the theory of regional superposition with the aid of nine block diagrams showing successive stages in the physical history of the eastern United States. There
are next presented a variety of considerations which seem strongly to support the new theory, and to a critical analysis of some current views on Appalachian history which must be superseded in case the theory be adopted. In connection with this part of the work there are offered for consideration new interpretations of the drainage evolution of eastern Pennsylvania and northern New Jersey.”

JOHNSON, Hollister.

Presents data on rainfall and run-off and their effect on the flood. Also gives figures on flood discharges of streams in New York State.

JONES, L. A., SCHLICK, W. J., AND RAMSEY, C. E.

This report describes conditions, drainage problems, and plans of drainage. Considerable tabular data on run-off are given.

JONES, Victor H.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE BRACKEN, GALESBURG, ILLINOIS. U. S. Soil Conserv. Serv. SCS-SS-14, 10 pp., illus. 1937. [Mimeographed.]

Original storage capacity at crest stage, 2,881 acre-feet; present capacity, 2,660 acre-feet; loss by siltation, 221 acre-feet. Dam built December 1923; survey made July 9–August 15, 1936.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF WEST FRANKFORT RESERVOIR, WEST FRANKFORT, ILLINOIS. U. S. Soil Conserv. Serv. SCS-SS-15, 9 pp., illus. 1937. [Mimeographed.]

Original storage capacity at crest level, 1,175 acre-feet; present capacity, 1,080 acre-feet; loss by siltation, 05 acre-feet. Reservoir built August 1920; survey made August 19–September 12, 1936.

KESLER, T. L.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE SPAVINAW, SPAVINAW, OKLAHOMA. U. S. Soil Conserv. Serv. SCS-SS-1, 5 pp., illus. 1936. [Mimeographed.]

Original storage capacity at crest stage, 31,686 acre-feet; present capacity, 30,500 acre-feet; loss due to siltation, 1,177 acre-feet; dam built, April 1924; survey made, June 18–July 20, 1935.

ADVANCE REPORT ON THE SEDIMENTATION SURVEY OF LAKE TANEY COMO, TANEY COUNTY, MISSOURI. U. S. Soil Conserv. Serv. SCS-SS-8, 8 pp., illus. 1936. [Mimeographed.]

Original storage capacity at crest level, 43,980 acre-feet; present capacity, 23,714 acre-feet, loss by siltation, 20,266 acre-feet. Dam built March 1913; survey made July 23–November 2, 1935.

KEUTNER, C.

“Munich Hydraulic Laboratory tests of models of straight and winding courses of silt-carrying rivers having stable normal bed; problem was to determine flood stage behavior of Hwangho River in China; silt analysis, determination of effect of distance between levees on flood regime of river.”

KINNEY, A.

“Great damage has been done to many apiaries in Southern California by the January floods.” The losses by gullying are stressed. “The experience of Southern California ... fully demonstrates the fact that a close brush
or forest covering favorably regulates the delivery of rainfall; while on
the other hand, this covering destroyed, and especially in cases where the
districts are heavily pastured by sheep, the delivery of the rainfall takes on
a more and more diluvial and floodlike character.

Kriegeham, Hillier. (3449)
Review of silt damage and suggestions for control.

Krimgold, D. B. (3450)
COLLECTION OF HYDROLOGICAL DATA. The Land, Today and Tomorrow 2:
This article stresses the importance of agricultural engineering and hy-
drological data to the Soil Erosion Service and describes their application.
The work of the Geological Survey and the Weather Bureau in collecting
hydrological information is also discussed.

Lane, E. W. (3451)
The writer refers to flow, silt, and hydrologic studies of the Soil Conser-
vation Service as being of importance. "Within the past few years hy-
draulic engineering in the United States has advanced at unusually rapid
pace, mainly because of direct application of laboratory experimentation
to the design of major engineering works . . ." It is predicted that "The
stage now seems to be set for extensive advance in the next few years in
the equally important field of hydrology."

La Rue, E. C. (3452)
SILT IN COLORADO RIVER. U.S. Geol. Survey Water-Supply Paper 395: 218-
226. 1916.
Gives determinations of silt in the river at Yuma, Ariz., discusses the
influence of the Gila River, and gives further determinations of silt below
the junction of the Green and Grand Rivers.

Lawson, L. M. (3453)
EFFECT OF RIO GRANDE STORAGE ON RIVER EROSION AND DEPOSITION. Engin.
Reviews data which show that the general effect of the Elephant Butte
Reservoir, N. Mex., has been to prevent destructive floods in that area and
that local sedimentation has been minimized.
Comment by H. Stabler under title "Does Desilting Affect Cutting Power

League of Nations, Committee of Experts on Hydraulic and Road Questions
in China. (3454)
REPORT . . . 213 pp. [Geneva, 1936.] (Series of League of Nations Publi-
cations VIII. Transit. 1936. VIII. 4.)
At head of title: Official no.: C. 91. M. 34. 1930. VIII. Geneva, Feb-
uary 10, 1936.
"The Committee has undertaken within the limits of human capacity the
study of the crucial problem—namely, the improvement of the defence of
the plain against floods . . . The present report therefore deals with the
problem of security; the question of irrigation and the less important
problem of navigation have been studied in their relationship with the
main problem . . . The problem lies not so much in the volume of water
discharged as in the immense amount of solid matter, consisting mainly of
loess, carried down by the flood waters of the tributaries, and of the main
river on a quite exceptional scale, and particularly in the peculiar way in
which the loess, attaining on some tributaries as much as 50% in weight,
is carried along and deposited, as a result of the changes in speed and the
action on friable soil and earthworks of water so heavily laden with solid
matter . . . In the present report, the Committee has expressed opinions
based on current hydraulic experience, singling out those regarding which
reservations must be made so long as no final conclusions can be drawn
from the study of the deposit of loess by Chinese rivers."

39893°—38—31
Lee, W. T. (3455)

"The investigations described in this paper were undertaken for the purpose of gathering information which might aid in the development of the water resources of the Rio Grande Valley in New Mexico. Two general lines of observations were followed, one pertaining to underground waters and their utilization, the other to the storage and conservation of the surface waters."

Leighly, John. (3456)

Results of distribution of turbulence intensity and its relation to turbidity are presented in charts.

Lennie, A. B. (3457)

A paper read at the Norwich meeting of the British Association for the Advancement of Science, September 1935. "In the control of the rivers, the best plan for modern times has been found to be almost precisely that of the ancient engineers... The great difficulty in Iraq is the excessive amount of sediment in the water during spates, leading to heavy silting whenever the velocity of the current is checked. This difficulty is minimized in the case of modern canals by ensuring slack-water where they head off."

Love, S. K. (3458)

Gives data on discharge and suspended matter for the 15-month period ended June 30, 1935, for streams in Kansas, Missouri, North Carolina, Oklahoma, South Carolina, Texas, Washington, and Wisconsin. The measurements are from 54 gaging stations located on eight regional projects of the Soil Conservation Service.

MacDougal, C. H. (3459)

A discussion of experiments by G. K. Gilbert and others on laws governing sediment transportation. To examine these laws the author constructed an apparatus in the river hydraulic laboratory of the Massachusetts Institute of Technology. The results of his studies are summarized.

Mackin, J. H. (3460)

Abstract: "A small stream rising in the arid central part of the Big Horn Basin, Wyoming, was able to effect the capture of the much larger Greybull River, which enters the Basin from the encircling ranges, because the graded gradient of the small stream, adjusted to the transportation of fine silts and sands derived from weak shales which floor the Basin, was lower than the graded gradient of the Greybull River, adjusted to the transportation of coarse rock waste from the mountains." Includes a map of the Greybull River area, and photographs of the Greybull River and Dry Creek at the extreme low-water stage, showing the contrast between the coarse gravel transported by the Greybull and the fine silt carried by Dry Creek.

Matzke, A. E. (3461)

BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

MAXSON, J. H., AND CAMPBELL, I. (3462)
A study of formation of longitudinal grooves or "flutes" in stream beds due to swiftly moving sand or silt-laden water currents and the importance of stream fluting in fluvial erosion. The process is analyzed on the basis of examples observed in the inner gorge of the Grand Canyon.

MEAD, D. W. (3463)
Deals with water, its utilization and control, winds and storms, evaporation, precipitation, rainfall measurements and records, great rainfalls, stream flow and run-off data, and floods and flood control.

MELTON, F. A. (3464)
Various flood-plain streams are described. "The classification was the result of necessity, while an attempt was being made to correlate the known features of many different streams."

MEYER, A. F. (3465)
THE ELEMENTS OF HYDROLOGY. 522 pp., illus. New York, John Wiley & Sons, Inc. 1917. [Rev. 1928.]
Mainly intended for the use of engineers, teachers, and students of engineering. General contents: The Atmosphere, Its Temperature, Pressure and Circulation; Water, Its Various States and Their Properties; Precipitation, Its Occurrence and Distribution; Evaporation from Water Sources; Evaporation from Land Areas; Transpiration; Deep Seepage; Runoff; Stream-Flow Data; Supplementing Stream-Flow Data; and Modification of Stream-Flow by Storage.

MITCHELL, R. H., AND HALL, G. R. (3466)
Observations taken from a small artificial lake on the campus of Muskingum College, New Concord, Ohio. "The condition of the pasture fields, the campus, and the cropped areas leads us to believe very strongly that sheet erosion and the small amount of gullying noted in the drainage area had the greatest influence in producing the sediments which washed down the two small streams and settled in the lake."

[MOSERI, V. M.] (3467)

MURPHY, E. C. (3468)
"The changes in the appearance of a stream of water as sand is fed into it in increasing amounts are very interesting and the sand movement which gives rise to these changes has an important bearing on some engineering problems."

NAELE, J. C. (3469)
Presents in tabular form the general results of all the discharge and run-off measurements made on the Brazos River in Brazos County, Tex., between August 1899 and December 1901. An estimate of total silt carried by the same river is given for November 1900 to February 1902. Similar data are given for the Wichita River at Wichita Falls, Tex., and the Rio Grande at El Paso, Tex.
Nagle, J. C.

Data are given on the findings of an investigation of economic questions relating to the effect of silt upon irrigation systems making use of storage reservoirs, the effect of silt upon canals, and the effect that the use of certain waters would probably have on vegetation to which they might be applied. Experiments were conducted on the Rio Grande at Earlmont Bridge, N. Mex., the Brazos River at Jones Bridge, west of College Station, Tex., and the Wichita River at Wichita Falls, Tex.

"During the year 1902 gage height and discharge measurements have been made on the Brazos River at Jones Bridge, Brazos County, and also at Richmond, Tex. Similar measurements have also been made on the Colorado River at Wharton, Tex. Both the Richmond and Wharton measurements were made for the purpose of determining the amount of water available for rice irrigation along the lower reaches of the Brazos and Colorado Rivers for those months during which irrigation is most practiced in the Texas coastal plain..." The results of these investigations are summarized.

National Research Council.

The report for 1928-29 contains the following papers: Introduction, by W. H. Twenhofel; The Intertidal Zone of the Wash, England, by E. M. Kindle; Research on Sediments by British Geologists For the Year 1928, by H. B. Milner; Bibliography of Research on Sediments by European Geologists in 1927 and In Part in 1928, by Eduard Parejas; Silt Studies on American Rivers, by Kirk Bryan; Studies on Marine Bottom Deposits at the Scripps Institution of Oceanography, by T. W. Vaughan; Research in Marine Bacteriology, by A. H. Gee; Calcium Carbonate in Sea Water, by A. H. Gee and E. A. Moburg; Research on Marine Sediments Conducted by the American Petroleum Institute, by P. D. Trask; Studies on Sedimentation at the Jaques Loeb Laboratory, Stanford University, by L. B. Becking; Recent Publications on Chert, Flint, Concretions, Cone-in-Cone and Stylolites, by W. A. Tarr; Varved Sediments, by Ernst Antevs; Sedimentational Research on the Pacific Coast, by R. D. Reed; Micropaleontology in the Mid-Continent Region, by Dollie Radier; Heavy Mineral Work in the Mid-Continent Region, by Fannie Carter Edson; Lake Deposits in the Basin and Range Province, by E. Blackwelder; Bibliography on Chemical Studies Which Bear on Sedimentation, by George Steiger; Some Recent Applications of Physics to Sedimentation Problems, by C. E. Van Orstrand; Investigations in Ground Water Hydrology That Bear on Sedimentation, by A. M. Piper; Research on Sediments by British Scientists During 1930-1932, by H. B. Milner; Recent
Studies With Reference to the Role of Microorganisms in Sediment, by
G. A. Thiel; Accessory Minerals of Crystalline Rocks, by A. N. Winchell,
E. S. Larsen, J. C. Reed, J. T. Stark, A. C. Tester, and J. F. Wright; Abstracts
of Literature on Accessory Minerals of Igneous Rocks, by J. C. Reed;
Abstracts of Literature on Accessory Minerals in Sedimentary Rocks as
Related to Possible Source Crystalline Rocks, by A. C. Tester; Studies in

The report for 1932-34 contains the following papers: Introduction, by
A. C. Trowbridge; Recent European Studies on Sedimentation; Varved Sediments,
by Ernst Antevs; German Contributions to the Work on Sediments, 1930-33,
by Hans Becker; Sedimentation Studies at Stanford University 1932-1934,
by Elliot Blackwelder; Studies in Glacial Sediments, 1932-1933,
by M. M. Leighton and E. T. Townley; Research on Sediments by British
Scientists During 1932-1934, by Henry R. Milner; The Mineralogy of the
Sedimentary Rocks, by F. J. Pettijohn; Hydrologic and Hydrographic In-
vestigations That Bear on Sedimentation, 1932-1933, by Arthur M. Piper;
Chemical Papers Bearing on Sedimentation, by George Steiger; Current
Bibliography of Recent Sediments and Source Beds of Petroleum, by P. D.
Trask; Notes on Various Types of Sediments, by W. H. Trenholme; Studies
of Marine Bottom Deposits at the Scripps Institution of Oceanography, by T.
Wayland Vaughan; Some Preliminary Observations on Oxidation-Reduction
Conditions in Marine Bottom Deposits in the Gulf of Catalina, by C. E.
Zo Bell; The Terminology of Coarse Sediments, by Chester K. Wentworth.

NEEDHAM, J. G.

BETWEEN THE HILLS AND THE SEA: EROSION'S PROCESSES IN GEORGIA OULLIES

A brief description of "what goes on between the eroding hills and the
shoaling harbor and channels ... Few people know what this outwashed
soil does when it is deposited in the flood plains before it reaches the sea."
The area discussed is that of the Apalachicola and Chipola Rivers.

O'BRIEN, M. P.

NOTES ON THE TRANSPORTATION OF Silt BY STREAMS. Amer. Geophys. Union

"Several recent papers on the transportation of bed-load and suspended
material by flowing water have included assumptions or theories which are
in disagreement either with fundamental mechanical principles or with
experimental results. Since a number of experimental programs are in
progress, a discussion of these problems may be of some value in the inter-
pretation of results." Discusses Gilbert's theory of silt transportation, and
the theory of turbulent flow as developed by Von Karman, Prandtl,
and G. I. Taylor.

AND RINDLAUB, B. D.

"The present paper is the result of a critical survey of available data
made to ascertain whether or not a quantitative prediction of bed-motion
is now possible."
OPPOKOV, E. (3477)
THE QUESTION OF THE DRYING UP OF RIVER IN ITS PAST AND PRESENT STATUS.
"On the basis of observations on the Dnieper and Volga the author combats the prevalent opinion that Russian rivers are decreasing in volume. He concludes that the life of rivers and the quantity of water in them depend chiefly on the size of their drainage basins and the quantity and conditions of the precipitation. The influence of a decrease of the area of forests and marshes is only of secondary importance and is commonly greatly exaggerated."—Expt. Sta. Rec. 12 : 526. 1900-1.

PARKINS, A. E. (3478)
"Streams having steep grades are usually thought to be in active vertical erosion. The writer finds, however, that many intermittent streams are not degrading but are actively aggrading part or all of their valley . . ." Jewell's Creek near Ypsilanti, Mich., is cited as an example of valley filling. "In all such valleys we have an interruption in the normal cycle of erosion, caused by an increase in the supply of waste brought to the headwaters; and when this supply is decreased the stream will clear away the waste and erosion will go on agreeable to the normal order."

PARSHALL, R. L. (3479)
The improved Venturi flume, as described in this bulletin, is believed to possess such characteristics as will obviate many of the objections to the weir, orifice, rating flume, or other devices which are now in general use. Thirty-five tables on original free-flow discharge data are included.

PICKELS, G. W. (3480)
"The land-drainage problem in Illinois is an important one, especially so in the central part of the State where the topography is so flat and the natural drainage so inadequate that successful agriculture cannot be accomplished without artificial drainage," Description of watersheds, rainfall measurements and computations, water-stage, stream-discharge, and slope measurements are among the subjects studied. Supplementary data on the various phases of the experiments are presented in tabular form.

PIERCE, R. C. (3481)
"Hydraulic engineers who may have occasion to measure streams carrying heavy loads of silt will doubtless be interested in the following account of the special difficulties encountered and the results, obtained in measuring the flow of San Juan River." Silt in the San Juan and movement of debris are discussed in detail. "The results of discharge measurements made at the San Juan gaging station, together with a diagram showing the rating curve, area curve, and velocity curve, are presented herewith, as well as estimates for the four months (May to August, 1915) that the writer was engaged on the work."

PYLE, F. D., AND THOMAS, F. T. (3482)
This report is a discussion of tabular data on the silt load of the Colorado River, at Yuma, Ariz., and siltation of the Elephant Butte Reservoir on the Rio Grande.

RAFTER, C. E. (3483)
The author discusses the influence of forest cover on stream flow on the basis of measurements and draws the tentative conclusion that in the latitude of middle New York the waste of water due to evaporation from a de-
forested area is 5 to 6 inches a year. This conclusion is reached by comparing data and measurements from the forested upper Hudson area and the deforested upper Genesee area.

RAMSER, C. E. (3484)

"In order to control erosion on both land-slopes and in runoff-channels it is necessary to prevent the runoff-water from attaining a velocity sufficient to erode the soil over which it travels." The value of vegetation in a channel for the reduction of velocity and erosion is discussed and illustrated. The construction, spacing, and control of terraces, as determined from the results of experiments at the Bethany, Mo., and Guthrie, Okla., stations are described.

"The results of observation and cross-sectional and hydraulic measurements made between 1913 and 1921 on 22 dredged drainage ditches in Mississippi, Tennessee, and Iowa are reported . . . Data are also presented on conditions affecting erosion and silting in a channel, and a practical application of the results is described."—Expt. Sta. Rec. 63: 580. 1930.

This is a detailed study of nine sets of experiments conducted in the South and Midwest. The experiments were for the purpose of determining the roughness coefficient \(N \) in Kutter's formula. The author finds among other conclusions, that after a certain amount of erosion has taken place in a channel, further erosion does not necessarily increase the roughness of the perimeter.

The writer gives observations on enlargement and effect on capacity together with computations of value of \(N \) in Kutter's formula from data obtained in Trenton, Tenn.

Conservation of water, flood control, rates and amounts of run-off from watershed areas are the practical reasons for these studies. The studies undertaken by the California Forest Experiment Station, and others conducted in Tennessee, Illinois, and Iowa are discussed as are also experimental studies to be conducted near Coshocton, Ohio, and in the blackland of Texas, near Waco. Preliminary investigations have been made for experimental watersheds in Colorado and the Piedmont.

REED, W. H. (3489)

In a paper read at the second conference of Engineers of the Reclamation Service, Reed discussed a study made by him during the year which had produced results quite satisfactory from an educational standpoint. The study was based on a survey of Lake McMillan, the principal storage reservoir of the Pecos Irrigation Co. in New Mexico to determine how much sedimentation had occurred during a 10-year period.

RICHARDSON, E. G. (3490)

"The object of the work to be described was to obtain actual measurements of the quantity of soil carried in suspension at various levels above the bed, and at the same place and time to measure the velocity of the stream."
Richardson, E. G.
TRANSPORT OF SILT BY A STREAM. Phil. Mag. 17: 769-783. April 1934.

“It has been found that the transport of silt is in the main due to turbulence in the stream, under which conditions the vertical distribution is nearly exponential, and the lifting force ... is proportional to the square of the velocity.” Below the critical speed the silt is moved to a much less extent, and the movement is confined to the smaller particles in the lower strata of the stream.” The writer summarizes these investigations in conclusion.

Robinson, H. F.
A discussion by E. Mead, C. S. Jarvis, and G. M. Post is included.

Robinson, W. G.

In discussing the sediment basin of the upper reaches of the Missouri River the writer says: “The influence of erosion and the deposits of sediment occasioned thereby, together with the transport possibilities, will be discussed herein.” Silting must be stopped at or near its source. The Missouri River, which is a great silt carrier, must be controlled, and in its control lies a partial solution of the flood control of the lower Mississippi.

Rothery, S. L.

“This paper is concerned principally with the problem of excluding soil, transported by the Colorado River, from the Canal System of Imperial Valley, in California. Its purpose is: (a) to feature the relative importance of the bed load of the Colorado River; and to provide some conception of the extent of the unknown volumes of soil transported; (b) to present known and anticipated future river-flow conditions, pertinent to soil conveyance; and (c) to propose fundamental requirements for a diversion structure that will exclude all the bed load and a part of the suspended load, thus permitting minimum sizes for—or, perhaps, eliminating as unnecessary—the enormous settling basins which are expected to desilt the large diverted flow, and also permitting lessened sluicing operations for the disposal of the sludge.”

This article describes how deposition contributes to instability of channels and the effect of flood scour on levees. “The repeated dismissals of engineers as soon as they have become educated to delta conditions is a menace to the security that is apparently afforded by the protective levees.”

Rothrock, J. T.

The author presents information acquired through published correspondence concerning the effect of deforestation on streams in New Jersey, notably, Keasbey’s Creek, Fenwick Creek, Cooper’s Creek, Mantua Creek, and the Delaware River.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

ROUSE, H. D.

"The purpose of this paper is to summarize and interpret the modern scientific methods of approach that have made such progress possible, using the subject of flow in circular pipes as the simplest and most pertinent means of illustration."

Discussion by S. F. Yasines, Benjamin Miller, and R. W. Powell, pages 808-812, contains a resume of the investigations which have been made in the field of fluid turbulence since the middle of the nineteenth century.

RUBEY, W. W.
The author describes the alluvial islands found in the Mississippi, Missouri, and Illinois Rivers.

RAUBER, S.
Offers an analysis of Stokes' law of viscous resistance, which is found to apply to small rounded quartz grains. It is stated that coarse sand, pebbles, and boulders follow a totally different law—the impact formula. Stokes' law and the formula are combined in a general equation for the settling velocities of large and small grains.

SAVIU-E, THORNDIKE.
DEFICIENCIES IN PRESENT WATER RESOURCES INFORMATION. Jour. Amer. Water-works Assoc. 27: 964-982. August 1933.
Shows the necessity of "a far more comprehensive and scientific approach to the investigation of our water resources involving particularly standardized and coordinated procedures for the collection compilation, and publication of basic hydrological information." Policies and practices for stream-flow and run-off measurement are outlined.

SHAW, E. W.
RATE OF CONTINENTAL DENUDATION. Science 41: 244-245. February 12, 1915.
The author points out the practical value of determinations of mineral matter carried by the Mississippi River with facts showing the importance of water analysis, corroborated with bibliographical references. This content, through the editor's forum, is in contradistinction to statements made by C. Keyes in Science 40: 933-934. 1914.

STABLER, H.
"A systematic study of the waters likely to be utilized on the Reclamation Service projects was made in order to determine the influence of the salinity of the waters on the growth of vegetation and the effect of suspended matter in silting canals and reservoirs." The work was begun early in 1905 and continued during 1906. Samples were collected for an extended period at 55 stations. "The point of collection was selected with a view to obtaining a fair average sample of the water flowing in the stream, and occasionally samples were taken from different parts of the cross section in order to determine any possible local variation in quality of waters." Results at sampling stations are given in full, and the methods of analysis and accuracy of work and tables considered.

AND PARKER, H. N.
This paper summarizes a silt-deposition study covering 72 periods of approximately 10 days each from 1906 to 1908. An analysis of the study is presented in tabular form.
STEARNS, N. D.

“This paper describes briefly the apparatus and methods used in making tests of mechanical composition, porosity, moisture equivalent, and permeability, gives the data obtained from the first 97 samples that were tested, and discusses to some extent the interpretation and use of these data. The samples for which results are given in this paper were obtained in 1923 by geologists who were making ground-water studies. The samples from New Jersey are all unconsolidated sand and gravel. . . . Those from Montana comprise unconsolidated sand, silt, and gravel and consolidated rocks, chiefly sandstone and shale. . . . The samples from Idaho are chiefly surface silt and loess that mantle certain reservoir sites.”

STEVENS, J. C.

Includes discussions by H. G. Nickle, E. W. Lane, F. E. Bonner, M. P. O’Brien, H. F. Blance, W. W. Waggoner, P. R. R. Bisschop, Herman Stabler, N. C. Grover, and J. C. Stevens. “All the basic data that the writer could secure on the silting of reservoirs, where actual capacity surveys have been made to determine the extent of silting, are contained in this paper. Remedial measures for silt elimination are presented and discussed. A table contains a brief of all data on the silt transported by the streams of the world. The physical laws of silt transportation are outlined with pertinent discussion. The control of silt in canals, reservoirs, and on watersheds is then considered. The paper closes with data and discussion on the origin of silt.”

STRAUB, L. G.

Outlines some of the findings concerning the principles underlying transportation of sediment in suspension, as follows: the manner in which particles of various diameters distribute themselves in vertical section; the effect of certain changes in the chemical composition of the water on the mechanical composition of suspended load; and the relation between the stream discharge and the quantity of sediment in suspension. Also discusses the selection of a model law to insure similarity in laboratory studies of sedimentation basins.

STREIFF, A.

Past and present methods of prediction with their utility are discussed. Stream flow in the Great Lakes region and in Michigan are treated, with a graph representing the flow of the Muskegon River in Michigan.

SYKES, GODFREY.

Divided into three parts: History of Exploration and Navigation; Physiographic History; and Stream Dynamics. Headings of part III are: The Detrital Load of the Colorado River Water; Fluctuation and Rhythm in the Movement of Debris; Deposition of the Detrital Material. Bibliography, pages 177–188.

TAYLOR, T. U.

Describes silting in the Austin Dam on the Colorado River at Austin, Tex.

“The silting of reservoirs is always a factor in and at times a menace to water storage. The short life of some of the reservoirs of the United States
is startling and tragic." The author devotes 16 chapters to the silting of reservoirs and in chapter XVII discusses methods of desilting.

TAYLOR, T. U. (3512)

"The sifting-up of reservoirs, for purposes of comparison, is best reduced to heights or depths on a square-mile base. The results will not be true for any reservoir in which there is an appreciable current acting on the bottom of basin; i.e., on the upper surface of the silt. In the old lake at Austin the lake level could sink to ten feet below the crest of the dam, and still have a fair current in the penstocks, as the bottom of the forebay was 12 feet below the crest of the dam." Historic floods on the Colorado and Brazos Rivers are discussed.

Gives a discussion and analysis of tables showing the maximum and mean depths of water for 1893 and 1900, the maximum and mean depths of silt for 1900, and the percentage of sifting up at 16 different stations on the Colorado River.

THOMAS, H. A. (3514)
THE HYDRAULICS OF FLOOD MOVEMENTS IN RIVERS. Ed. 2., 70 pp., illus. Carnegie Institute of Technology, Pittsburgh. [1934.]

The Introduction contains the following statement: "The purpose of this bulletin is to present those elements of the hydraulic theory of unsteady flow in open channels, which are needed in rivers, and to discuss various approximate methods which have been used or proposed for handling such problems. Much of this material has not been previously published, or is derived from sources not readily available to engineers."

TOWNSEND, C. MrD. (3517)
THE FLOW OF SEDIMENT IN THE MISSISSIPPI RIVER AND ITS INFLUENCE ON THE SLOPE AND DISCHARGE WITH ESPECIAL REFERENCE TO THE EFFECT OF SPILLWAYS IN THE VICINITY OF NEW ORLEANS, LA. Miss. River Comm., St. Louis, Mo., 10 pp., illus. 1914.

Examines data which show that although the construction of a spillway would not seriously affect navigation of the Mississippi River and would materially reduce flood heights, to maintain it after construction would require such an enormous amount of dredging as to render the entire project impracticable.
The initial water content of sediments varies with the fineness of the constituent particles. A tentative estimate indicates that it is approximately 45 per cent in well sorted fine-grained sands, 60 per cent in silts, 80 per cent in clays, and more than 90 per cent in clays. In general, deposits that accumulate over submerged ridges are coarser than those that form in basins. Consequently, sediments deposited on submarine topographic 'highs' should compact less than those that accumulate in 'lows'.

And Hamm, Harald E.

Twenhofel, William H.

TREATISE ON SEDIMENTATION. 926 pp., illus. Baltimore, Williams & Wilkins Co. 1932.

Contents: Sources and Production of Sediments; The Transportation, Deposition, Diagenesis, and Lithification of Sediments; Important Conditions Modifying Sedimentary Processes; Sediments and Organisms; Products of Sedimentation; Structures, Textures, and Colors of Sediments; Environments or Realms of Sedimentation; Field and Laboratory Studies of Sediments.

United States Bureau of Reclamation.

BIBLIOGRAPHY ON THE SUBJECT OF TRANSPORTATION OF SOLIDS BY FLOWING WATER IN OPEN CHANNELS. 108 pp. 1933. [Mimeographed.]

"This bibliography has been compiled for the purpose of studying the silt and bed load problem in connection with the design of the All-American Canal . . . [it] has been made in two parts. Part I lists by authors all works thought to have any bearing on the general subject . . Part II is a sub-classification by subject and the listing is by numbers referring to Part I."

United States Congress.

Includes sections on the origin of silt and aspects of soil erosion, silt transportation, mechanical composition of silt and bed sediment, weight and specific gravity of silt and sediment, detritus transportation, riverbed changes, special problems due to influence of sedimentary load, and relation of sedimentary characteristics of Missouri River to flood control.

United States Forest Service, Southern Forestry Experiment Station.

Reviews the work of the southern forestry experiment in erosion control from 1931 to 1935. Various types of plantings are described. The results of experiments in surface run-off are also reported.

[United States] National Resources Committee, Water Resources Committee

Remedies are proposed for current deficiencies in hydrologic data essential for sound water conservation. The report cites striking examples of financial and human losses attributed to lack of basic data.

The Water Resources Committee recommends a Federal program for study of hydrologic data.

United States Soil Conservation Service.

UNITED STATES SOIL EROSION SERVICE.

PRELIMINARY REPORT ON THE BENEFICIAL USES OF WATER RESOURCES, PRINCIPAL STREAMS OF UNITED STATES. 52 pp., Illus. 1934. [Mimeographed.]

"This report includes brief outlines of the problem of accelerated erosion, runoff and silting of stream channels and reservoirs . . . [it] includes a statement of the erosion problem on pages 1-8, inclusive; a rough outline of the proposed working plan, pages 9-23, inclusive; and quantitative statements with respect to the principal eroding areas of the nation on pages 21-27, inclusive; followed by very brief treatments of the several divisions and the individual watersheds under each."

UNITED STATES WAR DEPARTMENT, CORPS OF ENGINEERS, UNITED STATES ARMY.

Part 1 of this paper describes flume studies of river-bed materials to determine the effects of variation in composition of sediment, slopes of bed and water surface, and depth of water in flume. Part 2 gives results of a study of mechanical composition of 531 samples from the thalweg of the Mississippi River between Cairo and New Orleans and 143 samples from tributaries.

VAN ORNUM, J. L.

"The regulation of rivers involves the control of flowing water. It therefore is based upon hydraulic laws." The author says that the improvement of waterways is a commercial necessity, and that both theory and experience are essential. "It therefore seems important to give fundamental consideration to principles underlying operations; and this purpose has dominated the writing of this book. Not only are those scientific laws presented which are of proved relevance, but also other propositions which give promise of reducing many uncertainties of procedure to definite details of control; especial care has also been taken to discuss quite fully the methods and results of experimental investigations and other endeavors to secure a more complete knowledge of the laws involved. It is not an art, but as an applied science that the regulation of rivers must especially develop; and in the measure that scientific principles govern will these public works prove successful."

VETTER, C. P.

Describes a plant designed to remove 70,000 tons of silt per 24 hours from Colorado River water for Imperial Valley.

VON ENDEL, O. D.

The author comments on the discharge of the Rhone River into Lake Geneva and the Cayuga inlet stream into Lake Cayuga.

The erosive action of water, whether in flow or frozen, on rock is described. Various waterfalls, among them Niagara, are discussed, and deductions are made as to their formation by stream flow and its processes as well as by other agencies.

WALLACE, R. C, BAKER, W. F., AND WARD, G.

"This investigation was carried out in order to determine accurately the nature of the dissolved and suspended materials carried by the Red River, their relation to the composition of Lake Winnipeg into which the river flows and to such contrasted types as the Mississippi and St. Lawrence Rivers." Table of contents: The Drainage Area of the Red River; Analysis
of Red River; Discussion of Analyses; The Leaching of Surface Materials in the Red River Basin; Total Erosion and Sedimentation; The State of Silica in Red River Water; and Comparison with Other Rivers.

WILLIAMS, MERTON Y. (3534)
LAND MOVEMENTS AND SEDIMENTATION. Bull. Geol. Soc. Amer. 43: 993-1002.
December 30, 1932.
The writer was asked for an explanation of the repeated vertical land movements apparently involved in the changing shore lines of ancient seas as depicted from his paleographic maps. "The principle of diastrophism seemed to be overworked when called on to explain marked recessions and advances of shorelines during a single geologic period. The quest for a solution of this problem continued during succeeding years without result, until a study was made of the stratigraphy of the southern plains of Canada for the Canadian Geological Survey . . . which provided data for comparative studies of rate of deposition of coarse and fine detritals, and for a quantitative comparison of deposition of sediments and vertical land movements. The observations upon which conclusions have been based and the reasoning applied are here recorded."

YARNELL, D. L. (3535)
"In the course of working up flood data in connection with rainfall records, contained in the U. S. Department of Agriculture Miscellaneous Bulletin no. 204, entitled 'Rainfall Intensity Frequency Data,' it was observed that on each watershed studied there was a direct relation between the amount of rainfall and flood discharges. A graphic method of representing this relationship has been devised so that it is apparently possible to predict flood magnitudes and frequencies from fragmentary or short-period data."

--- AND WOODWARD, S. M. (3536)
"Realizing the need for accurate knowledge regarding the flow of water in tile drains, plans for investigating this subject were made by the drainage division of the Bureau of Public Roads, early in 1915. The experiments so far made concern only the smaller sizes of tile, and this report therefore should be considered as a progress report of the investigation of the whole subject . . . The investigation herein reported deals only with the discharge or carrying capacity of tile drains as conduits. No tests were made on sizes smaller than 4 inches in inside diameter . . . This report includes a detailed description of the equipment and methods used and the tabulated data from the experimental work."

YOUNG, W. R. (3537)
The silt problem of Boulder Dam is discussed, pages 27-28.

YOUNGQUIST, C. V. (3538)
Stream flow during the water year 1935 was deficient and exhibited great variations caused by the unusual distribution of rainfall. Tables show discharge for year ended September 30, 1935, as compared with average discharge, and comparison of stream discharge during 1935 water year with that of 1928.

ZOCH, R. T. (3539)
It is here shown that, regardless of how irregular any natural drainage area may be, systematic methods can be used for predicting its discharge. The author states that this article, second of a series on the subject (see Monthly Weather Review vol. 62: 315-322, September 1934) presupposes acquaintance with the first article.
VEGETATIVE AND TILLAGE CONTROL IN GENERAL

Anonymous.

An interview with the Chief of the Soil Conservation Service in which he laid bare the evils of soil erosion and advocated strip cropping, cover crops, permanent grass, or forest cover on steep slopes, crop rotations, and terracing as preventive measures.

Presents methods of growing green-manuring crops which are successfully adapted to rotations in England. Mustard, rye, lupines, and Italian ryegrass are best used as summer catch crops; red clover, trefoil, Italian ryegrass as undersown crops for plowing under in winter; green manure as a main crop only on poor sandy soils as a preliminary to more profitable rotations; and mustard is widely grown for plowing in with wheat and oats.

Summarizes the damage by soil erosion throughout the United States and recommends as control measures, proper plowing and the growing of suitable crops such as sweetclover, red clover, alfalfa, rye, soybeans, and the vetches. Terracing is suggested as a valuable control method.

A few years of unchecked soil washing causes greater plant-food loss than several generations of continuous cropping. The author recommends winter cover crops, contour farming, and deep plowing, among other preventive measures.

The advantages of sorghum over legumes for soil conservation on Houston black clay soil, with best methods for planting are pointed out.

States that to prevent wind erosion, bare soil must be kept rough until a cover crop can be established. Discusses also the origin of soil washing.

Allison, R. V.

“Control of soil losses by wind may be promoted by the use of judiciously spaced windbreaks and protective covers of close-growing vegetation, as well as by the adoption of proper methods of cultivation” Crop rotation, strip cropping, terracing, and other control measures are considered.

Appleoatr, V. G.

Visit erosion experiments. Ohio Farmer 178: 15. August 1, 1933.

The writer describes a soil erosion experiment station demonstration at Zanesville and various farms in Salt Creek Valley, Ohio. Experiments included use of fertilizers on corn plots, terracing, strip farming on hillside fields, and 4-year rotation of corn, wheat, clover, and timothy.

Aune, B.

Work on the Belle Fourche project, comprising about 90,000 acres in South Dakota, is outlined. Among the suggestions made are the cultivation
of certain short-season grains, vegetables, and fruits, proper trees for windbreaks, and the application of organic matter to the heavy soils.

Bauer, F. C. (3549)
Sixty-seven tables show crop yields from 27 fields. Condensed rotation summaries indicate, in terms of money values, the results from soil treatments.

Beeler, M. N. (3550)
CURES FOR SOIL BLOWING. Capper's Farmer 47: 8-9, illus. February 1936.
Describes the tillage and planting practices of 24 Plains country farmers in the control of wind erosion. Summer fallow has become the standard practice for increasing crop yields in the Plains because it stores moisture and eliminates weeds, but serious wind erosion may occur if the ground remains too dry for germination. Illustrations show listing and strip-cropping methods.

"New system gives control of the two most important production factors—moisture storage and wind and water erosion."

Bennett, H. H. (3551)
Erosion control by means of strip cropping is encouraged. "Invariably good stands of grass, lespedeza, alfalfa, and other dense covers have proved super-conservers of both soil and water. The results have been almost unbelievable. They have shown that these matted growths not only stop soil wasting on moderate slopes, but slow it down to a large extent on steep land, and cause largely increased absorption of rain where it falls."

AND RUFF, A. F. (3552)
An object lesson in scientific farming, involving strip cropping and plowing under of a soil-improving crop over a fourth of the farm each year.

Bollinger, John R. (3553)
USING CROPS FOR EROSION CONTROL. Save Our Soil 1: 1, 4. February 1937.
Recommends various rotation crops and also suggests that land too steep for crop production be converted to pasture.

Butler, Eugene. (3554)
Soil and water conservation demonstrations in Texas are described. Special mention is made of the use of Hubam clover. Blackland farmers "are confronted with a real problem in trying to grow legumes on land infected with root rot.... Hubam may be the legume they have been looking for." Strip crops without terraces for gentle slopes have proved successful.

Caraway, J. M. (3555)
Louis Spatz of Jersey County, Ill., thinks "terracing is the easy way out of the difficulty, and like most make-shift methods it involves more work later on." He prefers and has practiced successfully a soil-saving system based upon a rotation of 2 years of corn, 1 year of oats and sweetclover. The clover is plowed in as a soil builder. "One of the big problems in soil erosion is avoided by sod strips."

Cardon, P. V. (3556)
"The experimental work at the Nephi (Utah) substation has been conducted cooperatively since 1907... A preliminary report of all the work
at Nephi was published in 1910. This report was rather general in its nature, owing to the fact that the experiments had been conducted during only a brief period and no conclusive results were available... The present bulletin presents the results of the cultivation experiments with dry-land cereals."

CARRIER, LYMAN. (3558)
SUGGESTIONS FOR PROMOTING THE AGRONOMIC WORK AND COORDINATING IT WITH OTHER BRANCHES OF SOIL EROSION SERVICE. U. S. Soil Erosion Serv. S. E. S., 6 pp. 1935. [Mimeographed.]

Recommendations are made for crop rotations, strip cropping, introduction of new crops, native vegetation, rates of seeding, care of pastures, and purchase of materials.

CHARLES, F. E. (3559)
SQUARE FARMING IN ROUND COUNTRY. Successful Farming 34: 14, 38, illus. September 1936.

Experiments with corn at the erosion experiment station at Zanesville, Ohio, are described. Terracing and contour plowing in hill country go hand in hand with soil and water control. Strip cropping and rotation crops are advocated.

CHARLES, TUDOR. (3560)

Discusses a conference of Kansas farmers at Dodge City. Wind-erosion control was an important feature of the conference. "Methods receiving most attention were moisture conservation by contouring, basin-listing, terracing and fallow; this to be followed by establishment of vegetative cover on considerabie areas of land. Listing Sudan grass in Black Amber cane and leaving it on the field, was favorably discussed."

DANIELS, H. A. (3561)
RESULTS OF TERRACING AND CONTOUR CULTIVATION. Farm and Ranch 55: 1, 7, illus. March 1, 1936.

Presents results of an experiment to compare the yield of tepary bean hay grown on terraced and contour cultivation plots with that grown on unterraced land.

DAVIS, LUTHER. (3562)
IMPROVING DELTA SOILS WITH HAIRY VETCH. ONE FARMER'S METHODS AND RESULTS HE HAS SECURED. Prog. Farmer (Miss. Valley Ed.) 51: 6, July 15-30.

The author presents detailed results of his experiments with hairy vetch as a soil builder in Delta soils on his farm near Chatfield, Ark., with special reference to fertilizer and rotational treatments. Comparative results of different methods of treatment are given in tabulated form.

DUNTON, H. L. (3563)
MEADOW STRIPS IN EROSION CONTROL. Soil Conserv. 1: 10-11, illus. March 1936.

ENLOW, C. R. (3564)

Good vegetative cover throughout the year would aid materially in minimizing flood hazards. To reestablish this cover on pastures and ranges, "it is necessary first to conserve the water that falls so that it can be utilized by the vegetation. This can be accomplished in large measure by the construction of contour furrows." Deferred and rotation grazing is a recognized system of value in the production of reserve food, and both flood control and drought relief can be aided by "the encouragement of a well-rounded agronomic program based on proper land use that will help maintain the organic matter and the fertility."
"The agronomic program of the Soil Conservation Service is primarily concerned with the use of field crops, pastures and ranges in such ways as to conserve soil and water, maintain production, and improve the lands."

Continual agricultural utilization of forest soils is followed by strong chemical, physical, and biological changes in the soil condition. An agricultural utilization without manuring takes away the same quantity of nourishing substances in 8 to 10 years as a forest management during a rotation of 100 to 120 years. The soil must be given back artificially that which has been taken away if crop rotation is to be successful.

The causes of land waste are discussed by the author, and the use of rotation crops is urged. "I propose to outline a rotation that I have practiced for years which I know will restore this humus and bring back these unproductive and unsightly fields from barrenness to the production of paying crops. The first step is to stop the waste, fill the gullies, and plow thoroughly." Then rotation crops of peas, rye plowed under, wheat in the following autumn, corn in the spring followed by wheat and later, clover. Then begin again with peas.

This account of the work at the Elm Creek watershed with headquarters at Temple, Tex., is the third in a series of articles on the progress of various Texas soil-erosion projects. Some phases of the work discussed are terracing, strip cropping, crop rotations, and cover crops.

Characteristics and methods of improving sandy soils are discussed. "In order to conserve soil humus and reduce the cost of operation, sandy soils should be kept compact and should be plowed and tilled as little as is consistent with good seed bed and proper weed control." Rotations of legumes, such as alfalfa and clover, and the use of green manure and cover crops are recommended to maintain humus and nitrogen content of the soil and to reduce the loss of plant food by leaching.

The advantages of rotation include control of pests and diseases. The physical condition of the soil is improved. Rotation increases the soil's nitrogen content and checks soil erosion.
HALE, O. A. (3572)

"Recent erosion research shows the most important reason cotton cultivation has depleted the soil... Several trials show that continuous cotton culture resulted in an average annual loss of 29 tons of top soil per acre while corn (the next most erosive crop studied) cultivation resulted in an annual loss of 13 tons of top soil per acre." Recommendation is made for planting winter legumes.

HANEY, J. G. (3573)
The writer describes soil-erosion control by systematic farming practices. Descriptions are given of the right implements essential for such conservation methods, including the plow, the "combine" plow seeder, the rod weeder, disk harrow, lister, subcutlers, packers, wide-space furrow opener, and manure and straw spreaders. "Every farmer must study his soil, and adopt a method of farming—crop rotation—machinery, etc., suitable to the character of his land."

HAREBO, I. (3574)
A method controlling soil blowing on a Montana dry farm is described by the farmer who proved it successful. The land was divided into 10-acre strips and divided into alternate strips of crop and fallow by north and south. His method of summer fallowing is described. He says that strip farming is useless unless neighbors cooperate.

HARRISON, W. H. (3575)
DON'T BURN REFUSE OR DRY VEGETATION. Rural New-Yorker 95: 467. May 16, 1936.
Discusses value of turning under all grass, weeds, cornstalks, etc., for soil enrichment and describes method of making compost heap of manure and forest soil.

HIGGINS, F. L. (3576)
Points out the value of sweetclover for pasture and soil improvement. "Experiments... show that the plowing under of six inches of sweet clover is equivalent to an application of 15 tons of manure per acre."

HOLDEN, J. A. (3577)
Experiments over an 11-year period are described, with principles and advantages of crop rotation together with cash returns per crop and rotation.

HOPKINS, E. S., PALMFR, A. E., AND CHEPIL, W. S. (3578)
Contains discussions of treatment of stubble land and various soil types, soil drifting, weed and insect control, crop rotation in relation to soil drifting, and machinery for the control of drifting soil. Among control measures recommended are strip farming, summer fallow, and cover crops.

KEARN, W. (3579)
Illustrates how the Peacock system of soil moisture conservation proved successful on a Colorado farm. "Under the Peacock system the land always is ready for precipitation, always protected against blowing."

KERLE, W. D. (3580)
The losses caused by fallow erosion and means of prevention are discussed. "There can be no doubt that one of the main contributing factors to soil erosion is forest denudation." The value of judicious cultivation...
such as grass cover and contour plowing, is considered as are also the effect of the humus content and rotation as a means of soil improvement. The author concludes: “It will be recognized . . . that the problem of soil erosion on our fallows is one that cannot be remedied in a day, but only by a gradual process of maintaining and increasing the organic matter within the soil, and the adoption of common-sense methods of tillage.”

The problem of soil erosion in California suggests the planting of quick-growing cover crops and terracing. “There is a system of irrigation furrow construction which is exceedingly valuable for erosion control. When this system of furrowing is combined with a cover crop, protection to the orchard soil with considerable slope is almost complete. The furrowing system referred to is the so-called ‘furrow basin’ system of set-up. Briefly, it consists of a series of deep furrows put in on a contour. Across these furrows, by use of a special machine, field ditches are constructed and connections made between the bisected contour furrows resulting in a complete ‘zig-zag’ between the field ditches.”

KING, J. A. SAVING THE SOIL FROM WASHING. Farm Engin. 5: 8. September 1917.

The writer describes this as “a lesson learned from my cornfield after a June freshet.” The need for rotation cover crops is stressed and certain differences in soil washing are explained.

“A good plant cover such as small-grain stubble, corn stalks, sorghum stubble or alternate strips of grain or sorghum stubble and row crops, is perhaps the most effective means of preventing soil drifting.” Contour listing and terracing are advocated.

Recommends and describes as control measures terracing, contour farming, and erosion-resisting crops.

“. . . the moisture problem in the rolling plains [of Texas] is not so much one of insufficient precipitation as it is lack of those farming methods and practices developed specifically to ensure efficient utilization of the greatest possible amount of annual rainfall.” Discusses practical methods to achieve this objective.

“A well planned cropping system will contribute greatly toward maintenance of soil fertility.” The results of long continued experiments with different cropping systems by the Ohio Agricultural Experiment Station and the University of Missouri are discussed. Strip cropping, contour farming, and permanent pasture are advocated.

A broad schematic plan is presented, indicating the general relationships between cropping systems and the grade and slope of the land. “It is well known that different crops vary widely in their influence upon erosion losses. Generally speaking, the clean tilled crops are less effective in controlling losses and the sod crops most effective” Results of erosion measurements with recommendations for erosion control are given.
Miller, M. F., and Krusekopf, H. H. (3588)
Describes an investigation covering a 14-year period, the object of which was to determine the influence of different systems of cropping and cultural treatment on surface run-off and soil erosion. The investigation was carried out on a poor quality of Shelby loam having an average grade of 3.68 percent.

Moerdyk, J. L. (3589)
Mentions early beginnings of the crop-rotation system and its use by the Romans. The author quotes from Varro who lived 2,000 years ago: "Certain crops are sown not so much for the yield obtained from them, but because they improve the soil." Advantages of crop rotations are stressed, and experiments on various government stations are described with their results.

New Hampshire University, Extension Service. (3590)
This circular outlines the program for orchardists giving advice on top dressing sods and reseeding of run-out sods.

Newman, J. S. (3591)
"It has been estimated that eighty percent of the injury to the cultivated soils of the cotton states on the effect of tillage, is attributable to surface washing." Clean culture, leaving the land to washing and leaching, and hillside ditches are responsible for the impoverishment. Instructions for terrace building are given. Restoration of fertility by sowing peas and crimson clover, turning under of green crops, and crop rotations are among the measures recommended for renovating worn soils.

Newport, Fred C. (3592)
This article deals with contour furrowing with particular reference to High Plains range lands. He says "furrowing is beneficial, regardless of the time of year it is done . . . spring furrowing nevertheless gives the grass its greatest opportunity to become quickly established."

Osborn, W. M. (3593)
The soils in southwestern Oklahoma differ widely in structure and composition, and erosion is a significant problem on most farms. This bulletin presents practical information on rotation and tillage experiments with a view to better control measures.

Parrison, R. H. (3594)
Profitable Crop Rotations Include Many Legumes. Purdue Agr. 29: 61, 62. April 1933.
"The establishment of rotations containing legumes will increase the available supply of organic matter, improve soil tilth, structure, and retentiveness, reduce production costs per unit, distribute man and horse labor, and increase production per acre." Discusses rotations suitable to Indiana.

Pittman, D. W. (3595)
This circular discusses some of the more important cropping systems with their adaptations and limitations, advantages, and disadvantages.

"The rotation and tillage experiments here reported were conducted at the U. S. San Antonio Field Station, located in south-central Texas. The soil where these experiments were conducted, is a heavy black clay loam... The detailed yields are given for each plot for each year."

REASON, R. S.

In contour farming in Greer County, Okla., it is considered most satisfactory to lay off rows to follow the nearest terrace, putting all short rows midway between the terraces. This reduces wind erosion.

ROE, W. A.

"The damage done to the land through erosion by this heavy rain was directly related to the vegetation which covered any given field on that date. The summer fallow land eroded to plow sole but did not generally go below that line. Individual fields containing several hundred acres unquestionably lost, as much as 2 inches of soil from their entire acreage." But all observations pointed to one fact, namely, "that vegetative growth is a most effective control of soil washing and of run-off moisture losses." No soil losses were found in fields covered with growing vegetation.

"The greatest loss of soil through both water and wind erosion occurs on fields from which the stubble has been burned. If any real progress is made under the Agricultural Conservation program, it will be necessary to stop the burning of straw, stubble, and crop residues, and incorporate them into the soil."

ROGERS, R. H., AND ELLIOT, F. F.

An outline and description of 13 type-of-farming areas, together with a discussion of important factors that have determined the type of farming conducted in each area, constitutes part of this publication. Special tabulations of census data make possible a specific analysis of present farming systems. "Soil type has not been the dominant factor in determining the types of farming in South Dakota, but it unquestionably has an influence in each area. The supply of organic matter in the soil is steadily decreasing under the usual systems of farming; and there is an increasing tendency of soils to drift in high winds during dry periods. This tendency to erosion by wind and water may be overcome by plowing under a sufficient amount of organic matter."

ROSA, J. T.

"The effect of irrigation and of mulching on yields of tomatoes, peppers, eggplants, and cucumbers are shown. Increased yields from irrigation are thought to justify the use in Missouri of overhead irrigation for intensive cultivation of valuable crops... The effects of the mulch are attributed to reduction of soil temperature and decrease in fluctuations of the soil moisture content."

RUSSELL, E. J., AND VOELCKER, J. A.

Partial contents: The Continuous Growth of Wheat on the Same Land, pp. 26-44; The Continuous Growth of Barley on the Same Land, pp. 45-54; Green Manuring and Green Cropping, pp. 55-63; Grass and Other Fodder Crops, pp. 64-77; Soil Deterioration Under Conditions of Continuous Cropping, pp. 236-260; The Uncertainty of Green Manures, pp. 302-305.
Russell, J. C. (3603)
To offset run-off losses the author recommends contour farming and various tillage practices. The use of windbreaks is also suggested.

Ruzicka, C. H. (3604)
"Experiments in crop rotations and tillage methods, in cooperation with the Office of Dry Land Agriculture, U. S. D. A., since 1909 gave evidence that crops in a rotation, including corn or a cultivated crop, are more economical than continuous or haphazard cropping. Grains on fallow do not give large enough returns over yields after corn to warrant fallow, except as an emergency or temporary measure. Small grains after small grains of a different kind have given satisfactory yields in the rotations..."—Expt. Sta. Rec. 48: 226. 1923.

S., R. E. (3605)
The author discusses loss of vegetative cover through erosion and offers suggestions for crop rotations on farmlands and the broad flat terrace type of cultivation for slopes.

Schoff Mayer, V. H. (3606)
Experiments show that the application of moisture conserving practices to the cotton problem of the southwestern part of the United States increases crop yields.

Severance, Geo., Hunter, Byron, and Eke, Paul A. (3007)
Preseius different cropping systems, especially applied to those portions of the wheat area of eastern Washington and northern Idaho where the average annual precipitation exceeds 18 inches. The comparative merits of the systems are shown in tabular form. One section is devoted to crop and livestock farming.

Sexton, H. D., and Diskeker, E. G. (3608)
Results of erosion control conducted at the Alabama Agricultural Experiment Station have shown that terracing alone will not control erosion during those months while the land is occupied by cultivated crops. "In this paper are reported the results of some preliminary studies on the use of strip-cropping for erosion control, a method of running rows to avoid an excessive number of short rows, and the use of machinery on hillside land."

Sinclair, J. D. (3609)
"Preventive measures such as terracing, use of cover crops, and deep cultivation may be very effective in checking erosion on slopes up to 10 or 15 percent. On steeper slopes and on areas subject to severe washing or on land already in gullies, a stable vegetative cover is necessary. A good grass sod or covering of vines may be sufficient, but trees are one of the most effective means of preventing or controlling soil movement." The author particularly stresses the value of black locust.

Soule, A. M. (3610)
PREVENTING SOIL WASHING. South. Agr. 34: 1, illus. December 1, 1904.
The author, in outlining the causes of soil washing recommends (1) a deep and thorough cultivation to prevent washing and to increase the storage capacity for water, (2) the planting of leguminous crops, and (3) the planting of a cover crop.
The author, a farmer in Pondera County, Mont., tells how he controlled soil blowing on an 80-acre dry-land summer-fallow field by strip cropping with sod, grain, and summer tillage.

In discussing conditions on the South Atlantic coast, Spillman recommends the use of terracing to control erosion on hillsides. Agricultural conditions in Alabama and Mississippi are described by M. A. Crosby, who concludes: "It is apparent to all who are familiar with southern conditions that if the depletion and the washing away of the soil on southern farms is to be checked, a system of farming must be put into practice which will increase the organic content of the soil. As has been stated, this may be done either by a system of crop rotation involving the use of leguminous plants and green manures or by feeding a large portion of the crops on the farm and returning them to the soil in the form of animal manures."

The authors discuss soil texture and structure, plant food elements, methods for soil maintenance, soil moisture, and special soil problems. Among erosion-control practices strip farming, contour farming, and terracing are stressed.

"Increasing seriousness of the loss of soil from wind and water erosion has caused many wheat farmers of the Pacific Northwest to adopt 'straw farming' methods. Straw farming means careful preservation of the crop residue, straw and stubble, turning it down so as to leave it on or near the surface, adding organic matter to the soil, increasing moisture holding capacity and in substantial measure preventing the soil from washing or blowing... The approved 1937 fashion in summer fallow for the Pacific Northwest is trashy fallow. It is as free from weeds as the old style fallow, but it is by no means free of 'trash.'"

"The success of new seedlings will depend upon the conservation of the moisture left in the soil after small grain harvest and the retention of any rainfall that comes during the summer. Disking wheat or rye stubble soon after harvest contributes to this end by establishing a soil mulch which retards evaporation and, if rain fails, prevents run-off and favors its absorption by the soil."

A description of contour and strip farming on rolling farm lands in Carroll County, Ill., "Liming, alfalfa, and terracing on washing lands go far toward holding the soil."

A discussion on terracing, contour farming, and pasture management. Data are given on various types of tillage implements including the basin attachment for the lister.

"Our farmers see the advantage of making a temporary sacrifice in favor of a good soil-building program."
UNITED STATES SOIL CONSERVATION SERVICE. (3619)
The author tells how farmers are using vegetation to control erosion, describing conservation work in New Jersey, Maryland, Ohio, Illinois, Minnesota, North Dakota, Wyoming, Washington, Idaho, Kansas, and Oklahoma.

VINALL, H. N. (3620)
Indus. Cir. 50, 23 pp., Illus. 1911.
This circular reports investigations consisting of cooperative experiments and a study of successful farming practices for the benefit of settlers filing claims after the passage of the Kinkaid homestead law. Location, topography, and climate of sand-hill areas, native vegetation, and crop limitation are among the subjects treated. Recommendations for suitable crops for this section are made.

WEIR, WILBERT W. (3621)
The purpose of this bulletin is to emphasize the value of crop rotation in farming economy and to stress the principles of rotation in their relation to the maintenance of soil productivity and to soil improvement. Important data are given.

WIMER, D. C, AND HARLAND, M. B. (3622)
The principal and greatest value of corn cultivation on brown silt loam is the destruction of weeds. “Since cultivation is the only practical method of controlling weeds, the depth and frequency of corn cultivation should be determined by their depth. Proper cultivation should kill the weeds with minimum injury to the corn roots...” The data and brief discussions presented in this bulletin are intended to be of assistance in developing the principles underlying the successful cultivation of corn and are not intended as recommendations of specific methods or particular implements.”

WOOD, I. D. (3623)
“It is my opinion that future developments in the field of moisture conservation, so far as the agricultural engineer is concerned, will come with the further development of the terrace and of contour farming.” The author describes a machine in the experimental stage capable of digging 10,000 holes per acre, each having a capacity of 3 gallons.

“By a properly designed system of terraces, combined with contour farming, soil and moisture losses can be reduced to a minimum. The land owner who would follow a careful rotation system on land farmed in this manner should be able to maintain a high state of fertility and conserve enough moisture to guarantee much higher yields than is ordinarily obtained on such land.”

ZINN, W. D. (3625)
“The farmer who is not applying lime and commercial fertilizer is the one with whom these government officials should spend their time, but let me say confidentially that I consider it a reflection on our profession that the government should consider it necessary to give us this information.” Various soil-building crops are recommended.

Crop rotation as practiced by George Washington is reviewed along with a brief history of his farming practices and land acquisition.
VEGETATION IN GENERAL

ANONYMOUS. (3627)

“Centipede sod is a prostrate grass and knits into a firm sod that is well tied to the soil with a heavy fibrous root system” and has been found of value at the S. C. S. demonstration project at Graceville, Fla.

DALLIS GRASS. Reedy Creek Farm Coop. 3: 11. January 1936. [Mimeographed.]

Dallis grass, a native of South America, is being tried out in West Virginia in the hope that it may prove of practical value for erosion control and other purposes.

Seed mixtures to check erosion are recommended and their merits discussed. The recommendations are the result of studies conducted at the soil erosion project in Whitman and Latah Counties, Wash.

HUBAM CLOVER FOR EROSION CONTROL. Farm and Ranch 56: 24, illus. March 1, 1937.

Hubam clover planted on strips has been found to give “the soil a loose honeycomb effect which encourages aeration of the soil and is especially desirable from a moisture absorption standpoint.”

INTRODUCTION OF PLANTS TO PREVENT SOIL EROSION. Science 82: 344. October 11, 1935.

“Since the spring of 1934 the Department of Agriculture has had three groups of plant collectors in Asia gathering seeds of grasses and other plants which might some day protect the Great Plains against the effects of drought and erosion.” Preliminary observations and results from testing these seeds are given.

KOREAN LESPEDEZA. Reedy Creek Farm Coop. 3: 10-11. January 1936. [Mimeographed.]

A discussion of the legume, Korean lespedeza, as a valuable crop for erosion control, pasture, and rotation. The article includes directions for the care of seed and planting.

Discusses kudzu cultivation, yield, and value for erosion control in gullies and on steep slopes.

Figures are given which indicate that “kudzu would be profitable on thousands of farms” because of its value as a feed and soil-improvement crop.

Gives detailed directions on meadow strips, pointing out advantages of this type of outlet over outlet channels fortified with concrete spreaders.

This annual clover, also called Shaftel, is used as a forage and as a soil-improving crop in northern India and in parts of Persia. It was first introduced in Louisiana about 1924.
Anonymous.

Plants called "weeds" often are soil builders. Fert. Rev. 11: 7. April-May-June 1936.

Weeds play an important part in increasing yields by improving soils, on idle land or where they do not compete directly with a crop for moisture and fertility. Weeds, in some instances, are found to be soil builders and savers.

"Plant explorers of the U. S. Department of Agriculture are now making an intensified search at home and abroad for plants that will help to control soil erosion." Parties will visit the Union of Soviet Socialist Republics and Japan, and others will search the western half of the United States. A party will also visit Russian Turkestan, Persia, and Afghanistan to look for soil-holding plants which show possibilities for the southwestern part of the United States.

"Though not so effective as a ground cover plant more use can be made of bush plants than trees in the checking of soil erosion... It remains then to arrive at an arrangement of planting which will be most effective in checking erosion and to choose the most suitable plant for the purpose... The best way to make use of bush plants for this purpose is to plant them in thick contour hedges... Such hedges are frequently planted above drains and roads and undoubtedly help in checking erosion... The considerable litter of leaves shed by some bush plants... is of assistance in checking erosion."

Soybeans can encourage erosion. (Editorial.) Farm and Ranch 55: S. May 15, 1936.

This editorial states that soybeans must be planted in contour rows to prevent washing of the land during heavy rains. "Soybeans do improve soil fertility, especially if the vine is plowed under..."

The writer describes operations at the southwestern stations, under the Division of Plant Exploration and Introduction, United States Bureau of Plant Industry, to supply seeds and nursery plants for revegetating eroded lands. Among the most satisfactory soil binders used are the karroo bush, African watermelons, Asiatic and Australian grasses, and Russian mulberry. "The American barberry, buffalo berry, and wild plum are to be planted far and wide over the Navajo Reservation, as will a certain kind of oak tree that produces a small acorn which is eatable without leaching out the tannin. Forage and food plants are secondary, but important. Preference will be given, of course, to those that are soil binders as well as edible for man and beast."

Vegetation suited to the conditions existing where slopes require protection is advocated. This consists of transferred sod, vines, myrtle, and dwarf species of shrubbery.

Vegetation is to the soil what skin is to the body. Better Crops with Plant Food 20: 34. March 1936.

The writer quotes from an interview with H. H. Bennett: "Some of the steeper and more erosive land must be in trees or grass. These crops anchor the soil. Like the skin on our bodies they protect the earth from the disease of erosion."
ON SOIL EROSION IN IOWA. SUGGESTS, AS A PRELIMINARY CONTROL MEASURE, A CROPPING SYSTEM IN WHICH CORN PLANTINGS ARE DECREASED, AND LEGUMES AND HAY INCREASED.

ADAMS, R. L.
COST FINDING FOR NURSERYMEN. Amer. Nurserymen 64: 5. October 1, 1936.

PROCEDURE FOR DETERMINING COSTS IN THE NURSERY, AND PURPOSE WHEN ESTABLISHED, OUTLINED BEFORE CALIFORNIA CONVENTION OF THE AMERICAN ASSOCIATION OF NURSERYMEN.

AIKMAN, J. M.

"THE PURPOSE OF THIS PAPER IS TO REPORT THE RESULTS OF A SERIES OF OBSERVATIONS MADE UPON A NUMBER OF SITES REPREsentING STAGES IN PLANT SUCCESSION, TO DETERMINE THE EXTENT OF CHANGES INDUCED BY THE PLANTS WHICH MAY BE EFFECTIVE IN PREVENTING EROSION." HABITAT CHANGES INDUCED BY THE DEVELOPMENT OF VEGETATION, WHICH MAY BE CONSIDERED MOST IMPORTANT IN THE PREVENTION OF EROSION, WERE INVESTIGATED.

ALEXANDER, E. D.

"CRIMSON CLOVER CAN BE UTILIZED IN MANY WAYS. ITS FIRST AND GREATEST VALUE IS ITS USE AS A SOIL CONSERVATION AND IMPROVEMENT CROP."

AUSTIN, WAYNE.

ON THE USE OF A CRANK DUSTER FOR SEEDING NATIVE GRASSES IN COLORADO.

BAILEY, R. Y.
HEAVY DUTY VEGETATION FOR EROSION CONTROL. Soil Conserv. 3: 42, 46, illus. August 1937.

RECOMMENDS THE USE OF PERENNIAL GRASSES AND LESPEDEZA SERICEA, ALFALFA, AND KUDZU. BERMUDA GRASS IS SUGGESTED FOR USE IN PRIMARY CHANNELS WHERE THE VOLUME AND VELOCITY OF THE WATER REQUIRE THE GREATEST VEGETATIVE PROTECTION.

KUDZU FOR EROSION CONTROL. The Land, Today and Tomorrow 2: 15-18, illus. March 1935.

"KUDZU IS PROBABLY THE MOST USEFUL PLANT FOR EROSION CONTROL IN THE PIEDMONT SECTION OF THE SOUTHEAST. THIS PLANT IS A PERENNIAL Viny legume WHICH GROWS VIGOROUSLY ON PRACTICALLY ALL TYPES OF SOIL FOUND IN THE PIEDMONT SECTION . . ." DIRECTIONS FOR PLANTING ARE GIVEN BRIEFLY.

BARTON, L. V.

PRESENTS RESULTS OF A STUDY ON THE EFFECT OF STORAGE ON THE GERMINATION TEMPERATURE REQUIRED BY SEEDS OF SOME WINTER ANNUALS. "IN THE PRESENT STUDY WE ARE ESPECIALLY CONCERNED WITH WINTER ANNUALS . . . SUCH WINTER ANNUALS ARE CHARACTERISTIC OF SOUTHERN ARIZONA AND EXTEND INTO MEXICO. SOME OF THE MORE IMPORTANT ONES, AMONG WHICH ARE PLANTAGO FASCIATA, LESQUERELLA GORDONII, AND LEPIDIUM LASTOCARPUM, OFTEN FORM A DENSE COVER AND ARE VALUABLE FOR SPRING GRAZING."

LITERATURE CITED AT END OF ARTICLE.

BEEGLE, M. N.

DIRECTIONS ARE GIVEN FOR ESTABLISHING BUFFALO GRASS PASTURES BY TRANSPLANTATION. "IN REGIONS WHERE SOIL BLOWING MAY OCCUR, SODS MAY BE PLANTED IN FURROWS, AND ROWS MAY BE SPACED WIDE ENOUGH APART FOR PLANTING SUDAN GRASS BETWEEN THEM. THIS WILL PROTECT THE SODS FROM COVERAGE OR FROM
blowing out not only during the growing season, but afterward if the grass or a high stubble is left in the field.

BENNETT, H. H.

"Erosion control practices on Soil Conservation areas in eastern Texas were about 95 percent effective in withstanding the impact of the heavy spring rains. The demonstrations clearly indicate the value of a coordinated program and moisture program." Results of soil- and water-loss measurements are given which show that fields planted to Bermuda grass were least damaged.

"This paper is not primarily concerned with the effects of normal or natural erosion, except as a basis for comparison. It pertains to changed physical, chemical, and biologic conditions resulting from abnormal erosion, the accelerated soil washing following man's activities, his free use of ax and plow and the overcrowding of livestock upon open ranges." The writer states that "this paper undertakes to emphasize . . . profound erosion produced alterations in the vegetative aspects of the land. The subject can not be covered in detail at this time; its importance as a geographic, edaphic, and economic problem only can be stressed here." Data accumulated at the various regional soil erosion experiment stations and results of soil surveys and erosion surveys are given with tables and diagrams.

"Data secured by the Bureau of Chemistry and Soils from various sources are summarized, showing that vegetation in the form of forest or in thick grasslike growth is an inexpensive, permanent cure for erosion. In one form or another it can be used on all kinds of land, on any degree of slope, and under all varieties of climate where there is heat and rain enough to make plants grow."—Expt. Sta. Rec. 72: 111. 1935.

BLAIR, E. C.

Legumes to improve the various soils included in 500,000 acres of North Carolina to be retired under the agricultural adjustment program are suggested. The best fertilization and soil inoculation methods are discussed, and a table is included pointing out varieties, dates for planting, and seeding rates per acre.

BOSMAN, F. H.

A paper read at the field husbandry conference at Potchefstroom dealing with water as it affects plant growth, in the light of certain experiments being conducted at the Groofontein School of Agriculture. The rates of transportation in relation to plant growth is an important factor in the interpretation of the results obtained.

BOSS, ANDREW

The author suggests various combinations of grasses and legumes, in an effort to be helpful to those who take advantage of the new soil program which, in effect, places a premium on good farming.

BREITHAUPT, L. R.

"This bulletin discusses the production of small grains on nonirrigated lands in central and southeastern Oregon at elevations between 4,000 and 5,000 feet . . . [and] gives general information, based partly upon experiments at the Harney Branch Experiment Station at Burns, Oregon."
BRESSMAN, E. N.
(Misc. Publication 312, U. S. Dept. of Agriculture)
Brome grass is drought-resistant, palatable, nourishing. "This discussion concerns the species commonly known as smooth brome grass, Bromus inermis, sometimes known as Hungarian brome grass... It must be kept in mind that today the chief value of brome is for pasturage rather than hay."

BUCHANAN, C. B.
"Owing to climatic and soil conditions, the Pacific Northwest, and especially the Willamette Valley of Oregon, is very favorably adapted to the growing of seed of the various vetches, Austrian winter peas and rye grasses for the use of Southern farmers. Owing to these conditions the western Oregon district has become a large source of domestic supply of these seeds. The Cotton Belt of the South has found that the use of these crops as winter cover crops for putting humus and nitrogen into the soil and for the prevention of soil erosion is a very desirable and profitable practice."

BUETOW, W. C.
"Different kinds of soil require a certain kind of grass or a combination of several kinds." Advice is given on this subject.

BULLOCK, D. M.
The writer claims that as a soil binder Atriplex semibaccata is particularly efficient. Because of its salt content and succulence it is slow burning. It has been planted by the California Forest Experiment Station as a cover on firebreaks where invasion of the annual grasses constitutes a serious fire hazard during the dry season. Illustrations show coastal and ravine locations of A. semibaccata.

BUTLER, E.
The author enumerates and discusses the many legumes, native and imported, which can be profitably planted in the United States for crops and soil building.

C., W. Jr.
The author recommends a definite, carefully planned rotation of crops as one of the safest and most economical methods of insuring the continuance of high production and of controlling erosion. This should include planting of legumes or other permanent hay or pasture crops to be followed by cultivated and drilled crops. Such a rotation builds up the soil, controls weeds, and furnishes sufficient organic reserves which act as a check to the tearing away of the soil by erosion.

CALL, L. E.
The only crops that are well adapted to the unirrigated section of the southern Plains are wheat and sorghums. The latter afford excellent protection to the soil during the winter and spring months when blowing occurs. "If industrial uses could be found for a part of this potential grain sorghum production, it would aid in bringing into more rapid use those practices that are essential for the control of soil blowing." Not examined.
CARBES, ERNEST.
VEGETATIVE CONTROL IN SOIL CONSERVATION.
August 1936.
Discusses studies completed and studies in progress by the Soil Conservation Service and cooperating agencies in soil mapping, indicating slope, degree of erosion, and soil type, on each farm acre, together with present use of the land, for determination of required planting projects for erosion control. The author presents, in detail, results of experiments to determine value of lespedeza in soil conservation and land improvement; and to determine yield of cotton following lespedeza as compared with cotton following cotton.

CARRIER, LYMAN.
GRASS IN SOIL EROSION CONTROL.
This paper stresses the advantages of sod cover to control erosion. Grasses useful in controlling erosion are listed as bluegrass, Kentucky bluegrass, Canada bluegrass, orchard grass, timothy, ryegrass, and western range grass.

CARTER, JOHNSON, JR.
CROP PRODUCTION IN NORTHEASTERN NEW MEXICO UNDER SEVERE SOIL-BLOWING CONDITIONS.
The author divides crops into two groups: (1) those from which a crop of grain or forage may reasonably be expected to be harvested; and (2) those from which only protection to the soil against wind erosion is expected. “The surest dry-farming crops for the section under discussion are the sorghums.” Sudan grass is recommended for forage.

CARTER, W. T.
PLANT SPECIES ADAPTED TO THE SOUTHERN PRAIRIES AND GREAT PLAINS.
A brief outline of the major plant communities and the important native species of the various southern prairies and plains soil groups. A sketch map of plant species is included.

CATES, J. S.
AMERICA GOES TO GRASS.
The growth and development of experiment with the 25 new winter annual legumes of the clover family brought in from the Near East and the Union of Soviet Socialist Republics by Westover and Enlow, with special reference to Persian clover which is rapidly becoming established in the lower South, is sketched. Experiments with Korean lespedeza (No. 19604) to determine its value as a soil-building legume in the Corn Belt are outlined. Mention is made of the work of the section of agronomy, Soil Conservation Service, in developing new strains of grasses suitable for erosion control in the western part of the United States.

BUILDING THE TEMPLE.
Research in grasses. Explains why better grasses are needed for better agriculture and for better protection against erosion. Native and foreign grasses are listed.

GRASS BREEDING IN WALES.
A description of a visit to Wales and of the grass-breeding work at the Institute of Plant Breeding at Aberystwyth. No new species of grass are involved in the successful breeding operations but “the grasses, new strains of which are giving the amazing results I have outlined, are merely common everyday things like orchard grass, ryegrass, redtop, timothy, white clover, and a few other species, all well known on American farms.” For the real foundation of a pasture these workers depend on one of their special strains of white clover. “The second big conclusion from this advanced work . . . is that perennial ryegrass represents a species of greater promise than any other of the many grass kinds . . .”

The developing and fitting together of a group of new-type crop plants into a new system of agriculture is explained. The system, designed and developed by Etheridge and Helm of the Missouri State University, was "built in the main around Korean lespedeza as what might be called the key crop." This system "keeps the land always covered with a mat of plant growth and so eliminates erosion; stops it dead in its tracks, in fact."

"This is a tale of new grasses of great promise—grasses from widely scattered lands ... It became apparent to all that under clean tillage with a minimum of sod—and in many vast areas no sod at all—the soil was washing down to the sea. Studies of the problem soon made it plain that our only salvation lay in a vastly increased acreage of sod crops."

An account of *Lespedeza servica*, native to eastern Asia, and a new crop plant of the forage group which "offers to banish poor land in a substantial area of America." It is pointed out that the Soil Conservation Service seeded 50,000 pounds of *L. servica* last year on badly eroded areas. Experiments at the west Tennessee station at Jackson are referred to particularly.

C'HEERA, ALBERT.

Discusses the methods used by soil conservationists in Italy and states that dams are generally inadequate unless augmented by vegetative covering and other erosion-control practices. A brief description is given of the construction of wattles or fascinas (brush dams).

Comment on vegetative control in Italy.

CLEMENTS, FREDERICO E.

This bulletin is in two parts. In part I, entitled "The Nature and Role of Plant Succession," the intimate connection between erosion and plant life is shown. In part II, entitled "Application to Human Needs," it is shown that plant communities as indicators furnish the most satisfactory method of determining the best use of the land. The control of watersheds in the fight against erosion and flood is stressed. Various control works in Colorado and California are described and illustrated.

CLOYER, E. U.

"The erosional valley of the Rio Grande begins at Peñitas and extends through Zapata County. Numerous arroyos drain this part of the area, and the rough, broken region where they join the river is known as the 'Breaks of the Rio Grande,'" The writer's survey of the vegetation of the Lower Rio Grande Valley is based upon field studies "extending over most of the four seasons ... The Rio Grande Valley is of much interest botanically because plants representing western desert, northern, coastal, and tropical floras are found in a relatively small area."

"This area includes the sandy beach, sand dunes (medanos), salt flats (badilla salitrosa) and the salt grass region known as the sacahuistal."
Beach and sand dune (shifting and permanent dunes) vegetation is listed, and the relations of edaphic factors and geological formations to plant distribution are discussed. A great number and variety of species collected in the lower Rio Grande Valley are listed.

COLPEN, M. G.

"Jasminum Beesianum has promise of becoming a good, medium-low ground cover plant, which can be used for holding banks. It is quite hardy in Maryland, and the branches root heavily wherever a joint touches the ground."

CONARD, HENRY S.

"If erosion does not begin, it will not proceed. Only on this basis can such small plants as the mosses be considered as agents in the arrest of soil erosion... That they do function very extensively in checking primary sheet erosion is perfectly obvious." In his summary the writer states that mosses prevent erosion by catching the run-off water and suspended soil, and by matting the soil together and covering it so that it does not move; that this is accomplished by the mat of protonema, rhizoids, and stems; that valuable moss cover is delicate and must be protected; and that the cultivation of mosses is practiced on Long Island, and suggestions are made for choice of species and procedures according to ecological needs and conditions. A table of significant moss species for Iowa is given.

Accompanied by bibliography.

CRIDER, F. J.

The author states that one phase of work of the soil conservation nursery program consists in "finding and bringing into use new plants which have outstanding value for the purpose in view—a constant flow of suitable plants to supply the needs of the project areas." Plants from the Orient and South African grass have proved useful as cover for the American desert and it is pointed out that "the practice of producing seed of native grasses under cultivation... favors good yields and purer seed."

DANIEL, H. A.

"Soybeans as a whole made a very poor yield of both hay and grain and should not be recommended for the semi-arid country. However, the highest yielding hay-producing varieties were Laredo, Pinedell, and Old Dominion. Tepary beans were found to be the surest and most profitable legume hay crop for the Panhandle of Oklahoma, cowpeas second, mung beans third and soybeans fourth."

DAVIS, CHESTER.

"Originally, of course, ours was a land of grass and forest, a continent of fertile soil. That grass and forest receded before the plow is a natural development." The writer discusses the historic trend away from grass and the actual reversal of that trend back toward sound farming practices. "With the continued encouragement furnished by the adjustment programs as an enabling instrument in support of the teachings of the Land-Grant Colleges much can be done... to protect for our farmers and our consumers the fertility of the soil..." The A. A. A. program is reviewed.

The author says that a review of agricultural history in the United States reveals a constant surrender of grass to cultivated crops. The new agricultural adjustment contracts make it more profitable for farmers to increase the acreage that is devoted to soil building and constructive..."
uses; pastures in place of too much crop-growing will help to conserve and improve what is already here and will provide an assurance of continued soil fertility.

Davis, P. O.

Success with fall-seeded Austrian winter peas and hairy vetch on Alabama soils as nitrogen-gathering crops is described by the writer. He also mentions the value of crimson clover for its reseeding habits.

Dickey, P. B., and Blair, T. B.

The authors discuss the vegetative control program of the California-Nevada region.

Dillman, A. C.

Describes experimental work conducted in South Dakota for determining what grass or combination of grasses will best establish a satisfactory sod in areas left bare by the construction of canals and ditches. Recommendations are made for the use of bromegrass, western wheatgrass, and alfalfa.

Eagles, L. D.

Planting materials used in soil conservation. Soil Conserv. 2: 152. January 1937.

A table shows the kinds, amounts, and principal uses of seed and other materials purchased through the nursery section of the Soil Conservation Service from July to November 1936.

Easterday, A. M.

Weed terraces. Soil Conserv. 3: 45–46, Illus. August 1937.

A description of the use of tumbleweeds, Sudan grass, millet, and corn on the Mansker demonstration project near Clayton, N. Mex.

Edwards, D. C.

Contains descriptions of experiments connected with high-moisture low-temperature areas, intermediate areas, and comparatively low-moisture areas, for the determination of herbage suitable for pasture conservation and intensive grazing in Kenya.

Enlow, C. R.

Gives information concerning some of the plant introductions resulting from the distribution of seed secured from Turkestan, Turkey, and China.

Etheridge, W. C., and Helm, C. A.

"Because of its dense and well rooted growth, lespedeza is highly efficient in the control of soil erosion. It is the key crop in a series of new rotations which are highly productive in terms of annual output per acre and efficient in soil conservation . . . The rapid extension of this new crop is one of the most remarkable developments in Missouri farm history . . ."

Fain, J. R.

Legumes and manure improve soil. South. Agr. 66: 10. September 1936.

Notes results of studies to determine soil improvement by legume plantings in Georgia soils.
FENNER, OLEN L.
(3698)
PERMANENT MEADOW BUFFER STRIPS.
Farm and Ranch 56: 7, 14. illus.
August 1, 1937.
The author points out the need of supporting terraces with strips of
close-growing crops and emphasizes little bluestem for this purpose. He
claims that on some fields permanent meadow-buffer strips can be used
instead of terraces which practice greatly reduces erosion-control costs and
entirely eliminates the cost of maintenance.

FLEMING, B. P., AND WHITFIELD, C. J.
(3699)
POSSIBILITIES OF VEGETATIVE RESTORATION ON THE GILA.
The Land, Today and
Tomorrow 2: 15-17, illus. April 1935.
The author describes the Gila watershed in southeastern Arizona and
southwestern New Mexico as “one of the most savage and melancholy spec-
tacles of man-induced erosion in the United States…” and discusses the
work of the Soil Erosion Service at the Gila project.

FLETCHER, F. F.
(3700)
SERICEA IN SOUTHWEST VIRGINIA.
Information on how to seed and cut Lespedeza sericea is given. Also
what an acre of sericea will pay, and its seed value in hay.

FLORY, EVAN L.
(3701)
SITTING DID NOT DISCOURAGE THIS PLANT.
Soil Conserv. 2: 103, illus. March
1937.
The hardiness and ability of sacaton (Sporobolus wrightii) to survive
under unfavorable conditions is described.

FRENCH, A. L.
(3702)
SODS SAVE THE HILLS.
The author blames the wasteful cropping system in the South for the
loss of good soil in the hill sections. “Soil conservation is by far the biggest
problem before the Southern people.” A successful way is “to cover the
lands with sod and fill the topsoil full of close-growing grass and clover
roots.”

FULLER, GUY C.
(3703)
A CLOSE-UP OF BUFFALO GRASS, NATIVE OF THE GREAT PLAINS.
Soil Conserv. 2:
The writer declares that “buffalo grass, native to the Great Plains, meets
all the requirements for erosion control. Once established, it is better than
any other native grass throughout the range of its adaptation … it is
persistent and will survive under extreme conditions and rough treatment.”

MACHINERY THAT FACILITATES THE HARVESTING OF GRASS SEED.
Describes various mechanical devices for harvesting grasses of the Great
Plains and similar areas.

FULSB, JESS L.
(3705)
BLUE GRAMA GRASS FOR EROSION CONTROL AND RANGE RESEEDING IN THE GREAT
PLAINS AND A METHOD OF OBTAINING SEED IN LARGE LOTS.
Cir. 402, 8 pp., illus. July 1936.
“There is a distinct need for more drought-resistant, palatable, strong-
rooted, long-lived range and pasture grasses than are now commercially
available. These are needed especially for certain over-grazed and eroding
areas of the Great Plains, the Southwest, and the Rocky Mountain
States…” Special attention is given to harvesting and threshing trials
in Soil Conservation Service projects in North Platte, and O’Neill, Nebr.

GARRARD, H. L.
(3706)
REPLACE PLANT FOOD LOSSES IN CROPS.
Better Crops With Plant Food 21:
Discussion of legumes with respect to soil conservation and fertility.
GERNERT, W. B. (3707)

Gives detailed description of a study of material supplied by a virgin grass-clipping project carried on at the Oklahoma Agricultural Experiment Station during the past 6 years and deals with a special study of 12 of the 96 plots in comparison with an idle roadside and a pastured area.

GORDON, R. B. (3708)

Eight major types or alliances of primary plant communities are recognized. These types can be further subdivided to include 25 or more primary plant associations and at least 5 relict associations which will be met with in the field.

[HANSEN, N. E.] (3709)

Plants introduced into the prairie regions of the United States from Asiatic countries are discussed by Hansen, with special emphasis on crested wheat and chee grass from the eastern part of the Union of Soviet Socialist Republics and Siberia. Many varieties of forages, grains, legumes and fruits, introduced by him, should be tested in the interests of soil conservation.

HATCII, HENRY. (3710)

Should We All "Go to Grass?” Kans. Farmer 74: 9. June 20, 1936.

Crop conditions in Kansas with reference to pasture increase and soil conservation are discussed. The author refers to the low annual money return to the acre from bluestem grass. He questions whether this transfer of so much land to grass "will not work us into an over-balance of grass acreage" and create a new problem in the effort to solve another.

HELM, C. A. (3711)

"Winter barley promises to effect a new cropping practice in Missouri. . . . On many farms it will replace wheat now grown mainly for its value in soil erosion control and as an agency for establishing meadows in regular crop rotation. It is superior to wheat as a fall pasture, as a nurse crop for clover and grass, and equal to wheat as a cover crop Barley sown early after the removal of soybeans for hay is a better soil erosion control crop than wheat, which on account of danger from Hessian fly infestation, cannot safely be planted until later. Thus the soybean (hay)-barley succession will remove the general objection that unrestricted production of soybeans leads to severe soil erosion."

HENDRICKSON, B. H. (3712)

"This short discussion centers around the use of erosion resistant crops on erodible croplands in the South. These eroding croplands are the 'sore spot' in the soil conservation problem. . . . Characteristics of resistant crops are discussed in detail. The article is the result of soil-erosion studies conducted at the agricultural experiment station at Tyler, Tex.

HENDRY, G. W. (3713)

An attempt is made to assemble for the first time some of the scattered references to early plant introduction in the United States. "In the following lists the names of some 147 species and varieties of alien cultivated plants. . . . have been arranged into five groups: field crops, fruit and nut crops, truck crops, herb and medicinal crops, and ornamental plants."

HENKEL, J. S. (3714)

The author endeavors to describe the vegetative covering and how it is affected by water supply over 150,000 square miles. Some of the results
noted are of practical importance to South Africa. It has been shown that, with rest from human interference, the primal conditions tend to become restored. Evergreen trees are listed as well as other drought- and fire-resistant trees. The distribution of vegetation is summarized in a table.

HILL, R. (3715)
A brief description of Ehrharta villosa variety maxima (South African pyg grass), and its value as a soil binder. One year's growth of an underground runner is sometimes 14 feet.

HITCHCOCK, A. S. (3716)
A revision by Agnes Chase of the bulletin first issued in March 1920. "The present bulletin describes all the genera of grasses that include species that are native, have been introduced, or are cultivated in the United States. It is intended to give under each genus the botanical information concerning all our grasses that are conspicuous enough to have attracted the attention of agriculturists."

HOLBING, S. J. (3719)
A description of the habits and uses of a valuable tree of the Southwest is given. "The Supreme Court of the Territory in 1896 decided that this hardy pioneer of the desert [the mesquite] was not 'timber', in the meaning of the United States Statutes, and was not entitled to the protection afforded by the public timber laws." The author cites controversies waged over this "persistent representative of the vegetable kingdom; but the Mesquite has continued to flourish despite drouth, failure of appropriation for irrigation, and in the face of adverse judicial decisions."

HOOD, GEORGE W. (3720)
The author tells how to use vegetation in highway maintenance.

HOPKINS, C. B., AND READHIME, J. E. (3721)
Reclamation measures for acid lands "so sour that legume crops, especially clover and alfalfa, cannot be grown successfully", are summarized. The authors advocate ground limestone for soil deficiency. "... if they would grow well, marked improvement could be made by clover-alfalfa, cowpeas, or other legumes, provided the crop or the manure made from it is plowed under."

HORTON, S. A. (3722)
The value of Sudan grass, native bluegrass, and a seeded mixture of sweetclover, alsike and medium red clover, and timothy, for rich pasture for hogs and cattle, as used in rotation on a farm in Nicollet County, Minn., is discussed and illustrated.

HOWARD, I. M. (3723)
CHANGES ON THE OLD CHISHOLM TRAIL. Amer. Cattle Prod. 18: 3-5, illus. June 1936.
Describes experiments with native grasses for reclamation of territory bordering the Chisholm Trail in Texas, Oklahoma, and Kansas, carried out
at regional soil conservation nurseries at Stillwater, Okla. Grasses used in experiments are little bluestem, big bluestem, side-oats grama, western wheat grass, Indian, blue grama, buffalo, and switchgrass; experiments show that mixtures of big and little bluestem, blue grama, and western wheatgrass prove most successful in control of erosion and conservation of moisture.

Howard, J. M.
At the soil conservation nurseries located near Stillwater, Okla., more than 250 species of native grasses and 50 introduced grasses have been studied. Among the best native grasses studied are the blue-stems, blue grama, buffalo, switchgrass, Indian, western wheatgrass, and side-oats grama.

Erosion-control demonstrations on various Soil Conservation Service projects are reviewed with reference to strip cropping, particularly. Mention is made of the method used at the Duck Creek project at Lindale, Tex., called "base-line stripping." Suitable grasses for pasture ridges and gully control are suggested.

Hunter, E. W.
"Sweet clover fills the vital need for a pasture crop between the time cattle are removed from wheat fields and before native grass has renewed growth. Its drouth resistance . . . its value as a pasture and hay crop . . . the effect it has on soil through addition of organic matter and improved tilth, the cover it affords—all are multiplied in greater or less degree under Plains conditions . . . Specific procedure with reasonable assurance of high percentage of success has resulted from the experimentation at Hays, Kans."

Imperial Bureau of Plant Genetics.
This is a general review of investigations and research into the character of soil erosion and methods of control as set up by the Soil Conservation Service, with special emphasis on the vegetation factor as exemplified by the crops and pastures grown on eroded lands in the United States. Treats the following phases of the subject in some detail: Comparative losses from erosion, organic matter, strip cropping, gully control, crop rotations, pastures and grasslands, semiarid plains, indigenous grass species, and introduced plant species.

International Congress of Botany.
The following papers were among those read at this Congress: Interactions Between Roots and Soils; Interactions Between Plants, by E. J. Russell, volume 2, pages 1-3; The Biotic Factor and the Instability of Grassland Associations, by R. G. Stapledon, volume 2, pages 8-10; The Weed Flora In Its Relation to Crop and Agricultural Treatment, volume 2, pages 5-7.

Detailed information on methods of planting and harvesting. Uses include pasture on former grain and range lands, rotation crop with wheat, hay crops on dry or partly irrigated land, erosion control, planting on burned-over forest land.

Jardine, J. T.
The author discusses the importance of less intensive land-use practice and stresses the value of wider utilization for pasture, meadows, and forests.
JARNACIN, M. P. (3731)

"Since man has been cultivating the soil, plant-food has been washed out twenty-one times faster than the plants have used it in the production of crops. Grass is the surest means of protecting land under cultivation from erosion. Aside from economy, grass is a natural food for all classes of farm animals." A table shows the pounds of soil lost per acre by erosion on a Georgia University farm from 1933 to 1936.

KABANOV, N. E. (3732)

Bibliography on the vegetation and soil cover of the Soviet Far East for the last decade. Not examined.

KRAEBEL, C. J., AND PILLSBURY, A. F. (3733)

Willow planting is regarded as one of the quickest and surest ways of securing vegetative protection. Specific directions for planting willows in mountain meadows are given.

KRAMER, J., AND WEAVER, J. E. (3734)

Results of studies on the rate of erosion of soil protected by roots and tops as compared with similar soil free from living plants are discussed. Experiments with field, pasture, garden crops, weeds, buckbrush, and native grasses are described.

KRIEGBAUM, HILLIER. (3735)

Discusses values of various grasses, as buffalo grass, Aristida Pennata, wild alfalfa, western wheatgrass, big bluestem, little bluestem and blue grama, in reclamation of dust bowl soils, with special reference to difficulties of seed collection and efforts of Soil Conservation Service workers to collect large amounts of seed for planting.

LAIDLAW, A. F. (3736)

On the value of soil-holding vegetation on a farm near Winona, Minn.

LAMSON-SCHEIDEN, F. (3737)

It recommends and discusses several species of grass for binding sand and soil. It embraces two classes—the sand binders of the seashore and inland sand binders. The adaptability of each grass to a stated locality is given considerable attention.

"The purpose of this paper . . . is not to deal with the final holdings of the sands by forest trees or other means used in the work of sand binding, but to call attention to the various grasses which have been used for fixing shifting sands and which may be classed as sand binders." The particular region to which each grass is best suited is given. The article deals with grass species under two classes, e. g., those most adaptable to coastal regions, and those best fitted for inland conditions.
LARSEN, J. A. (3739)

"The purpose in this paper is to set forth certain changes which are taking place in the vegetative cover on severely eroded and abandoned farm land in southeastern Ohio. This land had been used for livestock, farming . . . and passed out of cultivation twenty-five years ago." The present vegetative communities on this farm are shown in a map and tables. The forest and forest borders are described, and the root habit of various plants and trees are shown in graphs. In his summary the writer states: "Where cultivation and grazing have been discontinued the natural vegetation reclaims the depleted areas at a very encouraging rate, tending to rebuild the eroding soil."

LISTER, P. B., and SCHUMACHER, F. X. (3740)

"It is the purpose of this paper to report the method and results of an investigation into the responses of three important forage grasses to variations in the amount and distribution of seasonal moisture supply on areas from which grazing animals had been excluded. These areas are on the Santa Rita experimental range of the Southwestern Forest and Range Experiment Station in southern Arizona."

LOWDERMILK, W. C. (3741)

"The nature of interrelations between vegetation and soil erosion has been disclosed by experimental studies, which have been in progress for nearly two decades." Results of experiments at various experimental stations between erosion and run-off from the natural forest plots and the cultivated plots are compared. Graphs indicating the effect of various types of crops, crop rotations, and plowing in of cover crops are given. "Until American agriculture can afford to level terrace its sloping lands, as did the Incas, certain limitations and rededication to use seem to be necessary. If soil wastage is to be curtailed and water conservation is to be effected."

McCOWN, CRAYTON. (3743)

McELROY, J. J. (3744)

Crested wheatgrass has proved to be a good drought-resisting grass in Campbell County, Wyo.

McGINNIS, B. W. (3745)

UTILIZATION OF CROP RESIDUES TO REDUCE WIND EROSION. The Land, Today and Tomorrow 2: 12-14, illus. April 1935.

An account of the work of the soil-erosion control project at Dalhart, Tex. The author recommends the maintenance of sufficient vegetation to check wind erosion and discusses the comparative merits of different crops.
MACPHERSON, A. (3746)

“This article discusses the value and use of several leguminous plants, including alfalfa, as soil binders in the reclamation of sandy lands in New Zealand and presents a report on the experimental plantings of alfalfa for this purpose.”—Expt Sta. Rec. 28: 230. 1913.

McPherson, D. L. (3747)
A GREAT NITROGEN SOIL BUILDER. Rice News 3 : 6. August 1936.

As a nitrogen producer, *Crotalaria spectabilis* is superior to the cowpea or soybean. It is most beneficial to alluvial and sandy soils. First introduced by the United States Bureau of Plant Industry from Africa in 1918 and sent to the Florida Experiment Station.

MADDOX, R. S. (3748)
PROGRESS IN RECLAMING WASTE LANDS IN WEST TENNESSEE. Resources of Tenn. 6 : 217-224, illus. October 1916.

The author investigated west Tennessee wastelands and tells of his experiences. The efforts of local farmers in combating erosion and gullying are described. Black locust, Bermuda grass, honeysuckle, and walnut trees were especially favored for ground cover. The author also observes that data on the effectiveness of Kudzu and Himalaya vines were not available as they were still in the experimental stage.

MAGYAR, PAUL. (3749)
THE PHYTO-SOCIOLOGICAL BASES FOR THE FORESTATION OF SANDY AREAS. Erdészeti Kísérletek 35 (3) : 199-227. 1933. [In Magyar mimeographed translation in U. S. Forest Serv., Div. Silvics, Transl. 158, 23 pp. 1934.]

The author discusses plant communities of importance from the standpoint of plant ecology and silviculture. Data are chosen which represent, as much as possible, the rolling, treeless sand expanses, as well as the higher dune types. “We have, therefore, studied all variations in topography of the dunes, basing our inquiries on the poorest, friable, light yellow or gray sand hills, passing from these to the firmer dark-colored soils rich in nutrients.”

MASON, A. J. (3750)
IS OUR CORN SOIL DOOMED? Farm Jour. 51 : 34, 40. March 1927.

The author discusses physiographic elements which influence soil conditions. “Not forests, but well-grassed sod surfaces are the real creators and preservers of our vegetable mould.” He explains the part angleworms take in the formation of vegetable mould.

METZGER, J. E. (3751)
WINTER BARLEY. South. Planter 97 : 4, 13. September 1936.

The importance of new bearded but barbless winter barley bred at the Maryland Agricultural Experiment Station, not only for crop rotation but also for feeding purposes, is pointed out.

MILLER, E. C. (3752)

This paper reviews the extent of root systems, including methods for their isolation; the relation of the weight of roots to the aerial portion of the plant; and the influence of moisture, fertilizers, and oxygen on root growth and development. Literature cited, pages 150-154.

MILLER, E. E. (3753)
GRASS ON THE SOUTHEASTERN HILLS. Country Gent. 81: 740. April 1 1916.

“The whole southeastern cotton country must have a great many pasture fields before soil waste is stopped and soil enrichment is really begun.” Examples of quick and economical methods for putting cotton land into grass are given.
MILLER, H. A.
1934.

"It would be difficult to estimate the value of the common lespedeza... as a soil-holding plant. In a number of instances, Korean seeded on badly eroded hillside pastures has completely stopped soil washing in 2 to 3 years." Considerable data are given on planting and cropping systems.

MORAN, C.
WIND DEFYING GRASSES. U. S. GOVERNMENT SCOUTS SEARCH WORLD FOR PLANTS THAT HAVE CONQUERED AN UNFAVORABLE ENVIRONMENT AND FIND VARIETIES THAT PROMISE SUBSTANTIAL AID TO PRAIRIE STATES FARMERS. Capper's Farmer 47: 18, 79, illus. March 1936.

Describes exotic plants from many countries, with notes on experimental plantings in the Plains. "In Turkey, plant explorers found a desert grass that may be uprooted by the wind but which grabs hold again when it lands... the Government has imported from the Orient nearly 4,000 distinct strains of soybeans..." The saltbush of Central Australia, valued for its drought-resisting qualities, is described.

MUSGRAVE, M. E.
DURING THE SICK LAND. Farm and Ranch 54: 1, 3, illus. November 1, 1935.

"... there are in the United States at present millions of acres of sick land—land, which because of one or a dozen reasons, is no longer able to function properly, to produce a healthy vegetative crop. This vegetation may be farm crops, or it may be the natural plant growth suitable for range lands, such as grass or palatable browse plants for grazing animals. The latter type of land with a discussion of its illnesses and what we believe to be some cures, forms the subject of this article."

NEEL, L. R.

Through the orderly use of land, J. T. Laten, a farmer of Lincoln County, Tenn., is "handling the ever-troublesome erosion problem and is producing a number of crops to put on the market all through the year." The article stresses the value of lespedeza.

NORMANN, O. K.

"Recent studies by the United States Department of Agriculture have shown that for each climatic or soil condition there is a type of desirable vegetation that requires little or no encouragement to grow and that will prevent soil erosion equally as well as undesirable varieties do. The pioneering annual or early ruderal types of vegetation are usually most valuable as temporary forerunners of more permanent plants that are desirable as ground-cover protection. Weeds give way to more desirable vegetation on roadsides where proper maintenance methods are practiced."

OLIVER, FRANCIS W., AND SALISBURY, E. J.

"We propose in the present article to consider in some detail the circumstances of establishment and maintenance of a vegetation on an intermittently active beach—employing suada fruticosa as our type—and, further, to consider the effect of the presence of plants upon the landward movement of the shingle. Finally, in the light of our observations, an attempt is made to deduce the probable results that may be expected to follow the systematic planting or afforestation of mobile beaches."

OSBORN, BEN, AND WHITTAKER, H. L.

Calls attention to possible correlation between natural plant communities and the degree of erosion, both before and after disturbance. "W. E.
Booth found that in Cleveland county, Okla., the greatest degree of erosion had occurred in the Oak-Hickory and Oak-Bluestem communities; while the least erosion was found in Bluestem-Drop seed.

PAMMELL, L. H. (3761)

"Quack grass has been recommended as a soil binder for railroad embankments. As to the matter of protecting gullies or washouts in fields, there is no better grass than quack grass." Western wheatgrass and sandgrass are recommended to control sand dunes.

PHELANEO, J. F. (3762)

"It is the purpose of this paper to present a usable key to some important range grasses of the West based on vegetative characters."

PENNSYLVANIA DEPARTMENT OF FORESTS AND WATERS. (3763)

Description is given of methods of machine seeding, root pruning, growing seedlings without the use of shade, use of aluminum sulphate for controlling damping-off, and of pruning black locust seedlings while still in the seedbed. The author explains the use of chaff in establishing seed spots and believes this method of seeding offers considerable promise for interplanting and erosion-control work.

PIETEES, A. J. (3764)

"Lespedeza is a lifesaver for a land in need . . . This is not an article on erosion, but we can't overlook the fact that . . . landowners will have to realize the fact that land turned out and lying bare is washing away just as much as land in corn or cotton . . ."

PIPER, C. V. (3765)

"This . . . bulletin is designed to enable farmers and others to become familiar with the most important and most common grasses of the United States. Each grass is illustrated and agronomic and botanical information concerning it is given . . ."

POTT, G. (3766)

"A tall, close Anthistiria-grass veld, such as is still today, despite a somewhat reduced rainfall, the natural climax vegetation over large areas of the Free State, exhibits few of the troubles we associate with drought. The bulk of the rain is held by the dense mat of grass and gradually absorbed by the soil . . ." The effect on Anthistiria-veld of burning, heavy grazing, and severe drought is described. These have the effect of "putting back the succession". Erosion on thin, open country and in the eastern part of the Free State, and the responsibility of man are discussed. An experiment on the effect of trees and other vegetation on soil erosion and associated evils is outlined.

PROBST, A. H. (3767)
PLACING ANNUAL LEGUMES IN CORN BELT ROTATIONS. Purdue Agr. 31: 5, 13, illus. October 1936.

Recommends and discusses the value of soybeans, cowpeas, lespedeza, crimson clover, and Hubam clover for catch crops, emergency crops, crops used to displace a nonlegume crop in some standard rotation, and crops used to displace a legume of another sort in the rotation.
Improvements are pointed out in the 1937 program in the recognition of two general types of farming—diversion and nondiversion, and the greater emphasis placed on soil-building practices. Crop classifications under the 1937 program are soil-depleting, soil-conserving, and neutral crops. "Soil-depleting crops are generally those which lower soil fertility. Soil-conserving crops are those which do not necessarily add plant food to the soil, but tend to hold the soil in place" Neutral crops are listed as perennials, such as orchards, vineyards, idle cropland, and nursery stock.

Discusses the problem of the fixation, utilization, and conservation of a sufficient supply of nitrogen in the soil and shows why such a supply is necessary to the maintenance of a vigorous ground cover to prevent soil erosion.

"A grass, to be a 'sand-binder', must be, first, a perennial, and must have the habit either of sending out creeping stems below the ground, from which the aerial shoots come up, or of sending out runners above the surface of the ground, or both." Marram, or beach grass, Canada bluegrass, hard, red, sheep's fescue, slender fescue, and lime grass are described. "In connection with the grasses, it is desirable, as soon as possible, to start legume plants of species which will endure hard conditions."

This contribution gives the results of studies in erosion control conducted at the agricultural experiment station at Pullman, Wash.

The author describes experimental work with S. townsendi in North Somerset (England) in an effort to establish the grass on the extensive mud flats of the River Severn as a means of protection against erosion from the high spring tides and winter storms. The plant is said to give considerable promise for the future."—Expt. Sta. Rec. 40: 530. 1919.

Advocates "a sod mulch system, including manure and nitrogenous fertilizer ..." for the control of erosion in uncultivated orchards. Discusses the merits of hairy vetch, rye, cowpeas, and soybeans in cultivated orchards.

The present work represents the first attempt to treat in a single volume the more important native forage plants embraced in the natural pasture...
types of this country . . . It is designed for the use of the stockman-farmer and for students of general agriculture, forestry, and applied botany, but primarily for those who wish to pursue grazing work as a specialty . . . Among the most valuable features of the book are its numerous lifelike illustrations depicting the characteristics of the different forage species, nearly all of these illustrations being original." Chapter III, Environment of Range and Pasture Plants and Forces That Influence Them (Applied Plant Ecology).

"In the central and southern Great Plains hardy native grasses, particularly Buffalo grass and blue grama are the best adapted species for controlling wind and water erosion and renewing the pasture value of formerly cultivated land." A résumé of data from all locations is given in tabular form showing species of native grasses identified during regional surveys.

The author cites the advantages of buffalo grass in controlling run-off and erosion on terraced and unturrened slopes because of its root-spreading tendencies on eroded land as well as in fertile soil. "Native buffalo grass is the only grass adapted to the Great Plains area that may be used successfully for pastures, athletic fields, golf courses, lawns, and general landscaping purposes."

SHANZT, H. L. (3779) Farm Your Land to Keep it. That's the Motto of the Hoffmans, in Whose Farm This Fertile Farm Has Been Since 1740. N. J. Farm and Garden 8: 5, illus. May 1937.

Soil erosion has been conquered by placing a layer of sod in the first marks of gullies, thereby providing a "catch" for the valuable soil that starts washing away. As the sod becomes covered, the grass grows through and forms a second barrier to the run-away soil. One or two seasons of this simple, yet effective practice completely fills the ditch.

A description of the native plains vegetation as related to climate. The region considered lies between the Rocky Mountains on the west and the ninety-seventh degree of west longitude on the east. On the north it extends to the Canadian boundary and on the south to near the Mexican boundary. Plant communities are arranged according to their value to the land.

"The need of a constant and sufficient . . . supply of water for crop plants, and the manifest influence of plants themselves on this supply through their effect on surface currents of air, have led to various attempts to regulate this moisture supply; and the mechanical effect of surface waters
on erosion and during floods, has invited various measures for their control."

The importance of the plant ecologist in all problems involving water supply, drainage, irrigation, and erosion is stressed.

Shreve, Forrest.

"Biennial measurements were made for two years to secure evidence through bench marks as to the magnitude and chronology of the vegetational changes."—Expt. Sta. Rec. 53: 823. 1925.

Sinclair, J. D., and Sampson, A. W.

"This investigation was initiated for the purpose of studying the behavior of several activities upon areas where the soil profile had been disturbed in varying degrees." The procedure and results obtained are discussed with the aid of tables. The results are divided into (1) rate of growth, (2) extent of plant development, (3) time of seed maturity, (4) water requirements, and (5) the effect of naturally and artificially packed soils.

Spence, L. E.

An intensive study of the range-erosion problem, under the direction of the Intermountain Forest and Range Experiment Station "reveals the fact that the erosion is largely the result of the replacement of fibrous-rooted plants by those having taproots and semitaproots, and that it can be controlled effectively by reestablishing the original grass species or similar fibrous-rooted plants."

Stanford, J. E.

The soil-building program in Coahoma County, Miss., is discussed. The Mammoix soybean is considered a valuable legume.

Staples, R. R.

Discusses forest cover, deciduous scrub type of vegetation, and grass cover with reference to efficiency in conservation of moisture in the soils of east Africa. Some tentative conclusions derived from investigations are given. "It is well to emphasize the apparent dangers of destroying both soil and water supplies by encouraging accelerated run-off through overstocking or faulty cultivation."

Stephenson, R. E.

That grass is a preserver of soil fertility is the opinion of the author, who states that "nowhere else except in the forest is soil structure so perfectly developed as under a good sod. The dead and rotting roots and the humus which they supply are food for myriad soil organisms."

Tabor, Paul.

Describes various types of lespedeza and methods of propagation in the southeastern United States. "Uncounted billions of these plants are now serving as privates in the battle against soil erosion on both agricultural and waste land." Observations were made on the Sandy Creek project, Athens, Ga.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

TENNESSEE AGRICULTURAL EXPERIMENT STATION. (3791)

"Soil erosion is of the most serious import throughout the Tennessee Valley. The most damaging erosion is that which takes place on land in row crops, such as corn, cotton, and tobacco." Experiments in erosion control are recommended, with emphasis on grasses and legumes and the development of a successful pasture type of farming.

TEEMAN, G. L. (3792)

Includes map indicating, by counties, the percentage of crop acres devoted to the production of legumes. Legumes are listed with instructions for planting.

TEAT, E. N. (3793)

An American farmer checks the ravages of soil erosion on his hillside by planting blackberries and raspberries.

UHLAND, R. E. (3794)

"The removal of the natural cover of vegetation, which for Iowa and Missouri was chiefly prairie grasses, and the disruption of the normal porosity of the soil with plows and domestic animals caused accelerated run-off of rainwater and consequent erosion." The soil erosion stations, established in cooperation with the experiment stations of the States in which they are located, and their work are described.

UNITED STATES AGRICULTURAL ADJUSTMENT ADMINISTRATION. (3795)

"In this issue of Southern Region Agricultural Conservation it is intended to present concisely the results of experiments dealing with various problems that arise in connection with the growing of winter soil-conserving crops. The organization scheme of the compilation is grouped around three heads, namely, (1) effects of winter soil-conserving crops on yields of succeeding crops; (2) tested practices in relation to yields of succeeding crops; and (3) practices used in growing winter soil-conserving crops which affect the yields of the crop. The scope of the publication is to include a digest of results of all experiments on winter soil-conserving crops published by the experiment stations within the Southern Region and nearby States from 1910 to the present time."

UNITED STATES BUREAU OF PLANT INDUSTRY. (3797)

Value of winter legumes in the South for preventing soil erosion and improving crop yields is considered.

As a result of a successful campaign, 38,927 acres in Barry County, Mo., were planted to legumes. The stands were somewhat thinned by the drought, but reports show that fully three-fourths survived and made rapid growth during September rains.

United States Soil Conservation Service.

This publication contains the progress reports from Soil Conservation nursery regions 1–11 and papers on cooperative relations between the nurseries and other sections and divisions of the Service, by F. W. Herbert, A. D. Stoosz, and B. F. Kiltz, and a paper on cooperative relations between the sections of nurseries and agronomy and range management, by A. S. Dahl. Other papers are on nursery stock and inventorying, nursery plantings, and the nursery program.

Van Dersal, W. R.

This handbook has been revised and is now in print, under the title "Native Woody Plants of the United States; Their Erosion Control and Wildlife Values." U. S. Dept. Agr. Misc. Pub. 303, 362 pp. 1938.

Van Rensburg, J. A.

"That it is possible to make the dongas [gullies] silt up at comparatively small cost, without getting the same result in the dams, has been demonstrated in a convincing manner" on a farm where the mean annual rainfall is 15 inches. A description is given and illustrated of the method used, which includes the planting of kikuyu grass, a grass of great binding power.

Von Trebra, W. H.

Discusses perennials and annuals and gives data gathered from established plots.

Waldrop, J. D.

"Where grass has been secured both on the shoulders and on the road-side slopes, a marked difference can be noted in the amount of washing, and sloughing is negligible."

Weaver, J. E., and Kramer, J.

"Plant cover, soil, and topography are the major factors concerned in the problem of erosion." Experiments with various wheatgrasses and other field crops in Nebraska for cover and soil-holding efficiency are discussed. Results with winter wheat are shown in a table.

Wells, B. W.

The author holds that the nature of the vegetation, shrubbery, trees, etc., indicate the condition of the soil. Data on vegetation types and their relation to soil conditions are given.
Table 1 lists grasses that inhabit wild pastures and abandoned fields of the Corn Belt; table 2 lists common grasses of the Corn Belt useful in erosion control.

WESTOVER, H. L.
(3808)

“Crested wheatgrass is a hardy, drought-resistant perennial bunch grass, native to the cold, dry plains of Russia and Siberia.” Its characteristics and adaptation in the northern Great Plains is discussed with advice on its cultivation.

WEYMOUTH, GEORGE.
(3809)
“GATS PASSING OUT,” THEY SAY. SOY BEANS ARE SHOULDERING THEM ASIDE IN THE ROTATION ON INDIANA FARMS. Ind. Farmer’s Guide 92: 3-4, 17 April 17, 1936.

The author points out that as a soil builder soybeans, when properly inoculated, gather nitrogen from the air and thus benefit succeeding rotational crops. Approved methods for planting, harvesting, and cultivating are presented. Illustrations show soybeans in different stages of growth.

WHITE, J. W.
(3810)

Data relative to the soil-building properties of grass in Pennsylvania are presented in an effort to “convince the most skeptical farmer that changes in his present cropping system, involving seeding down cultivated fields to permanent grass, is economically sound.”

WHITTET, J. N.
(3811)

The author contends that seed certification is of inestimable value to all concerned. He cites examples of the benefit experienced by replacing poor local strains of grass by certified strains in Australia and New Zealand.

WILKINS, P. S., AND HUGHES, H. D.
(3812)

Legumes of greatest value for different uses of soil conditions in Iowa are listed in order as: Alfalfa, medium red clover, mammoth red clover, alsike clover, white clover, biennial white and yellow sweetclovers, Hubam clover, Korean lespedeza, Dalea, and soybeans. The six grasses of greatest economic importance are Kentucky bluegrass, timothy, redtop, brome, reed canary, and orchard.

WILKINSON, H.
(3813)

A short report on tests with the seed of nine varieties of leguminous plants in the up country [Ceylon] at a height of 4,600 feet. Other tests with 12 cuttings of Napier grass, and with Oxalis are described and illustrated.

WILKINSON, W. L.
(3814)

Since its introduction in 1913 Rhodes grass has established itself as the best pasture plant for the south Texas coastal region. It is a perennial hay and pasture crop. “On shallow soils it is not especially drought-resistant, but on a deep soil underlaid with clay, it will stand more dry weather than any grass in this section . . .”
The seeds of thousands of hardy desert plants from the Union of Soviet Socialist Republics, Turkestan, and China for experimental planting in the West are being sent to six agricultural experiment stations for final study before introduction to the soil of the United States. They will be used in an attempt to control soil erosion.

Recommendations are made for controlling soil erosion with such soil-binding shrubs and vines as Japanese barberry, sumac, coralberry, Virginia creeper, and Englemann ivy.

The writer emphasizes the need for regulating high waters, i.e., excessive rain or floods, so that water may be conserved for dry seasons. The thicker the vegetative cover and the longer it remains the greater the quantity of water absorbed and conserved. Evergreen trees such as pine, etc., use the most and are the best for holding water, other trees and forage plants less so, and crops least of all.

In this general discussion on the relation of plant life and plant forms to the general welfare the author points out that plants are the great soil builders and protectors of soil from wind and water erosion.

"The realization of the serious effects which may accrue as a consequence of soil erosion has reawakened interest in cover plants and during the last few months numerous specimens of indigenous plants which might serve as such have been submitted to the Department of Agriculture for report. For the prevention of soil erosion, creeping or prostrate plants are generally to be preferred. In selecting such plants it is necessary to exercise some caution, and not to introduce a species which will obviously be difficult to eradicate if and when it is desired to get rid of it." Illustrations are given of Desmodium, triflorum, D. heterophyllum, and D. heterocarpum, all of which are nitrogen collectors.

Stresses points to be considered in choosing seed of small-grain crops to prevent soil depletion during winter rains and snow.

The author reports the results of soil-erosion investigations at the Lymangoo coffee experimental station, Moasi, East Africa, and prevention of topsoil erosion by the use of cover crops and crotalaria hedges planted on low contour buns 32 feet apart.

The story of Tom Broom, pioneer promoter of lespedeza in the South is told. No. 7 of his 10 reasons is: "It has no superior as a cover crop in preventing soil erosion during the time it has possession of the land."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

ANONYMOUS.

Recommends barley and vetch as cover crops and gives brief instructions on planting. The article is especially intended for farmers in Monterey County, Calif.

BOND, ARVIS.

Relates experiences in preventing soil blowing in Yuma County, Ariz., by leaving enough stubble on the land to prevent soil loss and to catch snow.

BROOKS, W. P.

Among other things this circular points out the benefits of green manuring and cover crops in checking soil erosion.

CHEN, F. S.

Not examined.

CLEARY, C. W., JR.

The author lists various crops and discusses their use and adaptability. Suggests the combined use of a cereal and a legume as an erosion-control measure. Barley and wheat are recommended as cover crops.

COOK, M. L.

Emphasizes the importance of forest cover and forest litter, soil-building leguminous crops, and matted grass cover to hold water and control erosion.

EUSTACE, H. J.

Discusses the value of a cover crop in an orchard or vineyard and gives brief directions for the culture of winter vetch, which the Michigan station found to be especially valuable for the purpose.

GOSS, W. L.

Plant descriptions are based on trial plantings of the various mustards offered as cover crops for California orchards. "These winter-growing plants hinder soil erosion, prevent leaching and supply vegetable matter to be turned under with the spring working of the orchard."

GRUNDER, M. S.

This bulletin indicates the beneficial effects of green-manure crops and lists crops that may be used for green manure and suggests management practices. "The growing of green manure crops is an economical method of adding organic matter to the soil."

HESTER, J. B.

Experiments as to the influence of cover crops on the yield of potatoes were made at the Virginia Truck Experiment Station, Norfolk, Va., and results given. The yield and composition of cover crops, results of fourth year of rotation, and scientific data on soil characteristics are discussed and analyzed.
HILL, H. H. (3833)
THE CONSERVATION OF PLANT NUTRIENTS BY THE USE OF RYE AS A COVER CROP.
"Rain water scouring the countryside, rushing down hillsides, gouging out gullies, and sweeping over gentle slopes of cultivated fields, carries away to the ocean many millions of tons of soil." The author describes the results of studies in the use of rye as a cover crop. He gives detailed data on experiments made in Virginia.

HUNT, R. A. (3834)
The author stresses the necessity for cover crops on tobacco land as soon as possible after removal of growing crop. He discusses the respective values of small grain, orchard grass, and legumes for this purpose.

KELL, W. V., AND McKEE, ROLAND. (3835)
Crops suitable for soil conservation and the regions to which they are adapted are discussed.

KINMAN, CHARLES F. (3836)
The author explains that up until 10 years ago cover cropping was seldom heard of and rarely practiced in Puerto Rico. "The absence of the most suitable plants to use as cover crops and the meager knowledge of promising wild plants were largely responsible for the lack of their appreciation by the farmers in former years." Leguminous crops found valuable include cowpeas, jackbeans, swordbeans, pigeonpeas, species of velvetbeans, and several wild plants. The habits of these crops and their suitability to economic conditions are discussed.

MOWHORTER, O. T., JACKMAN, E. B., AND KING, ARTHUR. (3837)
Discusses cover crops for irrigated and nonirrigated orchards, the seeding of cover crops, orchard cultivation, cover-crop aids, sod covers, fertility values in organic matter, and erosion-control methods for orchards.

MERMEL, F. G. (3838)
Equipment is described in detail with which it is possible to make several comparisons of soils and to demonstrate the effect of soil cover upon erosion: bare subsoil; bare surface soil; rape cover crop, 7 weeks old; rye and vetch cover; crimson clover cover; timothy, 7 weeks old; old bluegrass sod; section of forest floor, with regard to surface run-off.

MORGAN, J. O., AND TAYLOR, W. S. (3839)
This bulletin is comprised of questions and answers with an address by A. C. Ellis who says in part: "In addition to acquiring the general information given in the discussion below, it will be necessary to make experiments in every locality in order to find what is best suited to the soil, climate, farm needs and market facilities of that section. Each one should try out a fraction of an acre in rape, one or more legumes, cereals, and winter root crops, in order to learn the best times and methods of planting and handling these crops and to find out which are best suited to his needs."

MUSGRAVE, M. E. (3840)
even poor cover is better than none. Soil Conserv. 1: 13. March 1936.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

PENNY, C. L. (3841)

"Cover crops.—A study of various cover crops was made and the yield and composition of the portion of the crops above ground and of the roots is tabulated, together with their money valuation as green manures. Data with reference to the moisture content of the surface soil under the different crops are also given."—Expt. Sta. Rec. 15: 1063. 1903.

PERCY, G. D., Jr. (3842)

The author gives results of experiences in growing giant bur clover as winter cover crop on his farm in Tunica County, Miss. He claims that this crop "... reaches the stage for turning under about two weeks ahead of such cover crops as hairy vetch or Austrian winter peas."

POHLMAN, G. G., AND HEIDENSON, H. O. (3843)

The experiment reported was started in order to determine the value of different cover crops in increasing crop yield. Corn and soybean yields following different cover crops are presented. One of the author's conclusions follows: "(1) Rye, rye-and-vetch, and vetch increased the yield of both corn silage and soybean hay. The increase was the greatest on the plots having a cover crop of rye and vetch."

POWELL, R. A. (3844)
TOP SOIL. Capper's Farmer 47: 9, illus. November 1936.

The story of soil conservation in the Schleswig community in western Crawford County, Iowa, is told. The soil is of loessial type, subject to washing, but due to crop-rotation practices about two-thirds of the land is protected by cover nearly all the time.

PRESBITIAN, E. L. (3845)
EFFECT OF COVER CROPS ON THE SOIL SOLUTION AT DIFFERENT DEPTHS UNDER ORCHARD CONDITIONS. Hilgardia 7: 553–584. August 1933.

"In preceding reports, the data have been based on analyses from composite samples of the upper 4 feet of soil. Because many roots penetrate to greater depths, analyses have been made of the soil solution obtained to a depth of 8 feet. The present report shows the results of four composite samples of 2 feet each to a total depth of 8 feet ... In order to conserve space in the presentation data, the major results of only one season, 1930, will be reported." Nitrate content of soil solution in peach and pear series is given in tables, as are also sulphate, bicarbonate, chloride, calcium, magnesium, and potassium content. Tables show the total kilograms of fruit borne by trees in the cover-crop experiment.

RICHARDSON, T. C. (3846)
COVER CROPS MAKE MORE COTTON AND BETTER HOMES. Farm and Ranch 56: 2, 10–11. February 15, 1937.

Results of experiments at the North Louisiana Experiment Station prove the case for leguminous winter cover crops.

SALGADO, M. L. M. (3847)

"The replies to the questionnaire" sent out in Ceylon "indicate that there is a general belief, as the result of experience, that the growing of cover crops has definite advantages such as reducing the cost of weeding and maintaining a healthy appearance of the palms ... What has to be determined is whether the growing of covers bring about a definite increase in crop yield ... Field experiments that are contemplated by the Coconut Research Scheme will aim at the elucidation of these points."
SHUTT, F. T. (3848)
Comparative data as to the factors that affect the soil moisture content, obtained from the Central Experimental Farm orchard, are given. The value of legumes as orchard cover crops is stressed, and experiments with hairy vetch, soybeans, and horsebeans as cover crops are described.

THE RELATION OF "COVER" CROPS AND CULTIVATION TO SOIL MOISTURE. Canada Expt. Farms Repts. 1901: 149-152; 1902: 137-139.
Data obtained in the orchards of the experimental farm at Ottawa as to the value of cover crops followed by bare cultivation are given. Tables on rainfall, and the plan of the system and the principles underlying it are described. The investigation, continued in the second report, comprised two series of experiments. "The first was to learn the effect upon soil moisture-content (a) by cultivation throughout the entire season, (b) by cropping with clover . . . followed by ploughing and cultivation . . . and then resown with clover, and (c) by the growing of clover throughout the season. The second series was planned to ascertain the difference in moisture-content between soil cultivated throughout the season and that kept in sod."

SPRAGUE, H. B. (3850)
"The experiments reported herein were conducted to determine the relative value of various winter green manure plants . . . The following experiments were conducted with corn as the main crop, using seven types of green manures planted in standing corn . . . The sum total of these tests indicates that winter green manures, even the most productive type, are not adequate for maintenance of soil productivity over an extended period of cropping to corn."

STEPHENS, J. L. (3851)
In 32 tables, green- and dry-weight yields of various cover crops are presented. Among recommended winter legumes are Austrian Winter peas, vetches, horsebeans, serradella, lupine, Tangier peas, crimson clover, and bur-clover.

STEPHENSON, R. E. (3852)
"Oregon orchard soils need cover crops to supply humus, and for their favorable effects upon the physical condition of the soil . . . This discussion applies primarily not to those soils definitely unfit, but rather to those deeper, better suited soils, for which a change in cover crop practice may enable the grower so to conserve the moisture as to justify the expectation of a reasonable harvest."

TENNESSEE COLLEGE OF AGRICULTURE. (3853)
"Soil erosion has damaged more than 85 percent of all the land in Tennessee . . Gullies have practically destroyed 3,000,000 acres for profitable cultivation and on approximately 11,000,000 acres, sheet erosion has been so severe that from 75 to 100 percent of the top soil has been removed." Statistics on loss of plant food are presented. Benefits of terracing and specific advantages from growing winter cover crops, together with tables on what to grow, are discussed.

WAHLBERG, H. F. (3854)
Discussion of the values and reasons for the planting of cover or green-manure crops.
It is found that "rye makes an excellent cover and green manure crop, when sown on corn ground early in the fall ... because it starts quickly and grows luxuriantly both in the fall and spring. Its good growth in the spring supplies an abundance of green manure to plow under."

TILLAGE PRACTICES

Describes use in erosion-control work in the Pacific Northwest.

Thomas Jefferson's 7-year crop rotation for soil conservation is described.

It is pointed out that the basin lister checks the water run-off and obviates the necessity for contour farming on all except the more extreme slopes of the western prairies.

The merits of the basin lister attachment developed by engineers of the United States Bureau of Agricultural Engineering and Iowa State Experiment Station are discussed. "Listing is ... one of the best ways of checking wind erosion, the furrows catching and holding drifting particles of soil . . ."

"Farmers in the Big Bend Country and in other areas of the Northwest subject to blow, who have worked their land so that the trash and clods are near the surface, have succeeded in holding their soil against blowing."

A farm implement that prevents soil erosion by leaving a field in alternating hills and holes is described. "Alternating shovels work up and down with the forward motion of the plow, scooping out dirt and piling it at regular intervals. The machine leaves 10,000 such holes per acre, each having capacity of about three gallons of water."

The method of plowing recommended by the Soil Conservation Service and the Alabama Extension Service is described.
Deep plowing demonstrations in Gaines County, Tex., shows the way to better crops. The cost is not prohibitive.

Presents the advantages of such tillage as chiseling, which stirs up the soil without inverting it and without exposing the subsoil. Includes results of observations made on pea land and wheat land for several types of tillage operations.

Describes progress of wind erosion-control projects in eastern Colorado. Committees have been set up in 22 counties to direct the listing of 1,500,000 acres of land.

AHLSON, C. B.
 Recommends and describes the damming lister in contour ridging.

ANDREWS, CHESTER.
Describes equipment used in the Plains for maximum water conservation. A combination tilling, seeding, and planting machine, equipped with damming attachment, is used which leaves dams in the furrows at every tilling operation. The dams are about 2 inches higher than the ridges so that ridges must fill to capacity before any run-off can occur.

BEELER, M. N.
FLUFFY SOIL. Capper’s Farmer 47: 10, illus. 1936.
Gives cultivation methods used by Elmer Larsen, farmer in Platte County, Wyo., to conserve moisture and prevent blowing on light, fluffy soil 7 inches in depth.

The author compares three common practices for fallow, which at the most brought about moisture penetration of only 45 inches, with a more recent development of listing furrows. Examples of the latter are mentioned, some of which caused soil to be wet to a depth of 60 inches, through use of a damming lister.

BIRD, J., Jr.
The writer describes a new tillage implement that digs small depressions in the soil to hold moisture and prevent erosion.

BIRD, J. A.
This article describes the dam-listing machine which was designed and constructed at the Fort Hays, Kans., experiment station machine shop under the direction of Louis C. Aicher. It is found that “the machine provides a safeguard against run-off of water and soil no matter how the lands of a field are laid out.”

BURDICK, C. K.
Describes in detail the Aicher machine for basin listing, with directions for using. States that “on slopes, unless the work is on contour, ordinary listing carries water away instead of forcing it to soak into the ground. The damming attachment will permit straight rows on moderate slopes. We had one field which was basin listed and no water ran from 4 per cent slopes in a 2 1/2 inch rain that fell in 30 minutes.”
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BURDICK, R. T. (3875)
Tillage methods dating back to Mesopotamian husbandmen are discussed. The author offers 14 functions of tillage which have vital relation to crop production. Tillage implements and the requirements of various crops are among the points discussed.

Call, L. E., and Sewell, M. C. (3876)
The soil mulch. - Jour. Amer. Soc. Agron. 9 (2) : 49-61. 1917.
"The purpose of this paper is to review the experiments in soil mulches which have been conducted and to present certain results which do not conform to accepted teachings." Presents data which show that (1) a cultivated soil is no more effective than a bare uncultivated soil in preventing evaporation, (2) cultivation conserves soil moisture by the elimination of weeds and by preventing run-off, and (3) the development of nitrates may be as extensive without cultivation as with cultivation.

Charles, Tudor. (3877)

Chepil, W. S. (3878)
Recommends summer-fallow methods as practiced in western Canada for the control of soil drifting, moisture conservation, and effective weed control. Tillage should be conducted in such a way as to leave unbroken stubble on the surface of the ground. Gives directions for using the duck-foot cultivator for first tillage on land to be summer fallowed.

Chilcott, E. C., and Cole, J. S. (3879)
"The quite general popular belief in the efficiency of deep tillage as a means of overcoming drought or of increasing yields has little foundation in fact, but is based on misconceptions and lack of knowledge of the form and extent of the root systems of plants and of the behavior and movement of water in the soil."—Expt. Sta. Rec. 39: 812. 1918.

Cleghorne, W. S. H. (3880)
The manner in which a Cape farmer has solved the problem of soil erosion by applying a system of contour banking in badly eroded areas is described. An overflow weir and a ditcher plow are illustrated.

Clough, A. J. (3881)
Suggests tillage with an implement that will throw up clods and leave furrows to catch moisture and force it into the ground. Contour cultivation is advocated by an Adams County, Colo., farmer.

Curry, J. B. (3882)
Special orchard cultivation experiences. Hoosier Hort. 11: 139-142. September 1929.
The writer states: "I am going to confine my remarks to this particular tool that we put into operation a few years ago, known as a 'killifer'." On the point of terracing his land against soil washing the writer finds that the use of this tool may be substituted for terracing to prevent soil washing. A description of the killifer is given, with the cost.

Dehesaín, P. P. (3883)
Soil water. -Gard. Chron. [London] (3) 25 (630) : 34. 1890.
DICKEY, P. B.
(3884)
Points out the advantages of level basin terraces for water conservation, terracing combined with subsoiling, basin furrows, and basin listing. Moisture penetration through fertilized and unfertilized soils is also considered.

DRAKE, R. R.
(3885)
This paper contains comments which have particular reference to the central Great Plains area, and to wheat-growing experiments. Basin-lister tillage experiments are indicated to have shown favorable results. Presented before the soil and water conservation division at the annual meeting of the American Society of Agricultural Engineers at Estes Park, Colo., June 1936.

ESSELEN, D. J.
(3886)
The results of an experiment at the subtropical horticultural research station, Nelspruit, South Africa, comparing the rates of water lost from a sandy soil under four treatments, viz., soil mulch, straw mulch, nonmulch, and supporting a stand of weeds, are presented. Some of the fallacies and misinterpretations which have given rise to the mistaken value placed on a soil mulch as a factor in conserving soil moisture are explained.

GIANNONI, I.
(3887)
"The author has made a study of a method of terracing . . . devised to avoid as far as possible the difficulties of the system which consists in cutting the hills across by rows of vines and by ploughing transversely between the rows. With this method, since the soil is constantly being turned from above, there is a gradual terracing of the slope." Illustrations show the method in practice.

HABERT, E. A.
(3888)
"When working the land the correct machine should be used for a definite purpose." The author gives specific data regarding various implements for use in tillage and weed control. Paper read before a joint session of the Western Canadian Society of Agronomy, soils and agricultural engineering groups of the Canadian Society of Technical Agriculturalists at the University of Alberta, Edmonton, Canada, June 26, 1936.

HARPER, H. J.
(3889)
"The terracing plow is an important agricultural implement because it can be used to build terrace ridges or it can be converted into a general-purpose plow by replacing the terracing wing with a standard moldboard." Types, designs, and costs are presented in a discussion of experimental work conducted at the Oklahoma Agricultural Experiment Station.

HEAD, PHIL, AND HALLOWAY, L. E.
(3800)
WE WENT TO MEXICO TO SEE THE BOILAS. Indians at Work 4 : 10-15, illus. June 1, 1937.
"The Spanish term 'Boilas' means pocket. The water is literally run into a pocket and left there to soak into the ground, after which the ground is plowed and harrowed and well pulverized, and the seed planted. Fine corn, beans, and cotton are raised without any more water being used. If the crop is cultivated and soil kept loose, the moisture does not evaporate. The Mexican boilas system of utilization of flood waters for crop raising is a very ingenious way to make the most of a meager rainfall."
Advocates and describes underdrainage as a preliminary step to tillage in soil and water conservation.

The necessity for hillside trenching, and the great benefits to be derived from exercising proper care in this direction are stressed. The author says that leguminous cover crops are particularly useful in preventing erosion on hillsides. Trenching improves soil texture, and drained lands are warmer and therefore produce earlier.

"There is one phase of the conservation question that it seems to me has not been given the attention and prominence that it deserves, and that is subsolling or gashing, always paralleling the hillsides in any working. Why cannot we attach a digger-spring-tooth-jump spring or a break-pin tooth behind each plow or disk to gash the soil, narrow but deep as it can be run ... This would leave plenty of hard soil for plants that prefer a solid base and let the water in deep so as not to puddle and bake the surface. There would be less evaporation and conserving conditions would be better."

The author sketches studies and experiments in soil-erosion control and improvement in root-bed structure. Instructions for aerating soil are given together with a description of the implement used.

A plow that turns a 4-foot furrow is being used in southern California to restore fertile soil to the surface.

In this article the results of investigations on the determination of the relative yields of corn under treatment of deep and shallow cultivation, and studies on the changes in the water content of the soil are reported.

Describes a plow invented by Paul Plavan of California, for plowing and mixing soils with sand layers deposited by floods. Deep plowing with the machine is said to achieve control of wireworms, nematodes, and Bermuda grass.
Crop rotations and deep plowing are recommended for hilly rolling lands.

LYON, T. L. (3900)

"Subsoil plowing, although a means of conserving moisture, does not produce it, and is therefore, not a substitute for irrigation where the rainfall is too small to produce crops." The author offers suggestions concerning types of soil suitable or unsuitable to subsoil plowing.

McCALL, M. C., AND WANSER, H. M. (3901)

"The result of studies on the subject conducted in cooperation with the U. S. Department of Agriculture are summarized. It is concluded that the summer fallow system is necessary in eastern Washington dry farming because of the seasonal distribution and amount of precipitation, the purpose being to conserve moisture and to accumulate nitrate nitrogen. Climatic conditions divide the fallow period into distinct sub-periods, emphasizing either absorption or retention ..."—Expt. Sta. Rec. 52: 620. 1925.

McCROBY, S. H. (3902)

"Recommends, as a basic factor in water conservation, proper tillage practices by farmers. The control of soil erosion by terracing is also suggested as an important factor in water conservation.

McDOLE, G. R., AND BERESFORD, HOBART. (3903)

"This circular contains directions for converting a plow into a deep tillage tool by the replacement of the mold board and share with a chisel-shaped point made of an old plow beam or automobile axle." Gives the value of deep tillage under local conditions at a minimum cost. Pertinent questions are asked and answered by the authors.

MCKEE, C. (3904)

SUMMER TILLAGE IN MONTANA. Mont. Agr. Expt. Sta. Cir. 102, 4 pp. 1922.

"The province of summer tillage and the reasons for the practice are specified, preparatory treatments for land to be summer tilled are offered, with suggestions for the care of summer-tilled land after plowing, and methods of seeding crops following summer tillage are briefly outlined."—Expt. Sta. Rec. 47: 432. 1922.

MCKINNEY, GEORGE. (3905)

"Contouring and strip cropping afford three primary advantages according to Earl Brown, Fremont County, Iowa: "1. They prevent serious water erosion; 2. Force moisture into the soil where it is stored for use of crops; and 3. Conserve tractor and horse power."

MARSHALL, E. G. (3906)

"The efficiency of the old-time subsoiler is extolled. Attached to modern farm equipment it follows in the plow furrow and makes a reservoir for moisture. A detailed description of its construction is given by the author who has used it with complete success.

MOSS, B. L. (3907)

"Good terracing on hillside or rolling lands is one effective measure for the reduction of soil washing. Other aids are cover crops, both winter and summer, and deep plowing."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

MULLEN, C. W. (3908)
Western farmers are setting pattern for those in the East in erosion control. A description of successful contour farming in Texas County, Okla., and of the results of nonterracing in eastern Oklahoma.

OGARD, J. A. (3909)
SUMMER TILLAGE IMPLEMENTS. Mont. Agr. Col. Ext. Cir. 79, 43 pp., illus. 1926.
"Information relating to various types of implements used for summer tillage by many dry land farmers throughout the northwest is presented."—Expt. Sta. Rec. 56: 252. 1927.

AND MURDOCK, H. E. (3910)
CONSTRUCTION AND USE OF HOMEMADE IMPLEMENTS FOR SUMMER TILLAGE. Mont. Agr. Col. Ext. Cir. 4, 8 pp., illus. 1921.
"This circular has been prepared to answer inquiries regarding the construction and use of homemade tillage implements, designed for effective summer tillage, more especially under the dry farming conditions of Montana . . ."—Expt. Sta. Rec. 47: 293. 1922.

PARSONS, E. R. (3911)
Discusses fall plowing and winter fallowing for conservation of snow and rain moisture in Plains soils.

Recommends the duckfoot cultivator which leaves a cloddy surface increasing the porosity of the soil and minimizing run-off.

REYNOLDS, J. B. (3913)
"This is an account of observations during May, June, and July on the moisture content (at depths of 1, 2 and 3 feet) of plats, 1 rod square, on some of which the soil was kept loose and on the rest compact . . ."—Expt. Sta. Rec. 11: 625. 1899-1900.

RICHARDSON, L. S. (3914)
MACHINE DESIGNED TO MAKE FIELDS RESISTANT TO SOIL EROSION. Farm Impl. News, p. 20. July 9, 1931.
A soil-erosion specialist, R. H. Davis, invented a new tillage implement. "The new machine which is a sort of hybrid cultivator, can be used for row crops or to prepare the surface soil when the land is to be left fallow . . . It consists of a set of alternating shovels that work up and down, so that with the forward motion of the machine the shovels scoop out dirt and leave holes in the ground. The holes—10,000 of them to the acre—catch the run-off water after heavy rains and delay it until it has time to soak into the ground . . . The capacity of each hole is about 2 or 3 gallons."

RUFFIN, EDWARD. (3915)
In this article on agricultural policies and practices affecting soil fertility, the author points out the value of "judicious tillage" in soil conservation.

The writer states that he is confining himself to a sketch of the "agricultural features, condition, wants (and errors of culture,) and capabilities of the particular and peculiar agricultural region which lies between the Chesapeake Bay and Hampton Roads and Nansemond River, on the north, the ocean on the east, and Albemarle Sound on the south . . . The area designated includes some of the oldest agricultural settlements and oldest towns, and . . . some of the richest lands on our Atlantic border." Proper drain-
age is the point stressed, and the usual and general plan of draining and its radical defects is described. In the second article the writer gives examples of the effects of the true principle of drainage, in both artificial and natural operations. Some of the farming practices of the lowlands with their defects and proposed improvements are discussed, as well as rotation of crops, pea fallow, and narrow and broad-bed tillage. He further describes a system of flush plowing of land which proved entirely satisfactory to him and to E. H. Herbert, of Princess Anne County.

SANDBORN, J. W.

(3917)

Results of experiments for the purpose of testing the relation of various methods of tillage to soil moisture and crop growth are cited. "Crop tillage decreases the moisture of the area tilled, or hastens its evaporation, and economises the great reservoir of moisture beneath the area stirred. Hence, deep tillage in times of drought of surface rooted crops, like corn, is an erroneous practice . . .".

SARVIS, J. T., AND THYSSELL, J. C.

(3918)

Topography, native vegetation, and soil characteristics are among the points covered. The lack of proper agricultural practices in sections of the Great Plains is summarized.

SEVERANCE, GEORGE.

(3919)

"The control of the moisture supply is one of the most vital problems . . .". The author advocates keeping up the supply of chopped straw and stubble humus for maintaining spongellike soil conditions; loosening surface soil at the beginning of rainy seasons thus keeping a soil mulch of loose, dry, and moderately fine earth on field surfaces during the growing season. Types of field implements are discussed.

SHARP, J. A.

(3920)

An Arkansas farmer tells of his experience in controlling the kind of soil erosion in which ditches get started through open fields. Proper plowing is suggested.

SHEDD, C. K., COLLINS, E. V., AND DAVIDSON, J. B.

(3921)

The basin method of planting, developed in Iowa in 1933, is described and its utility discussed in detail. Tables and charts on the basin lister are given.

SJOGREN, O. W.

(3922)

The author states that, among other uses, the offset disk harrow works in all types of soil and handles cover crops satisfactorily. Paper was presented before the power and machinery division at the annual meeting of the American Society of Agricultural Engineers, at Estes Park, Colo., June 1936.

SMITH, R. S.

(3923)

The author states that deep plowing and subsoil experiments indicate "that these tillage methods cannot be expected materially to increase crop yields," and quotes other experiment stations which also have not found these methods superior to ordinary or medium-deep plowing.
The data presented in this bulletin should be considered as a means of comparing one method of tillage, rotation, or crop with another, rather than a basis for determining the average crop production in this region. "The results of this work to date commend the common tillage practices of the farmers throughout this region in so far as these practices are conducted in a thorough and intelligent matter." Tables show average annual production and profit or loss from different rotations, systems of cropping, and methods of tillage for 8 years. Grain yields and precipitation records are also presented in tabular form.

This bulletin contains brief articles on Subsoiling for Garden Crops, by N. E. Hansen; Subsoiling, by E. C. Chilcott; Subsoiling for Farm Crops, by E. A. Burnett, and Reports on Subsoiling. Letters from farmers on personal experiences are presented.

"The question of drouth is one which periodically engages attention, and any means by which its injurious effect may be mitigated should certainly be known to the farmer. That cultivation, by forming a loose soil upon the surface which acts as a mulch, conserves the water to the soil is a fact which is well established..." The author cites various experiments.

Breaking up the stubble after harvest is regarded by the writer as an important factor in catching winter rains. "Retain it by an equally thorough system of early spring and succeeding summer cultivation."

"This machine, which has attracted much attention, can be used both as a cultivator for row crops and as a surface-tillage implement for fallow."

Describes mechanical device developed by C. T. Peacock to conserve moisture and soil. It is used in Lincoln County, Colo.

"The outstanding results were, that early spring plowing, which is the most common method of tillage, resulted in the second highest percentage of moisture in the soil at the beginning of the crop year. Fall disking, followed by early spring plowing, produced a slightly higher moisture content. The percentage of nitrogen in grain tended to decrease as the plowing was delayed. The same tendency was noticeable from shallow to deep plowing."—Expt. Sta. Rec. 56: 506. 1927.
Weir, W. W.

Discussion over-irrigation practices resulting in all-year erosion in some California orchards and the methods used by Soil Conservation Service to control the condition. Also describes the bench terrace type of cultivation developed in steep hillside orange and avocado groves of southern California which facilitates irrigation and at the same time effectively controls erosion.

White, J. H.

THOUSANDS JOURNEY TO PEACOCK FARM. PLAINSMEN FROM FOUR STATES SEE NEW MACHINES AND DEEP WELL IRRIGATION. West. Farm Life 38: 6, 15 illus. September 1, 1936.

Relates effective work done by the damming lister invented by Charles T. Peacock, of Lincoln County, Colo. "It is not uncommon for this farmer to list and pocket-dam his summer-fallow three times before planting. ... As a result of these operations, after each rain Peacock's fields are literally filled with thousands of small ponds that hold water until it gradually soaks into the ground."

CONTOUR CULTIVATION

Anonymous.

Strip cropping has made hillside land productive in parts of Waseca County, Minn. Hillside corn yields are found almost equal to those of the lowlands.

Ballantyne, J. A.

Breger, J. T.

"The terrace is probably the outstanding example of mechanical erosion control. As soon as the benefits of contour planting become better known—both the economy in the use of horse or tractor power, and the greater conservation of soil, water and fertility—there should be a decided change in the direction of contour planting." Demonstrations on the Waynesboro, Pa., project are cited.

Bremer, M.

Systematic contour planting is urged. Methods for starting such a system are described.

Clark, M. W., and Tascher, W. R.

CONSERVING SOIL BY CONTOUR FARMING. Mo. Agr. Col. Ext. Cir. 365, 14 pp., illus. 1937.

"Contour farming may be practiced to advantage on either terraced or unterraced fields. It is an effective soil and water-conservation measure on sloping fields, especially those with deep surface soils and permeable subsoils. Crop rotations which include legumes and grasses, combined with contouring have proven effective in reducing erosion losses."
Craig, D. B. (3940)
CONTOUR PLANTING AND IRRIGATION OF ORCHARDS TO CONTROL EROSION. Utah Farmer 57: 3. March 10, 1937.

"In the distribution of water to a contour planted orchard it is necessary to have water under control at all times. For this reason, pipes or flumes are usually employed. Pipe irrigation systems are more desirable since they are buried in the ground and do not hinder cultivation operations ... Advantages of pipe line and contour irrigation furrow system are as follows:

(1) Duty of water is greater due to control of flow and avoidance of waste.
(2) Seepage losses are reduced to a minimum.
(3) Water can be run under pressure across low spots and ridges.
(4) Expense of cleaning and maintaining open ditches is eliminated.
(5) Pipe line does not interfere with cultivation operations.
(6) Erosion of top-soil is minimized by absolute control of amount of flow delivered to each furrow.
(7) Soil fertility losses due to excessive deep percolation are reduced.
(8) More uniform wetting all of ground, insuring better tree growth and larger crops."

Hookin, Carlyle. (3941)

The author describes results of experimental demonstrations in contour farming and terracing as carried out in region 7 (Kansas and Oklahoma).

"Our way of treating Mother Earth is beginning to change. We are beginning to cultivate her hillsides horizontally instead of vertically. Rows up and down are going out; rows around and around are coming in. And the big idea is to keep the bottom of each row level so the rain will be caught where it falls and there will be no wash."

Howard, I. M. (3942)

Oklahoma farmer tells how his yields increased 35 percent over a 5-year period by the use of terraces and "crooked rows." Ten-year studies of the value of terraces and contour farming at the Oklahoma Panhandle Experiment Station substantiate this claim. There in 1935 tepary beans planted on the contour on terraced land of 1-percent slope produced 542 pounds of hay per acre in comparison with a 196-pound yield on unterraced land. This was attributed to the fact that terraces double the depth of penetration. Cost of terracing High Plains land is about 77 cents an acre according to figures from the soil conservation project near Dalhart, Tex. Estimates of increased value of cultivating on the contour vary from 30 to 50 cents an acre.

Johnson, E. C. (3943)

Personal experiences of western Oklahoma farmers are cited to show the advantages of contour farming. It is pointed out that there is a difference of opinion among the farmers as to the value of contoured rows in controlling wind erosion. "Some argue that since with crooked rows parts of the rows are parallel with the path of prevailing winds, such parts suffer severe wind erosion. Others say that the moisture held by contour farming reduces blowing to a minimum even on the sections of rows parallel with the path of prevailing winds. Regardless of who is right, contour farming will continue as a permanent practice in the community because it holds the yardstick by which yields are measured—moisture."

Johnson, E. C. (3944)

Machinery and methods used for contour farming to prevent soil washing are described. "Contour farming could undoubtedly be utilized profitably in this State to a much greater extent than at present ..."
On a new method of setting orchards in Michigan. In an effort to curb erosion on their valuable fruit soils, fruit growers in Berrien County, Mich., have begun to set their peach orchards on the contour in order to save soil, humus, fertility, and moisture for the crop.

"Contour cropping, with rows of close-drilled crops and row-crops planted on the level, is doing much to control soil erosion and conserve rainfall ..."

Montgomery, G. A.

Success with contour cultivation practiced on the farm of D. J. Rundell, Norton County, Kans., since 1906 is described. "A visitor to the Rundell farm borrowed a posthole digger and went out to determine how effective contouring had been in saving top soil. On one of the steepest slopes he dug down about 10 inches. The top 9 inches was rich black loam. Leaving the Rundell farm, he drove about the neighborhood. On many farms the loam top soil was all gone from whole fields, and only the yellowish subsoil was left."

Mullen, C. W.

A description of terrace construction in Dewey County, Okla. The experience of a farmer with contour terraces and heavy rainfall is discussed, as well as the reclamation of gullies by this method.

United States Soil Conservation Service.

Figures kept by a farmer in Avoca, N. Y., show that it cost 48 cents less per acre to plow his contour strips than his square field.

von Trebera, R. L.

LABOR ADVANTAGES OF CONTOUR LISTING. Soil Conserv. 1: 5. October 1935.

Explains the advantages of working rough land on the level.

Washburn, H. L.

On the value of contour farming and a warning as to measurement. "Two men, a hand level and a 10 foot stick... can lay the contours off almost as fast as a team can plow." Cover crops, contour strip cropping, tile drainage, and terracing are all advocated to control washing.

STRIP CROPPING

Anonymous.

Research work has indicated the importance of strip farming in the Southwest.

STRIP CROPS 00 WITH CONTOURED ROWS. Farmer-Stockman 49: 5, 11, illus. April 15, 1936.

The results of strip-cropping experiments, carried on at the Guthrie soil erosion station in Logan County, Okla., with cotton, alfalfa, oats, and Sudan grass are described.

Discusses tree planting and sod stripping to supplement strip farming in areas where soil is susceptible to drifting. Not examined.
ANDBSON, C. L.
(3955)
TYPES OF STRIP FARMING USED IN MONTANA. Dakota Zephyr 2: 23-24, illus.
March-April 1936.
"For the control of wind erosion, a new term, 'strip farming'... is
used to designate straight parallel strips laid out crosswise to the prevail-
ling wind direction." Other types of strip farming are also explained in
text and by illustrations.

BABSON, ASA.
(3956)
Describes strip-cropping method for summer fallow in Platte County,
Wyo., in which strips of fallow are alternated with strips of wheat in a
cross direction with prevailing winds.

BEERLE, M. N.
(3957)
Strip cropping as practiced by farmers near La Crosse, Wis., is described,
giving the sequence of crops used in planting across slopes in a 2-year
schedule.

BENNIT, H. H.
(3958)
EROSION CONTROL BY STRIP CROPPING SAVES LAND. Tobacco Grower 2: 7, 9,
ilus. October 1933.
Reviews the findings of strip-cropping experiments conducted at various
aricultural experiment stations and recommends the use of lespedeza,
alalfa, cowpeas, and sorghum.

BUTLER, EUGENE.
(3959)
STRIP CROPS GROW IN FAVOR. Prog. Farmer (Tex. Ed.) 52: 30. February
1937.
Reports from blackland farmers indicate that better cotton yields are
obtained and that they make more money by practicing strip cropping.

CARNES, EARNEST
(3960)
STRIP-CROPPING AND ITS RELATION TO FARM TERRACING. The Land, Today and
Tomorrow. 1: 9-10. October 1934.
This article suggests a method of survey to be followed by the farmer
in planning his strip-cropping program. Data on the nature of terraces
are also presented.

CARRIE, LYMAN, AND KELL, WALTER V.
(3961)
STRIP CROPPING. U. S. Soil Conserv. Serv. SCS-TP-2, 9 pp., illus. May
1935. [Mimeographed.]
This article describes the advantages and disadvantages of strip cropping
and a modified form of strip cropping designated as "field stripping" in
erosion control. Rotation of strip crops, tillage, and cover crops is dis-
cussed, and particular attention is given to width of strips.

CHILDERS, L. E.
(3962)
BALK STRIPS CHECK SPRING EROSION. Farmer-Stockman 49: 19, illus. December
15, 1936.
Describes a unique system of strip cropping, in use at the Tyler soil
erosion station in east Texas, known as the Tyler BWS or balk water-
furrow strip-crop system.

CHINN, R. H.
(3963)
CONTOUR AND STRIP FARMING. Purdue Agr. 31: 78, 87. March 1937.
"One of the most practical means of checking soil erosion is to practice
contour and strip cropping. Such a practice prevents the damaging run-
of water during the rainy season and holds this water so that crops may
utilize it during rainy periods." Data are given on the relation of the
width of the strips to the kinds of crops used, and to topography. Terracing
in connection with strip cropping is also discussed.

DEETZ, E. B.
(3964)
THE ROLE OF STRIP-CROPPING IN EROSION CONTROL IN THE BLACKLANDS OF TEXAS.
"The erosion problem of the region is intensified by the rather unusual
physical properties of the Houston soils." Experiments with oats and cotton
strip cropping at the Temple, Tex., experiment station, are described and results given. “A system of strip-cropping will usually afford an excellent degree of protection until it is found possible to terrace the land.”

DEKKER, JACOB.

The writer, a farmer in Alberta, Canada, describes the benefits of strip farming for the rebuilding of soil productivity and tells how this should be done. “The Alberta government recently passed legislation to the effect that soil drift control is now compulsory in Alberta and strip farming is advocated as an effective measure.”

FULLER, GUY C.

Strip cropping is one of the most efficient and practical means of controlling erosion. “It is simple, flexible, economical, and widely applicable.”

GOLD, H. V.

Strip Cropping to Prevent Erosion. U. S. Dept. Agr. Leaflet 85, 6 pp., illus. 1931.

“Practical information is given on strip cropping for erosion prevention. This practice consists of planting strips of densely growing or fibrous rooted crops between strips of clean tilled crops along the contours of erosive slopes. It has been found that strip crops preserve terrace lines previously surveyed until it is possible to construct the terraces. They also reduce run-off and erosion and increase the penetration of rain water into the soil. Under certain conditions, especially where the land is gently sloping or where the rainfall is light, strip cropping may be substituted for terracing.”—Expt. Sta. Rec. 66: 875. 1932.

HAFENRICHTE, A. L., AND ROCKIE, W. A.

Reports the progress of studies conducted at the agricultural experiment station at Pullman, Wash., to obtain data on the comparative ability of perennial grasses, sweetclover strains, and alfalfa varieties to control erosion and maintain stands on clay hilltops and steep slopes.

Hale, G. A.

Instructions are given on planting and terracing.
Several forms of strip cropping are used in Region 4. The methods are mainly based upon the use of contoured dense-cropping types upon erodible cropland slopes in such a manner that the soil-trap and run-off spreading effects of resistant cropping strips may be used to obtain erosion protection. Resistant crops are also used to reduce channel scour, and for protection of terrace ridges. Various strip-cropping practices and the 2-year resistant strip rotation at the experiment station at Tyler, Tex., are described.

Stripping without terracing on gently sloping land in Payne County, Okla., with diversion ditches where needed, proves successful in checking soil losses and conserving moisture. "No more time is required for tilling the cultivated crops in strips than in straight rows . . ."

This bulletin presents the results of studies on three methods of strip cropping on steep slopes—contour, field, and wind strip cropping. The economies and advantages are cited, together with instructions as to procedure.

Strip farming and contoured rows are recommended for land that has not been terraced. A strip-farming experiment in Texas is cited: "Strips have proved their value over the years . . . Where strips of oats were planted on contours, the tendency to gully was largely dissipated . . . Where there were no strips of alfalfa, the water loss was four times increased and the [soil] loss ten times increased . . ."

Through strip cropping the farm of L. A. Zimmerman, of Madison County, N. C., was "changed from a destructive to a constructive type of farming which improves the soil each year."

Statements from several northwestern farmers on the efficacy of strip farming to control erosion are presented in this leaflet. Data on strip-farming methods are outlined.

Native grasses as soil holders against wind and water erosion, and the best species for regrassing areas are discussed in connection with the cultivation and laying out of fields to reduce soil blowing. Practical examples of strip farming in Nebraska are cited.

Strip cropping is a simple, economical, and effective soil conservation measure. The three general types of strip cropping are described—rotation strip cropping, field striping, and spreader or buffer striping. The procedure for each is given and illustrated by diagrams.
A discussion of strip farming as practiced in southern Alberta. Tells how Alfred D. Kettenback, a former American Army engineer, supervises farming practices for several Canadian farmers.

United States Extension Service.

A system of strip-farming and other soil erosion-control practices established to combat wind erosion throughout the summer-fallow area of Montana are discussed.

United States Soil Conservation Service.

When a New Jersey farmer was asked why he could cultivate his corn faster with less consumption of gasoline for his tractor, he replied that it was because he did not have to shift gears. He could run most of the time in high, thus saving both gas and time.

Wildlife Management As Related to Soil Conservation

Anonymous.

"The beaver of the Canadian woods used to be much abused for the damage it did to timber, not only for the trees it cut down, but even more for the number killed by having their roots flooded. Now it has been realized that these pools in the smaller tributaries are a great asset to a river in conserving the water in dry seasons."

This article emphasizes the need of more bird life to control the ravages of insects and briefly describes the progress of the Soil Erosion Service in reestablishing forests on a portion of the land in the Duck Creek watershed near Lindale, Tex.

Comments on remarks made by Ernest G. Holt, of the Soil Conservation Service, and F. A. Silcox, of the United States Forest Service, at the New York meeting of the American Game Conference.

Comment on the observation made by Ernest G. Holt that "thousands of fishing sites will provide less sport and yield fewer fish this year than ever before as a result of soil erosion."
NEW PASTURE POND STOCKED WITH FISH. Farm and Ranch 55: 11. September 1, 1936.

"Surrounded by 57 acres of well-grassed pasture land that has been contour ridged as recommended by the Soil Conservation Service, the 2-acre pond is well protected from siltation. Directly above it has been established a 3-acre filter basin consisting of alternate strips of closely planted buckbrush and grass." In addition to providing water for fish the pond will furnish water for livestock.

Forest carrying capacity and management, check dams in arid regions, and stream improvement as related to erosion are among the topics discussed in this report of the North American Wildlife Conference at Washington, D. C., February 3-7, 1936.

The writer describes a program of stock reduction and erosion control designed to check the gullying of overgrazed lands and to conserve and spread the water so necessary to the Indian and his sheep.

An outline of wildlife conservation projects of the Resettlement Administration, organized on a regional basis for improvement of game cover, increase of natural food supplies, game reconnaissance, predatory animal control, and improvement of ponds and streams.

At the St. Louis meeting of the American Wild Life Conference in March 1937 a permanent Wild Life Federation was formed.

The cooperative functions of the Federal agencies which are directly concerned with wildlife restoration and management are set forth.

The author discusses five inexpensive and widely applicable measures which conserve the soil and at the same time preserve wildlife. The tested measures include planting of mixed grain; soil-binding trees, shrubs, or cover crops; fencing of farm woodlands; brush piles left as cover for wildlife; and strips and borders of pine and spruce. "Wherever practical erosion-control workers interested in wildlife also discourage fence-row clearings, so that vegetative growth along fence rows will be saved for wildlife shelter and food."

Explains cooperative plan of nine States with the United States Bureau of Biological Survey for investigations to learn how to increase, maintain, and use wildlife resources, and to show on trial areas how facts found in research can be applied in a practical manner.

AITKEN, W. W.

Gradual change in the stream environment in Iowa caused by erosion has brought about a corresponding change in the fish fauna. "Wise management
and conservation of Iowa soil will be a long step toward bringing about the return of the species of fish which originally flourished in the streams of Iowa.

Beal, F. E. L.

This bulletin discusses the habitat, food habits, and general relation to agriculture of more than 50 species of birds common to farming sections.

— and **McAttee, W. L.**

Food of Some Well-Known Birds of Forest, Farm, and Garden. U. S. Dept. Agr. Farmers' Bull. 506, 33 pp., Illus. 1912. (Revised, 1922.)

"This bulletin discusses the food habits and relation to agriculture of 20 species of birds selected because of their economic importance to farmers and growers."

— **McAttee, W. L.,** and **Kalmbach, E. R.**

"From a purely practical point of view the most important of the relations of native birds to man are the economic." This bulletin is designed to show their relation to insect and other enemies of crops. "The useful kinds far outnumber the injurious, however, and so great is their value as insect destroyers in the United States that to them may be given the credit of being one of the greatest controlling factors in limiting the development of insect pests and in preventing many disastrous outbreaks." The food habits of 23 species of birds in the Southwestern States are discussed.

Bennett, H. H.

An address presented before the thirteenth annual convention of the Izaak Walton League of America, Inc., Chicago, Ill., April 12, 1935. Discusses the inception of its program which "is essentially one of better land use." The methods employed are stated as running the gamut of agronomy, biology, engineering, forestry, and geology, but the basic idea underlying all is the restoration of vegetative cover. The relation of the program to wildlife conservation is given consideration.

Bump, Gardiner.

Sets forth the three objectives of the Soil Conservation Service wildlife program as follows: (1) The avoidance, insofar as possible, of acts detrimental to wildlife; (2) the betterment of conditions for wildlife; (3) the development of an annual self-perpetuating crop of game, fur bearers, and game and fish to provide supplemental compensation to the farmer for lands retired from agricultural use in the interest of erosion control.

Discusses food and cover requirements of woodland game birds and animals and suggests strip slashing through woods, with thick brushy growth, for shelter and staple food provision for such game as ruffled grouse, gray squirrels, hares, and small deer.

Chapman, H. C.

A discussion of coordination in the specific management of forests.

Clayton, C. F.

Land-Use Planning and the Game Crop. Amer. Game Conf. Trans. 20: 97-110. 1934

The author discusses the correlation of Federal, State, and community planning for regulation of land to conform to its physical and economic characteristics. Drainage of marshes, with destruction of breeding grounds of waterfowl, deforestation, and pollution of lakes and streams are among
the factors serving indirectly to jeopardize the survival of the useful species of wildlife. The author stresses the fact that all aspects of the national recovery program are interrelated.

CONNEX, R. H.
Studies in history, economics, and public law; edited by the faculty of political science of Columbia University.
Bibliography, pages 233-246.

CORNELL UNIVERSITY ABORETUM.
Plans and policies of the arboretum, construction of which began in the summer of 1935, are presented. In the completed arboretum the United States Department of Agriculture will maintain soil-erosion experimental plots, and the New York State Conservation Commission plans to improve fishing in the Cascadilla Creek.

CROUCH, W. E.
One of the reasons for gopher control is that their burrows interfere with the proper distribution of water used in irrigation and contribute to soil erosion. Methods of control described are poisoning, trapping, flooding, fumigation, shooting, and viruses.

DACHNOWSKI-STOKES, A. P.
"Under conditions of heavy or prolonged rainfall, the absorbing and retaining capacity of an area of peat plays an important part in the storage and control of water and in mitigating severe and destructive floods, erosion and sitting. The basic principle on which water conservation operates in peat land reveals also the role which a vegetable cover plays not only in providing cover, shelter, and food for wildlife, but also in aiding absorption and infiltration of water, retarding run-off and developing natural reservoirs of impounded water."
References cited, page 63.

DARLING, J. N.
Prescribes a program of wildlife management that includes the restoration of suitable environment, erosion control, and soil and forest conservation.

"We have awakened too late to the needs of so-called conservation . . . If wildlife is an economic and social benefit our first objective must be restoration. We need a national program of restoration and conservation which shall be adopted as a policy of our national government."

SHELDON, H. P., AND GABRIELSON, IRA, N.
"Game management is to farming what planned utilization of by-products is to the manufacturing industry . . . A goodly supply of game birds, in addition to being beneficial because of their insect-consuming habits, will eventually provide the farmer either extra food and pleasure or an added source of income . . . Game management can be undertaken independently by individual farmers, but the best results come from cooperation with neighbors." A description also is given of a plan that has proved successful in Iowa for cooperative game management.
Plans for permanent wildlife conservation in the oldest erosion-control demonstrational area—Coon Valley, Wis.

DAVISON, V. E.
Contents: Function of the section of Wildlife Management; wildlife management in region 9; management of existing woodlands; woody plantings for wildlife; herbaceous wildlife plantings; utilization of other cover for wildlife; water developments; special wildlife-management activities; wildlife population studies; woody species available for erosion-control planting in region 9.

DAY, A. M.
A short discussion of rodents on western ranges, and the damage done by them to irrigation works.

DENOLER, H. W.
In conjunction with woodland management work at Harwood, Md., the Department of Agriculture has been working on the improvement of wildlife conditions. The education of cooperating farmers to the social and biological importance of wildlife on their farms and avoidance of factors detrimental to wildlife were two of the chief points of the program.

DIEFFENBACH, R.
The program for study of wildlife problems with particular emphasis on measures to rehabilitate the rapidly vanishing waterfowl population is outlined. "For the most part the improvement will be the removal of drainage devices previously installed and the construction of dikes, dams, and water-control works, to impound and stabilize the waters that normally flow into these areas."

ELLIS, M. M.
Presented at the second North American Wildlife Conference, St. Louis, Mo., March 4, 1937. Erosion is recognized as the major cause of the silt problem in inland waters.

ERRINGTON, P. L.
IOWA EXPERIMENTS WITH QUAIL. Outdoor Amer. 1: 4-5, 16. May 1936.
The restoration of bobwhite quail as dependent upon farmer, sportsman, and soil-erosion-control agencies is discussed. "Erosion control may be closely linked with quail management, or vice-versa, and this combination stands far above everything else in promise. The sociological and economic necessity for wise land use, of which the control of soil erosion is an essential part, may indirectly prove to be the salvation of the bobwhite and other wild creatures having similar living requirements . . ."

Modifications of policies already in effect for wildlife management as correlated with the national forestry plan are suggested. These are: (1) Yearly uniform distribution of cutting operations; (2) reconsideration of planting programs; (3) redefine timber-stand improvement concept in order to prevent damage to wildlife values; (4) give the land management agency a voice in management of game on lands under its administration; (5) careful scrutiny of all plans to determine whether needed and economically feasible; and, (6) study game refuges in the light of existing and new knowledge.

States that flood-control programs hold a vital interest for those concerned with the increase of wildlife resources and proposes plans whereby these programs may be especially helpful to wildlife conservation.

Presents the essentials of a national wildlife program. Briefly stated, these essentials are: land for proper wildlife environment; cooperation between States and Federal government; recognition by public land planners and private landowners of the importance of wildlife restoration and conservation; a cessation of water pollution which destroys the animal food of waterfowl; research on all phases of wildlife; closer coordination of its land activities by the Federal Government, and basic protective legislation for wildlife protection.

GORDON, G. B.

Lands and water of Maine, some fundamental angles of forest management, and the relation between game and land values are pointed out. "The State of Maine must eventually modernize its laws in regard to the management of fish and game resources."

GORDON, SETH

"More protection, and more and more restocking where not needed, will never assure a proper abundance of wild life. Without a favorable habitat, proper food and cover, and the application of sensible management, we shall never attain our common goal of a well-rounded conservation program."

GRANGE, WALLACE B., and MCA migration, W. L.

Wherever an increase in the abundance of farm wildlife is desired, the practices recommended in this bulletin will be useful. The authors discuss cover for wildlife, cover management, farm wood lots, windbreaks and thicket cover, cover in relation to pests, insects, marsh and water areas, cultivated crops, food supply, and the protection of wildlife against predatory animals. Information is given on making a farm-gam survey, and the possibility of financial returns from game management is considered.

GRINNELL, J.

"The relationships which have been set up through the ages between birds, mammals, and plants cannot be disturbed without serious consequences." From observations made the author is convinced that certain birds and mammals constitute an important agency in the disposal of oaks and many other trees and shrubs.

Describes damage to terraces, structures, and plantings used in erosion control, by gophers, squirrels, rabbits, wood rats, and field mice and gives approved methods to control these animals.

HERSHEY, J. W.

"In reestablishing game... it would be well to consider... planting and building up a series of crop trees covering a twelve-months' feeding." This would do much toward solving the feeding problem of all wildlife. Accompanying the article is a chart of bushes and trees for wildlife conservation.

HOLT, E. G.

One of the first erosion control projects of the Soil Conservation Service was the drainage basin of Coon Creek, near LaCrosse, Wis. This is known as the upper Mississippi Valley demonstration area. It is with this project that the author is concerned, and he states that "the details that follow apply here, though the broader principles are equally applicable to our whole field of operations." Overgrazing causes erosion, therefore livestock must be kept out of woodland and off slopes and these made to yield both wood products and game. Thus erosion control and proper land utilization go hand in hand. Opportunities in the management of quail and marketable surplus are seen, and the cooperation of farmers in the development of wildlife is stressed.

"Mr. Holt has stated a first principle in the subject of integrating forestry and game management... when he stresses the importance of scientists in different fields... working together and in this way developing an appreciation each of the other's problem."—Editor.

A complete land-use program must provide for wildlife. "The cornerstone of our whole system is the maximum use of vegetation in stabilizing the soil... The species selected for planting are deliberately chosen for their value as wildlife food and cover, as well as for their erosion-resistant qualities." The Coon Creek, Wis., project is the only one on which a full year of wildlife work has been done, and the valuable experience gained is discussed. The greatest problem is "the development of adequate incentives for the farmer to carry on the work after the expiration of the demonstration period."

It is pointed out that while the principles of water behavior and the influence of vegetation on land-water relationships have been considered at length, the relations of animals to soils and soil moisture has not been treated. "It is almost trite to say that the entire biota rests squarely upon the twin foundations of soil and moisture, for no kind of life can thrive either in absolutely dry earth or in chemically pure water..."

WILDLIFE MANAGEMENT BY THE SOIL CONSERVATION SERVICE. U. S. Soil Conserv. Serv. SCS-MP-5, 5 pp. 1936 [Mimeographed.]

Discusses the objectives of the Soil Conservation Service in wildlife management. The objectives of the Service stated broadly are: "To propagate
the use of soil conservation in agriculture through the medium of demonstration; to effect at the same time a maximum control of erosion on as large an area of agricultural land as possible; and to ascertain the fundamental scientific facts essential to the development and improvement of soil-conservation methods and techniques." The relation of wildlife management to soil conservation is pointed out.

HOLT, E. G. (4037)

Discusses the ravages of erosion resulting from forest denudation and the program of the Soil Erosion Service in forest and game conservation.

HOSLEY, N. W. (4038)

"Many of the woody plants produce a large volume of food material per unit of ground area; they are especially valuable in erosion control; they require little care and ... persist for years." Bibliography at close of article.

LANG, DOUGLAS. (4039)

Suggests various species of trees and shrubs valuable for pheasant roost-cover, with recommendations for planting form and spacing.

Contains suggestions for maintaining coverts for wild and tame pheasants, including notes on the food habits, and diseases which attack these birds in improper habitat.

LÉCOMPTE, E. LEE. (4041)

"The farmers, not only of Maryland but of a great many states in the Union, have so intensified their activities as to have cleaned out hedge rows, fence rows, meadow covers, and in fact have denuded land areas to such an extent that they have destroyed nesting sites and cover for wildlife." Bird feed patches have been planted (150 patches at a total cost of $93.75) by farmers in cooperation with the State game department.

LEPPOLD, ALDO. (4042)

"The climate of the Silesian plain is similar to that of Ohio." The German method of managing agricultural crops and game, the "remise" system is described and illustrated.

REPORT ON A GAME SURVEY OF THE NORTH CENTRAL STATES. 299 pp., illus. Madison (Wis), American Game Assoc. 1931.

"The purpose of this survey is to appraise the chance for the practice of game management as a means to game restoration in the north central region. It attempts to describe game conditions as they exist, the opportunities which those conditions offer, the human machinery available for acting on them, and the probable consequences of their further neglect." Erosion control is treated, pages 247-249.

LONG, W. H. (4044)

The author, who is engaged in wildlife research at the University of Michigan, makes the following statement: "In preparing this story, I have
taken the role of a pheasant and have attempted to interpret its life under environmental conditions as found today." Illustration shows a mowing machine equipped with flushing-bar.

MCALEE, W. L.

(4045)

Discusses crop plants and their use in erosion control and classifies the various plantings under the following headings: Grass, legumes, cover plants, browse plants, herbage, mast producers, fruit producers, and seed producers. Concludes with a consolidated list of plants that have been recommended for erosion control, showing their value for wildlife.

HOW TO ATTRACT BIRDS IN NORTHEASTERN UNITED STATES. U. S. Dept. Agr. Farmers' Bull. 621, 18 pp., illus. 1914. [Revised, 1931.]

"This bulletin is one of a series intended to describe the best methods attracting birds in various parts of the United States, especially by providing a food supply and other accessories about the homestead."

"Among methods of controlling erosion, the establishment and maintenance of vegetative cover on the soil is favored as being simple and effective, economical and lasting.” The author lists plants, shrubs, etc., under the following headings: Grasses, legumes, cover plants, browse plants, herbage, mast producers, fruit producers, seed producers, and a consolidated list of plants recommended for erosion control.

"No land is too good for a game farm. Those who hope to succeed on tracts useless for other purposes, on barren areas where almost every particle of food consumed by the birds must be brought in and hand fed, will rear their birds only at much greater cost of efforts and funds, and probably will suffer many disappointments. Soil fertility is not only an initial requirement for the successful game farm; it must also be maintained.” Suggestions on soil fertility and conservation are briefly outlined.

THE RELATION OF BIRDS TO WOODLOTS IN NEW YORK STATE. Roosevelt Wild Life Bull. 4: 7–152, illus. October 1926.

"The purpose of this paper is to reveal the part played by the bird population of woodlots, to demonstrate the advantages of taking birds into consideration in woodland management, and to show how this can in fact be accomplished."

"This Division of the Bureau of Plant Industry, U. S. Department of Agriculture, is interested in legumes and other forage plants from the standpoint of hay or pasturage. It is realized that the seeds of many of these plants as sorghums, lespedezas and others are utilized by game birds and other wildlife, and in some cases the growing crop may make a more or less satisfactory cover.” Bulletins prepared by the Division are listed with brief comment on the plants discussed, especially in relation to wildlife.

MARTEN, ROBERT.

(4052)

Presents the difficulties for fish and game regulations in areas occupied by Indians, with major tenets of Indian policy by which it is hoped that
Indians will impose upon themselves voluntarily necessary restraint in hunting, trapping, and fishing in the interest of wildlife conservation. "The solution of the Indian wild life problem lies not in the compulsory enforcement of the white man's restrictions, but in a better means of livelihood and more self-government."

Mershon, Ralph. (4053)

When farmers provide for game they control erosion.

Morton, J. N. (4054)

A GAME RESTORATION JOB FOR EVERYONE. SIMPLE WAYS IN WHICH YOU CAN HELP IMPROVE WILDLIFE CONDITIONS. Pa. Game News 7: 4-7, 24, illus. May 1936.

The author discusses cover, food, and protection for wild birds and beasts in Pennsylvania and includes sketches showing various devices for construction of coverts on farms and for flushing during harvest.

Presents an outline of wildlife and recreational management objectives and plans of the game commission and other agencies of Pennsylvania, with suggestions for refuges, game food, and cover. "The backbone of any statewide scheme of wildlife management is the forest . . . There is an opportunity for public service open to the State that develops its forests and waste lands in conformance with the principle of highest land use, recognizing the distinction between tree development for wood volume alone and tree development to favor all uses of the forest . . ."

Murdock, E. C. (4055)

Discusses the cooperative program in Illinois for wildlife protection, with reference to demonstrational work of the Soil Conservation Service regarding bird and animal habitats, food, and cover requirements.

North American Wildlife Conference. (4057)

TRANSACTIONS OF THE SECOND NORTH AMERICAN WILDLIFE CONFERENCE, MARCH 1, 2, 3, 4, 1937, ... ST. LOUIS, MISSOURI. 661 pp., illus. Amer. Wildlife Inst. 1937.

Pack, A. N. (4058)

A three-point plan for wildlife conservation is proposed for study by the National Wildlife Conference held in Washington, D. C., in 1936, and presents a proposed outline of federal bureau reorganization under a centralized Bureau of Conservation of Renewable Natural Resources. The Clarke-McNary Act is cited as a precedent for proposed procedures in forest protection and conservation.

Pearson, A. M. (4059)

Suggests field borders and slopes as suitable places for combining erosion-control and wildlife development measures. Plants are listed which have proven successful for erosion control and cover for game, song, and insectivorous birds, and which provide fruits and seeds for many forms of animal life when these foods are normally deficient.
PHILLIPS, Paul.

"Comparative data were obtained on the distribution of various common rodents and lagomorphs in grasslands of central Oklahoma. . . Jack-rabbits were most abundant in moderately overgrazed areas and cottontails preferred the cover afforded by undisturbed grasslands." Data are also given regarding gophers, ground squirrels, deer mice, and cotton rats. "The action of the rodents on the soil opposes that of hoofed animals . . . and they should not be eliminated from grazing lands because they counteract the packing effect of hoofed animals."

Ruhl, H. D.

Wildlife management from the agricultural point of view is treated. Various recommendations for coordination of farm methods and game protection are made. States that "the elimination of grazing in farm woodlots would permit thousands of acres to grow excellent wildlife cover where it is needed badly" and "the limitation of agricultural crop production and the retirement of submarginal land offers an encouraging opportunity for dedication of such land to wildlife production." Paper presented at North American Wildlife Conference, 1936.

SEXTON, B. L.

OREGON'S WILDLIFE RESOURCES. 126 pp., illus. Oreg. State Planning Bd 1936. [Mimeographed.]

A survey of Oregon's wildlife resources and the problems of wildlife conservation and management in the State. The great economic and social value of wildlife to Oregon is clearly shown, also the immediate need for conservation measures to perpetuate this resource. Interesting data on principal species of wildlife and their habitat are included.

SHELDON, H. P.

This editorial justifies the interest of the Bureau of Biological Survey in dust storms, indicating that the Bureau knows that if dust storms and soil erosion by floods can be reduced or abated, the number of birds, animals, and fishes will increase. The following statement is made: "It is a fortunate thing for sportsmen and nature lovers that between the Soil Conversation Service and the Biological Survey there is complete understanding and sympathy, and none of the fumbling stupidity and cross-purpose frustration which has sometimes characterized the operations of great human agencies. The Soil Conservation Service is anxious to conserve soil and restore wildlife; the Biological Survey is anxious to restore wildlife and conserve soil. Each is able to direct its extensive operations in a way to assist the other agency. and with greater benefits to the nation they both serve."

Gives regulations for all States of the Union, Alaska, Canada, and Mexico.
SiLCOX, P. A. (4066)
IN THE MAKING—A NEW WILDLIFE ERA. Nation's Agr. 11: 12-13, 21, illus. April 1936.
Summarizes the National Wildlife Conference, and discusses the interest of farmers, sportsmen, and the general public in the restoration and conservation of wildlife resources. Emphasizes need for forest management in the interest of wildlife and also need for fundamental research in regard to interrelationships of wildlife, its life histories, breeding, feeding habits, and diseases.

"Its perpetuation, its future aims, aspirations, and methods of representation, are subject to its own decisions. The hope is that through its deliberations new cooperation between private, public, and international interests will develop; that from it will come constructive proposals; that through these proposals there may be evolved such intelligent, concerted, and cooperative action as will help restore and conserve some semblance of our original wildlife resources."

STANFORD, J. E. (4068)
The benefits of wildlife as a farm crop, from a money-making, and also erosion-control viewpoint are pointed out.

STEVENS, Ross O. (4069)
"The purpose of this handbook Is to Indicate how wildlife management can be coordinated with the general soil-conservation program in the Southeastern Region and how individual landowners can apply erosion-control practices which will improve environments for game and other desirable species of wildlife."

"The purpose of this bulletin is to show how gullies, terrace outlets, waterways, eroding field borders, pastures, and woodlands in the Piedmont region may be protected against erosion through the use of vegetation that will also provide food and cover for wildlife."

STORMS, DUNC. (4071)
"The work of beavers is erosion prevention..." The author recommends 5 years of Federal beaver protection, with transference of the dam-building animals to river headstreams having shade, the removal of sheep from riverbanks and valleys, and widespread education of the people, especially sportsmen and fishermen, that they may know that beavers do not kill trout. Five years of beaver work as Nature plans will stop much small stream erosion.

SUMNER, E. L., JR. (4072)
The author summarizes the known facts about management of California quail and emphasizes necessity of cover patches with small open spaces for foraging. He states that "potent cause of the decrease of quail in modern times is the practice of removing all weeds and other vegetation not of direct visible use to man from fence rows, roadsides and unused corners about the farm." The author discusses erosion-control methods which are of benefit to quail, such as untilled grass strips in orchards, grass, weeds, and brush along ditches and In gullies, and the establishing of heavy grass clumps in overgrazed lands.
TAYLOR, W. P. (4073)
A description of the banner-tail kangaroo rat (a species of the Heteromyidae) and other rodent denizens of the southern semidesert lands from western Texas to western Arizona. Includes notes on burrowing habits, food storing, adaptation to climate, economic status, and benefits by soil making and insect consumption.

The suggestion is made that the Government undertake a wildlife survey which "would indicate, more definitely than we know them at present, the outstanding needs for cover control; for regulating numbers of potential pests; and for wildlife conservation and restoration."

The writer urges the maintenance of land under as nearly as possible natural conditions. Examines the present situation which has brought about a deterioration of the soil and decline of wildlife and then outlines a picture as it might appear in a Texas pine forest with climate, soil, animal, and plant population operating as a balanced enterprise. It is pointed out that such a balance is the equivalent, in the field of wildlife and natural resources management, of diversified farming in agriculture.

Recommends that the control of native animal life should be considered locally and specifically and that expert study and diagnosis should be made of a locality before a comprehensive work program is set up. The author discusses the Emergency Conservation program and believes there is no universally applicable hard and fast sample-plot method of approach to many of the bioecological problems.

The relation to and effect on the soil of accumulating animal bodies or parts is pointed out; effects of beaver activities on dam building and flooding are given. Observations in Kansas "indicated that all burrowing insects that go below 6 inches will effect a gradual interchange of soil and subsoil in varying amounts."

The harmful and beneficial relationship of plants and animals, with notes on browsing animals, consumption and dissemination of seeds by animals, pollinating functions of insects and birds, and rodent assistance in forest maintenance are discussed.

TERRIS, J. K. (4079)
"Soil conservation and wildlife conservation go hand in hand. When agricultural lands are made more habitable for man, they generally become more habitable for wildlife creatures. Fertile soil and a rich and varied wildlife population go together. Improved lands producing vegetation offer far better environments for wildlife than eroded, infertile soil, plagued by floods or stifling dust storms." This article gives an outline of the research work and control methods in wildlife management now being carried out by the Soil Conservation Service.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

TUBBS, F. F., and BRADT, G. W. (4080)
PLANTING OF FOOD PATCHES FOR WILD LIFE. Mich. Dept. Conserv. Game
Mangt. Cir. 1, 4 pp. 1936.
Advice on plant foods of grain, seeds, fruits, and shrubs is given with
instructions for preparation of soil and seedbeds.

UNITED STATES BUREAU OF BIOLOGICAL SURVEY.
513, 31 pp., illus. 1913.
Furnishes concise information as to the nature of the good or harm cer-
tain birds do on the farm and in the orchard, and facilitates the study by
the use of colored illustrations, thus enabling the observer to identify certain
birds more rapidly than by printed description.

1936.
Draws attention to the relation of rodent control to soil conservation,
page 65. The destruction of terraces in Baca County, Colo., by kangaroo
rats is described.

UNITED STATES BUREAU OF RECLAMATION.
WILDLIFE RESERVATIONS ON RECLAMATION PROJECTS. Reclam. Era 28: 43.
February 1936.
Memorandum of agreement between the Secretary of the Interior and the
Secretary of Agriculture respecting administration of reclamation projects
which are also wildlife refuges.

UNITED STATES DEPARTMENT OF AGRICULTURE.
REPORT OF PRESIDENT'S COMMITTEE ON WILD-LIFE RESTORATION. 27 pp., illus.
"A national wild-life restoration program is economically justifiable and
immediately practical by utilizing submarginal and commercially unprofit-
able agricultural lands now contributing so largely to the surplus of agricul-
tural products."

UNITED STATES SOIL CONSERVATION SERVICE.
"Soil conservation and wildlife conservation are inseparable because
both involve the restoration of vegetative cover, in one case to protect
the soil, in the other to protect and provide for animal life." A few simple
land-use practices are outlined for erosion control. The objectives of the
Soil Conservation Service in wildlife management are also summarised.

WILDLIFE CONSERVATION PLAN FOR PENNSYLVANIA. Soil Conserv. Serv. 25 pp.,
illus. 1936. [Mimeographed.]
Among other things the relation of the plan to soil-erosion control is
described. The three objectives of the plan and the procedure for their
accomplishment are summarized briefly. Considerable data are given for
different types of planting.
VAN DERSAL, WILLIAM R. (4088)

"Upon invitation of the President of the United States there met in Washington, D. C., February 3 to 7, 2,500 persons interested in the conservation of natural resources, particularly wildlife ... The control of erosion through vegetation as practiced by the Soil Conservation Service was shown to bear definitely and fundamentally on the restoration of wildlife habitats and the improvement of conditions for birds, fish, and mammals."

VORHIES, C. T. (4089)

"There has been, on some of the erosion projects, a tendency to damn, convict, and sentence the rodents to death on a large scale on areas to be worked for erosion control ... Surely in an area in which burrowing rodents are so important in the loosening up and aeration of the soil—as in our earthwormless, arid southwest—the little animals deserve to have the possible benefits they confer on the soil carefully balanced against the possible effects of increasing erosion. It may be fairly questioned whether rodents, by and large, are important in causing erosion directly." The writer finds that the cost of rodent control is not justified by the benefits, if any, that are received.

WALLACE, H. A. (4090)

An address before the second North American Wildlife Conference, St. Louis, Mo., March 1-4, 1937. The Secretary of Agriculture tells how delays in the establishment of Federal waterfowl refuges and sanctuaries and the reclamation of marsh and water areas for the preservation of aquatic life have been very costly. "If major reforms concerning the use of land, water, forests, and wildlife had been adopted 50 or 100 years earlier than they were, there would have been little cause for our present anxiety concerning the grave problems of soil erosion and the uses of submarginal land; our streams and lakes would now be free of pollution; we would still have vast wilderness areas in reserve and an abundance of all the original forms of wildlife."

WESTVLD, R. H., AND BENNITT, RUDOLPH. (4091)
IMPROVING FOOD AND COVER FOR WILDLIFE ON MISSOURI FARMS. MO. Agr. Col. Ext. Cir. 348, 8 pp. 1936.

"There are fewer wild birds and animals in Missouri than formerly because there is less suitable land for them." Improvement and maintenance of favorable woodland conditions for wildlife is stressed.

WHITAKER, H. L., AND OSBORN, BEN. (4092)
WILDLIFE MANAGEMENT—EROSION CONTROL IN THE CENTRAL GREAT PLAINS REGION. A HANDBOOK FOR SOIL CONSERVATION SERVICE TECHNICIANS, U. S. Soil Conserv. Serv. SCS-RB-6. 63 pp., illus. 1937. [Mimeographed.]

Contents: wildlife management; management of natural vegetation; the protection of stream banks and gully control; woodlot plantings; cover crops; and rodent and insect control.

Literature cited, pages 53-56.

WILSON, K. A., AND VAUGHN, E. A. (4093)

The scope and character of the wildlife program and its procedure are outlined. Cover provision of brushland, woodland, and grassland are advocated.

— WILSON, K. A. AND VAUGHN, E. A. (4094)

"On land unplowed for years, partridge pea, ragweed, buttonweed, and other food-producing plants have sprung up where before there was nothing
but beard grass . . ." A campaign for cleaning old, neglected ditches resulted in areas of food patches for small game.

WING, L. W.

The author discusses forestry methods and wildlife protection, with suggestions for satisfactory use of plantations for wildlife carrying capacity of the land. "Some means must be sought to reconcile forestry and wildlife. The true aim of conservation is a balance of land use for recreation, wildlife, lumber, stream-flow, and beauty . . ." In referring to the destruction of browse for wildlife, he says: "I fear we shall look upon these early days of C. C. C. as a crowning blunder in conservation." Morrell defends the work of the C. C. C. pointing out its cooperation with the United States Bureau of Biological Survey in the development of wildlife projects and its clean-up work of litter in the woods to prevent forest fires and consequent death of wildlife.

WYNMORE, F. H.

Discusses game as an annual crop, wildlife refuge, border planting, wildlife lanes, barrancas, ill effects of fire and overgrazing on wildlife, watering stations, control of predators, returns to farmer, and game management.

ZEH, W. H.

SOME PROBLEMS IN WILDLIFE MANAGEMENT ON RESERVATION. Indians at Work 3: 9-11. June 1, 1936.

The writer discusses difficulties of wildlife management on Indian reservations where unrestricted hunting rights were granted in early treaties and suggests definite education and administration as a remedy.

WIND EROSION, WINDBREAKS, AND SHELTERBELTS

ANONYMOUS.

"Care should be taken to prevent further drift. This can best be done by preserving as far as possible the natural vegetation, and planting on spots showing a tendency to drift, some of the proved sand-binding plants."

The writer lists and describes a number of grasses and plants, among them some that make feed for stock and are valuable as sand binders. "Many of the plants referred to in the foregoing are recommended in the Year Book of the U. S. A. Department of Agriculture."

A brief account of a windbreak survey by H. E. Wahlberg, of Orange County, Calif. "The difference of $174 per acre between the protected and unprotected valencia orchards represents an earning of 10 per cent on an increased valuation of $1740 per acre, according to Wahlberg."

Gives details of wind-chute-fence construction for the prevention of fine-grained-sand accumulations in railway cuttings, as used in the Mallee district of Victoria. Also explains the inefficacy of planting methods in combating fine-grained-sand drift.

THE DUST BOWL AREA. Science 84: 113-114. 1936.

Contains preliminary announcement of erosion survey undertaken in the southern Plains area. "The results of this survey indicate clearly . . . that the Southern Plains is not yet a desert by any means and that the oppor-
tunity for agriculture there is far from ended. Nevertheless, the Southern Plains farmer must quickly adapt himself to natural conditions, if wind erosion is not to spread throughout most of the region. Conservation farming, involving precautionary crop planning, contour tillage and other measures of soil and moisture conservation must be adopted."

Anonymous. (4102)

500,000,000 TONS OF DUST COVER KANSAS AND POINTS EAST; A. A. A. MOVES TO SAVE NATION’S ‘BREAD BASKET.’ News-Week 5: 5-6, illus. March 30, 1935.

Describes the havoc wrought by the midwestern dust storm of March 1935. Soil erosion is cited as the greatest evil resulting from such storms. The control program of the A. A. A. and cooperating Federal agencies is outlined.

A description of a terrible sandstorm at Kern, Calif., when “the sky was obscured almost to darkness.” Not less than 30,000 sheep perished, buried by the drifting sand.

PLAINS Penance; Government outlines Scourge, aid for dust states. Lit. Digest 123: 8-9, illus. February 27, 1937.

“Man’s sin against nature in the Great Plains States mocked him again last week as dust storms sprang up to devastate hundreds of square miles of precious soil.” The report of the Great Plains Committee is reviewed. In its recommendations, the committee outlined actions for Federal, State and local authorities, and concluded by stating that “if economic deterioration of the Great Plains region, recently heightened as a result of the depression and drought, is to be stopped, it will be only because the Nation takes the situation in hand promptly, emphatically and competently.”

The source of dust clouds is excessively grazed areas and the plowing up of naturally well-sodded land. “The nation should take warning from the present disastrous dust storm, and adopt measures to avoid future damage.”

The dust storm of May 1934 in the upper Mississippi Valley is described, together with dust storms of lesser magnitude.

A SANDY SIMOON IN THE NORTHWEST. Amer. Geol. 3: 397-399. 1880.

“May sixth and seventh, 1889, will long be remembered by the residents of the Northwest. On those days culminated the violence of the dry, south-easterly wind which had prevailed in some portions of the Northwest, particularly in central and eastern Dakota, for several days previous.” A description of the storm follows. “The occurrence of this storm has a bearing on theories of the origin of the loess. Its area is that over which the loess is abundant.”

Chinese elm, green ash, chokeberry, boxelder, Siberian pea-tree, buffalo-berry, and American plum are recommended for windbreak planting after 20 years of testing in the northern Great Plains.

On damage done by high winds at Contra Costa, Calif., where “acres of grain growing upon light soil” were torn out and large areas buried under sand drifts.
ANONYMOUS. (4110)
A brief description of two dust storms on November 1933, and May 1934. Statistics on the dust content of the air are given. Also discusses the origin of such storms.

AICHER, L. C. (4111)
The blowing of soil, except in very sandy areas, is a sign of carelessness, and the secret of prevention is to keep the surface in a roughened condition by proper tillage implements and by the binding effect of crop residues. Methods used on annually cropped land and fallow land are outlined. "The lister or other implement should be started through the field at right angles to the direction of the damaging wind and on the side of the field nearest the source of the wind."

ALBEIT, A. R. (4112)
"Bare fields, dry soil, high wind, and an unobstructed sweep for the wind are the four factors which contribute to the severity of a sand storm." The author recommends shelterbelts for a permanent preventive measure. The prevention of dust storms is regarded as necessary for the common welfare. Costs of windbreaks are estimated.

ALLEN, B. L. (4113)
Road conditions after dust storms, filling ditches, culverts, fields and pastures, and dust that is impervious to water are described. "There could be but one result, and that was a run-off of one to two hundred per cent of normal, and the erosion by water completed the job. It will require three years of normal rainfall seasons to get our roads back to the conditions they were in the spring of 1935."

ALLEN, R. W. (4114)
"The protection afforded by trees as windbreaks is more effective than that of other forms of windbreaks owing to the greater height of the trees and the greater space between rows. Such windbreaks diminish evaporation of moisture from soils and from crops." Plants to use and arrangements of trees for windbreaks are suggested.

ANDERSON, P. O. (4116)
DEMONSTRATION WINDBREAKS IN MINNESOTA. Minn. Univ. Agr. Ext. Cir. 23, 3 pp., illus. 1926.
The cooperative windbreak project, inaugurated in 1920 by the Division of Forestry and the Agricultural Extension Division listing certain regulations for farmers, is described. Failure to establish successful windbreaks for 100 years on the prairies of Minnesota is compared with the results obtained since 1920. "Two years after planting, 74 percent of these trees were alive and growing in spite of the fact that several of the evergreen plantations were almost complete failures because of alkali soil." Of nine species used the majority planted were white spruce, Norway pine, or Scotch pine.

"The standard windbreak project calls for a very substantial planting. One that will furnish adequate protection to the farmstead, and, if properly managed, will yield fuelwood, repair material, and, in time, lumber that will find a ready market locally." A planting plan is shown with instructions on how to plant such trees as Russian-olive, poplar, willow, ash, elm, pine, and spruce.
A Montana farmer describes shelterbelt plantings which hold light sandy loam soils in a section where grass cover is inadequate to check wind erosion. Tree species used are Russian artemisia, Caragana, jack pine, Chinese elm, green ash, and juniper. Not examined.

B. C. F., P., C. H., AND TALMAN, C. F.
A discussion of two storms, the dust storm of November 12-13, 1933, in South Dakota, and the storm of December 15-16, 1933, in New England. Data are given on the soil content of the atmosphere during both storms, and an account is given of damage done to structures, and erosional effects upon the land.

BAGNOLD, R. A.
An account of recent experimental work on the mechanism by which sand is moved by wind over surfaces of sand and pebbles. The work has in the main been limited to flat, horizontal surfaces, but deductions are drawn concerning the growth and nourishment of dunes.

Baldwin, H. I.
THE FALL OF BROWN SNOW IN NEW HAMPSHIRE. Science 83: 371. April 17, 1936.
Gives weight figures of silt from brown snow which fell in New Hampshire February 25, 1936, the day after severe dust storms occurred in Colorado and other parts of the West.

Barton, T. F.
The author gives description and interpretation of the shelterbelt plan and the progress made toward its completion, with special emphasis on objectives, i.e., reduction of human suffering and crop losses, creation of wildlife haven, prevention of soil erosion, and the conservation of moisture.

Bates, C. G.
A brief account of methods employed in measuring the effect of windbreaks in lessening the force of the wind, checking evaporation, and in influencing the humidity of the air.

"This article deals particularly with the economic importance of windbreaks to the prairie farms."—Expt. Sta. Rec. 43: 650. 1920.

THE WINDBREAK AS A FARM ASSET. U. S. Dept. Agr. Farmers' Bull. 788, 15 pp., illus., 1917. [Superseded by Farmers' Bull. 1405, 19 pp., illus. 1924. (Revised, 1936.)]
"This publication [Farmers' Bull. 788] discusses windbreaks with special reference to their use in protecting the fields and farm buildings from the force of the winds... Estimates are also given of financial returns per acre to be expected from various kinds of windbreaks."—Expt. Sta. Rec. 37: 46. 1917.
"This bulletin [Farmers' Bull. 1405] explains the general principles of protection obtained through planted windbreaks, the good and bad effects which may be expected therefrom, what species should be planted where only the hardiest succeed, and the care needed to maintain healthy tree growth."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BATES, C. G. (4125)
WINDBREAKS: THEIR INFLUENCE AND VALUE. U. S. Forest Serv. Bull. 86, 100 pp., illus. 1911.
This bulletin presents data showing the effects of windbreaks upon field crops, with calculations of their value to the average farm of the Middle West. Part 1 is a synopsis of the general conditions underlying the utility of windbreaks, and a short study of the most important winds of the United States; part 2 deals with the construction of windbreaks; part 3 with the applicability of different species; and part 4 with a discussion of windbreaks for different regions of the United States.

BATTEN, H. M. (4126)
"An amazing catastrophe in the nature of a sandstorm which in 1694 changed a section of the fair Scottish countryside into a miniature Sahara and made time stand still for more than two centuries." In 1695 "Parliament . . . passed an act prohibiting the pulling of bentgrass, juniper, and broom, the binding roots of which help to make the sandhills permanent. The act is still in force. And one of the most interesting planting schemes is at present in progress in order to fix the dunes to prevent the sand working farther inland. Marram grass is planted at short intervals, and other plants, such as Carex arenaria, which have strong, running roots, have at last obtained a hold on some of the more dangerous slopes.Corsican pine, Sea buckthorn and grey alder are systematically set by the foresters, who are ever watchful for dangerous 'blow outs' which might result in wholesale movement."

BEAUMONT, A. B. (4127)
"In the Connecticut Valley in the vicinity of Amherst sand storms are a common occurrence . . . the winds most disastrous from the standpoint of soil erosion are those of two or more days' duration . . ."

BENEFIT, A. (4128)
The results of wind formation are not so clearly seen as those of rivers and seas and hence have not made so deep an impression. Research in the future should determine three things: (1) The tearing away, (2) transportation, and (3) deposition of agricultural soils, by wind. Size determines the manner in which wind can deal with earth substances: Heavy material that the wind cannot move; heavy sand that the wind can blow about but not raise; fine sand (dune sands) that the wind can carry only a short distance; dust that can be carried long distances. The power of the wind in Indiana, in Australia, and in the Nile delta is discussed. Moisture and plant cover are the two obstacles to wind transportation of soil. The wind is of the greatest importance in soil building. Free is quoted as to wind-blown loess both in Europe and North America. The wind is a benefactor in watered and partially watered regions as it carries rich sediment that adds to soil formation and fertility.

BENNETT, H. H. (4129)
The statement is made that the essence of erosion control is wise land management and that dust storms can be conquered without interfering with productive cultivation. Careless land use must give way to protective planting, wind-erosion control, and beneficial tillage operations.

 présente a picture of that area of the United States which has become known as the "dust bowl" and points out at the same time certain misconceptions which have arisen in regard to this area. "The thing to remember is that exposed Great Plains soil in dry years will blow. How much damage
the blowing has done cannot be determined precisely by mathematics. The Soil Conservation Service has made a survey of twenty counties, lying near the adjacent boundary lines of Kansas, Oklahoma, Texas, Colorado, and New Mexico, and including about 25,000 square miles. Eighty percent of the whole area is affected by wind erosion of one type or another (which means dust) and about 40 percent of it has been seriously damaged . . . Rain alone is not enough to put an end to wind erosion . . . Lashing the soil to the earth with a protective mantle of vegetation is the only remedy.”

Bode, I. T. (4131)

The value of the shelterbelt must be measured by increased gains in livestock, better health and living conditions for both man and animals, decreased fuel bills, increased sale value for the farm, etc. Essentials of a good, permanent shelterbelt are cited, together with instructions for planting stock and its care.

Bodbov, V. (4132)

“Forest shelterbelts introduce considerable changes in the microclimate of adjacent regions. They serve as a mechanical obstruction to the wind, reducing its velocity and changing its behavior. Changes in the wind also cause changes in all of the principal meteorological elements, such as atmospheric moisture, temperature, and evaporation. Evaporation may serve as a best example of the efficiency of shelterbelts . . . Within a one-kilometer plot over the open and surrounded by shelterbelts 17 meters high, the saving in moisture due to decreased evaporation amounts to 17 percent of the total with wind velocities of 2.5 to 3 meters per second, and 25 percent with velocities of 5 to 6 meters per second.”

Bonnett, W. E. (4133)

January 1913 was a month of abnormal and generally unfavorable conditions. During a severe dust storm on January 4, in loose light soils, grain was blown out in places or buried under wind-transported material. “This unusual dryness had an important effect in producing the record-breaking freeze on succeeding days . . . The month closed with some very pleasant but unseasonably warm weather.”

Brandon, J. F., and Kezer, Alvin. (4134)

“Wind erosion is today the most active, the most potent depicter of soil fertility on the Great Plains . . . Soil blowing has become a greater factor in Plains agriculture as it has become older . . . because the natural soil-binding sod rootlets of the original vegetation have become more thoroughly disintegrated.” The season of greatest soil erosion, the prevailing direction of the soil-blowing wind and something of its nature in Colorado, types of surface soil likely to blow, and methods to follow in stopping wind erosion are discussed. A summary of good land-use practices is given in conclusion.

Brown, E. G., Gottlieb, Selma, and Laybourn, R. L. (4135)

Bruny, C. M. (4136)

Afforestation over an area of 400,000 square miles throughout the Great Plains region and the work of experiment stations in determining species of trees suitable to climate and environment are discussed. The history of tree growing in naturally barren plains is reviewed.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

BRYAN, K. (4137)
"The purpose of this paper is to record some of the writer's observations relating to erosion in Arizona and to point out the bearing of these observations on the general problem."

BUTLER, O. (4138)
This article consists of 30 questions and their answers concerning President Roosevelt's undertaking in forestry. "Public reaction to President Roosevelt's dramatic plan to bi-sector the Great Plains with a protective belt of forests in the main has been highly favorable."

C., C. S. (4139)
The author shows how farmers in Iowa, Indiana, and New York benefited by planting windbreaks and recommends the use of Norway spruce and native white pine. Reasons for especially avoiding the Scotch pine are given. A few general instructions on windbreak location, planting, and maintenance are included.

CAIRD, R. W. (4140)
Preliminary report based on an intensive survey of the blowing areas in Beadle County, S. Dak.

CALL, L. E. (4141)
CONDITIONS IN WESTERN KANSAS. The Land, Today and Tomorrow 2: 8-11, illus. April 1935.
Discusses the wind-erosion problem and suggests measures of control. A map shows the area in Kansas where destructive soil blowing is common.

A detailed discussion, including climatic data, of the prevention of disastrous wind erosion in the central Great Plains, presenting specific rules for cultivation of the soil and reestablishment of permanent vegetation on arid and sandy soils.

CAMERON, D. C. (4143)
A week previous to this storm "saw the end of a rather protracted wet spell in both States, which was succeeded by clear skies, very low relative humidity, under which the top layers of the soil had dried out very thoroughly so that the strong northeast winds that occurred on the 21st whipped up great quantities of dust from the wheat country and the semiarid parts of the interior"

CARD, F. W. (4144)
"The most prominent beneficial tendencies of wind-breaks on the western plains are to conserve moisture during the growing season by checking the evaporation from soils and plants A beneficial effect of less importance in the West is the tendency to hold snow in place"—Expt. Sta. Rec. 9: 354-355. 1897.

CARLSON, A. D. (4145)
The author, in outlining the settlement and development of the Midwest, indicates the various causes leading to dust storms and wind erosion in the "dust bowl." Overgrazing is discussed as a major factor.
CARLSON, K. A. (4146)
7, 8 pp. 1913.
Planting of windbreaks from a careful choice of trees is urged; trees
suitable to the Orange Free State are listed.

CARR, R. G. (4147)
The plan to plant a forest 100 miles wide, along the one-hundredth merid-
ian from the Canadian border to the Rio Grande, has been transformed
into mixed tree planting in that portion of the Great Plains where climatic
and soil conditions make tree growth possible, and where such plantations
can benefit existing agriculture. This planting is described, and the
opinions of various authorities are quoted as to the usefulness and effec-
tiveness of it. Trees to be used in the shelterbelt project are listed.

CAUTFIELD, JOHN H. (4148)
THE DUST STORM SERVES NOTICE. Farm and Ranch 53: 2, 3, 9, illus. September
15, 1934.
An account of the ravages of wind in the Southwest and the recurring
drought situation is discussed. "An American Sahara is in the making
unless the windblown soil of eight or ten Western States is again tied
down with grass roots." The author urges that grass be planted as a
preventive, and contrasts American methods with the Italian soil-conserva-
tion program.

CHAPMAN, H. H. (4149)
SHELTERBELT PROJECT; DIGEST OF OPINIONS RECEIVED ON THE SHELTERBELT PROJ-
ECT AND INDIVIDUAL LETTERS RECEIVED. Jour. Forestry 32: 952-991. Dec-
ember 1934.

CHARLES, F. E. (4150)
THEO TREES THAT CAN TAKE IT. Successful Farming 33: 10-11, illus. February
1935.
Shelterbelt trees that will combat biting winds and help prevent the
recurring tragedies of drought and dust are suggested.

CHEYNEY, EDWARD G. (4151)
ESTABLISHMENT, GROWTH AND INFLUENCE OF SHELTERBELTS IN PRAIRIE REGIONS
The author classifies the benefits of shelterbelts under several heads:
Protection from hot, dry winds of summer, and cold winds of winter; pro-
tection to man, livestock, orchards, and field crops; a saving in fuel and an
increased sale value for the farm. Species suitable to various sections of
Minnesota are recommended.

CHILCOTT, E. F. (4152)
PREVENTING SOIL BLOWING ON THE SOUTHERN GREAT PLAINS. U. S. Dept.
Agr. Farmers' Bull. 1771, 29 pp., illus. 1937.
Implement used in preventing soil blowing are described. "The best
preventive and control of soil blowing on cultivated land consists in keeping
on the surface materials such as crops, crop residues, or clods, that resist
soil movement." Regrassing and shelterbelts of trees and shrubbery are ad-
vocated.

CHITTENDEN, A. K. (4153)
"Jack pine, Scotch pine, and Austrian pine are specially recommended
for windbreaks on sandy soil, as they have fairly compact root systems,
will not sap the soil under adjacent fields, and make a rapid growth."—

CHOUN, H. F. (4154)
DUSTSTORMS IN THE SOUTHWESTERN PLAINS AREA. U. S. Monthly Weather
The author verifies the seriousness and severity of soil erosion due to
wind, but also shows that total abandonment of the area is not imminent.
or necessary. He suggests selective tilling of some of the area and use of the remainder for grazing purposes. A table giving data on dust storms at Amarillo, Tex., from 1933 to 1936 is supplied.

CLARK, E. R. (4155)

"Observations on windbreaks planted in 1928 around the station orchard and watered only at the setting indicated that Chinese elm, apricot and Russian mulberry may be successfully grown in the Panhandle region. Osage orange and red cedar made slow progress, and all the pines succumbed. In the fall of 1934 the elm, apricot, and mulberry trees averaged 11.6, 8.3, and 8 ft. in height, and wind-velocity measurements showed that the trees were effective in reducing the wind for a distance of 260 feet. Records in the various plats showed that soil moisture was an outstanding factor in tree behavior."—Expt Sta. Rec. 72: 628. 1935.

CLOTHIER, G. L. (4156)

Benefits from the use of forest windbreaks are listed. "The protective influence of a windbreak extends from ten to twenty times its height, the protection extending farther as the velocity of the wind increases. Low growing windbreaks to be efficient must occur more frequently than tall." Questions involved in successful tree planting on the light soils of the Columbia Basin are discussed.

COMPTON, W. (4157)

The writer derides the shelterbelt project extending from Canada to Mexico. Restoration of American forests already existing is advocated rather than experiments in forest making. "Forests don't make water— they conserve it, store it, and distribute it. They do not make it or prevent it."

COOK, I. C. H. (4158)

States that forest denudation has driven bees to seeking refuge in abandoned houses and water towers, or plugs. Advises the restoration of forests, windbreaks, and orchards.

CORWIN, E. P. (4159)

The soil on Muscatine Island is cited as an example in discussing wind damage. "The land on this island was very fertile when first broken. For a number of years it retained quite a lot of the humus that is in all new ground, but eventually this disappeared and the sand and soil began to blow, damaging crops, in fact blowing them entirely out of the ground. About thirty years ago those who could afford it, planted evergreens, Scotch pine, cedars and osage hedge around their fields. The general manner of controlling sand at the present time, is in sowing rye."

CROSS, W. (4100)

In the introduction the author states that he is convinced by recent observations that the great plateau country of the western part of the United States is one of the provinces in which the effective degrading or denuding agency of the wind has not been fully appreciated. "The facts on which this belief rests will be presented in the order in which they were observed." He discusses eolian soil in Colorado, the plateau country east of the Grand River Canyon, Utah, and deflation in Dry Valley.

Presents experimental procedure and results of experiments to determine change in total nitrogen and organic-matter content of soils affected by wind erosion and cropping. States that "the drift had an average of 24.5 percent less organic matter and 28.0 percent less nitrogen than the virgin soil. The data indicate that each time a soil is shifted more plant nutrients are removed, and that after being moved a large number of times, the dunes from soils that are dispersed by the wind finally became sand, regardless of the original texture ... Since the total nitrogen and organic matter in the soil profile decreases rapidly with depth, the data clearly prove the great necessity for retaining the surface soil." Accompanied by tables.

DEN UYL, DANIEL. (4162)
PROTECTIVE WINDBREAKS INCREASE FARM COMFORT. Purdue Agr. 28: 37, 41, Illus. February 1934.

Describes the many advantages of windbreaks and shelterbelts and gives data on planting. A table gives figures on the effect of a pine and spruce windbreak on wind velocities.

SHELTERBELTS FOR MUCK LAND. Purdue Agr. 30: 64, 74, Illus. March 1936.

Data are given on the proper location and planting of this type of shelterbelt. Discusses the adaptabilities of green and golden willows and the evergreens, American arborvitae and Chinese arborvitae.

"During the past five years the Purdue University Agricultural Experiment Station has been engaged in a study of windbreak influences. Automatic recording instruments, including wind velocity recorders and hygrothermographs, have been used in obtaining approximately 130,000 hours of records on wind velocity, temperature and relative humidity. The results presented in this paper are based on these records and deal only with the influence of windbreaks on wind velocities."

DISTEBDICK, F. L. (4165)

An exceptionally severe wind and dust storm occurred on January 18, 1933. "The small particles of soil, consisting largely of decomposed granite, were caught up and some of it carried to great heights ... Large windrows of sand were formed and many ditches filled."

DOLLEY, M. D. (4166)

A brief history of forest destruction in the Danish Island of Seeland and of southwestern France after the passing of natural forests from government control to private ownership. The author points out similar conditions on Long Island where farmers "complain that the sand borne inland by the wind increases from year to year upon their fields, and threatens to bury entire farms in the course of time. The people of South Jersey have much to learn in the matter of reclaiming drifting sands and sand waste, but the sowing of coarse seeds and grasses, such as sea sand-reed and rye grass, is one of the first steps." For later planting, myrtle bushes, pines, cedars, junipers, and poplars are recommended.

DRAKE, R. R. (4167)

The author states that disastrous wind erosion in the future may be prevented throughout the Great Plains if proper land-use practices are employed where conditions indicate that soil blowing is likely to occur.
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

DBAKE, R. R. (4168)
This article describes the factors contributing to wind erosion and describes methods of tillage for use with continuous wheat.

DRUMMOND, W. I. (4169)
An account of the dust bowl before and after the soil was weakened by overgrazing and overproduction. Control projects are reviewed. “Soil fertility is not lost through wind erosion to the extent that it is through water erosion. It is merely shifted around.”

DULEY, F. L. (4170)
WIND EROSION IN THE GREAT PLAINS. The Land, Today and Tomorrow 2: 5-8, illus. April 1935.
The author discusses soil blowing in Kansas and recommends several methods of control.

EDMONDSON, W. C. (4171)
The advantages of a farm-forestry program are pointed out and description of a shelterbelt of broad-leaved and evergreen trees is given. Advice is given for preparation of ground, planting of young trees, pruning, mulching, protection from rabbits and livestock, and transplanting of pine trees.

ELLIS, J. H. (4172)
The writer describes the areas in Manitoba where soil drifting has occurred on a large scale. He outlines the causes and estimates the damage. Various control methods and policies are recommended.

EMERSON, J. L. (4173)
“The purpose of this publication is to present plans and to describe methods of planting and caring for trees in shelter-belt and windbreak plantations on the central Great Plains and also on the high plateaus and in the valleys and basins of western Western Wyoming and Colorado.” The study is divided into three zones, zone 1, being western Wyoming and Colorado; zone 2, southeastern Wyoming, southwestern South Dakota, and northwestern Nebraska; and zone 3, southwestern Nebraska, eastern Colorado, and northwestern Kansas.

FAIRFIELD, W. H. (4174)
Discusses various control methods and emphasizes the fact that “it [erosion] is a community problem and must be handled, if it is to be handled successfully, in a community manner.”

FARRELL, G. E. (4175)
An address prepared for delivery at a farmers' meeting, Dodge City, Kans. Discusses wind erosion in the Great Plains and the Southwest and proposes general conservation practices and policies. Stabilization of wheat acreage is discussed as a control measure. [Press release.]
FINNELL, H. H. (4170)
CONTROL OF WIND EROSION ON THE SOUTHERN HIGH PLAINS. The Land, Today and Tomorrow 2: 4-6, illus. March 1935.

The author describes several phases of wind-erosion control and discusses work on the Dalhart soil-erosion-demonstration area.

This article recommends the following measures for the control of wind erosion: (1) Utilization of erosion-resisting residues; (2) moisture conservation for maintenance of vegetation; (3) emergency cover crops; (4) windbreak tree plantings; and (5) emergency tillage operations. Each method is described briefly.

The author recommends adequate vegetative cover for control of wind erosion in the semiarid high plains area.

The farmers on the High Plains of north Texas and adjoining counties in Oklahoma and New Mexico must combat wind and keep the soil in place. This problem is discussed with reference to the wind-erosion-control project at Dalhart, Tex. A plan "to conserve the moisture to grow vegetation; conserve the vegetation to save the soil" is set forth.

"While the control of wind erosion is largely an agronomic problem involving the utilization of erosion-resisting crop residues, moisture conservation for the continuation through drought of the vegetative cover, the use of emergency cover crops, and as a last resort the employment of certain tillage methods, all within cultivated fields, no opportunity should be lost to supplement such a program by permanent border vegetation in the form of trees." Hardy species of trees for the southern high plains area are the Russian mulberry, apricot, Chinese elm, honeylocust, Russian-olive, green ash, cottonwood, desertwillow, and tamarix.

"The discussion of the relations indicated by this subject will be based on the assumption that a planned agriculture gives full consideration to the purpose of utilizing the natural resources of every region in the most highly efficient manner possible . . . " The essential features of a permanent system for wind erosion control designed to cover all emergencies are crop-residue conservation, water conservation, cover-crop planting, tillage methods, windbreaks, and shelterbelt tree planting.

FITCH, C. L. (4182)

The wind "blew away the topsoil in some cases to the depth of the plow sole which means it moved up to six or even eight inches of earth, the very best dirt we had, off from our fields, and off from our farms, never to come back again . . . I am one of those men who believe that these lands properly protected and properly furnished with buildings and drainage, windbreaks, machinery, knowledge, and skill and character will be worth $500 per acre." The planting of rows of trees east to west as windbreaks is advocated and illustrated.
"Results of the analyses reported above show that wind erosion may deplete the total fertility of a soil by sifting out the lighter and more fertile portion and carrying it away..." The author offers the compensating factor that soil removal from one field may deposit it upon another but "not as much soil will be returned to a given field as is carried away by winds and that a steady drain upon the fertility of the High Plains soils will continue until wind erosion is checked by protective vegetative covering and proper tillage practices."

Ford, R. E.

A plan for planting windbreaks, including soil preparation, is presented. Broad-leaved and conifer trees are recommended, and a table on shade-tree insect pests and methods of control is given.

Free, E. E.

This bulletin brings together, correlates, and summarizes important data on eolian geology from the viewpoint of a soils student. Main subjects dealt with are: Wind translocation, drifting sand and sand dunes, dust storms and dust fall, the continued drift of soil material with the wind, true atmospheric dust, geologic formations of eolian origin, and volumic dust as soil material. The bibliography forms a fairly complete index to the study of eolian geology "especially of deflation and those other phenomena closely connected with the subject-matter of the bulletin."

Westgate, J. M.

The authors discuss normal movements of the soil, causes of excessive blowing, control of soil blowing, suitable cropping systems, methods of cultivation, soil moisture, artificial protectors, blowing of sandy soils, blowing of newly cleared lands, miscellaneous problems such as protection of irrigation ditches, embankments, and roads, and devices for the control of drifting sands.

Garren, G. M.

The loose sandy soils, commonly known as "blew sands", of west-central Texas are discussed. "The fundamental remedy... is incorporating vegetable matter with the soil and leaving coarse trash on the surface of the field from the harvesting of one crop till the planting of the next. The customary method of harvesting peanuts neither puts humus in the soil nor leaves trash upon the surface. Hence it is absolutely necessary to grow peanuts in some sort of rotation upon this type of soil when the usual methods of harvesting are followed." Two examples of successful farming on blow sands are cited.

George, Ernest J.

"Seven trees only have maintained satisfactory growth and survival. They are Chinese elm, green ash, boxelder, chokecherry, Siberian pea-tree, buffaloberry, and American plum."

Literature cited, page 48.
GILBERT, G. K.
LAKE BASINS CREATED BY WIND EROSION. Jour. Geol. 3: 47-49. 1895.
A description of small lakes in a district in the Arkansas Basin where they were abundant in 1893-94. The writer believes the lake basins in question were created by the action of the wind and gives reasons for this conclusion, the lack of vegetation being one.

GORRIE, R. M.
"The idea of a gigantic strip of forest stretching from north to south across the treeless Prairie States of the Middle West does, of course, appeal to everyone's imagination ... A feature which such a project emphasizes is the interdependence of forestry with the other forms of land use, and this is a point of view which other foresters as a whole would do well to assimilate from the United States foresters, many of whom have got this broad outlook well developed."

GREEN, S. B.
A simple manual on the subject of prairie planting for protection of buildings and crops. The kinds of trees, methods for planting to form efficient windbreaks and shelterbelts, with instructions as to suitable trees for certain soils and their cultivation, are given. A section on the propagation of plants, with a table showing the approximate height of 1-year-old seedlings grown on good average soil, is included. The various ways in which trees can be injured and methods for protection are described, as well as the cultivation of nursery stock.

GREENFIELD, GEORGE.
NEW YORKER IS AWED AND SHOCKED IN THE FOG OF A DUST BOWL STORM. N. Y. Times 86: 1, 2, illus. March 8, 1937.
An account of a 200-mile ride from Kansas City to Denver. The devastation of wind erosion and resultant desolation and abandonment of farms and homes in the "dust bowl" are described. The author also discusses the health hazards undertaken by those who live in the wind-swept, dust-laden Midwest.

GRIFFITHS, R. L.
Discusses the causes of erosion, the importance of rotation cropping, controlled grazing, and cultivation practices to control erosion. The control of wandering sand dunes is given consideration; blue lupine, evening-primrose, marram grass, buffalo grass, and kudzu are recommended. Data on growing trees for windbreaks also are given.

H., J. G.
Briefly explains connection between humus impoverishment of soil and soil drifting or blowing.

HAFENRICHTER, A. L., AND WANSER, H. M.
This article points out the sharp line of demarcation between prevention and control of wind erosion. "It is easier, more practical, and more economical to prevent wind erosion than to control it."

HAGELIN, VERNON.
Describes the little deserts of northwestern Illinois and states that with soil conservation methods and financial aid, farmers are planting soil-binding plants and trees to reclaim them.
Hansen, Roy. (4197)

Presents data on erosion damage in nine localities of Saskatchewan and lists resolutions passed by the Better-Farming Congress at Swift Current affecting erosion-control policies for the Province. Describes the work of a commission appointed to deal with these resolutions and discusses methods of control.

Harrison, F. M., and Morgan, Geo. W. (4198)

This study of shelterbelt planting introduces several important lessons for future work. Important data on planting arrangements are shown in a table.

Hazen, Leslie Eugene. (4199)

Describes experiments conducted at the agricultural experiment station at Hays, Kansas, with and without vegetation, harrowed and unharrowed, etc., to determine the resistance of soil in various conditions to wind erosion.

Herbert, P. A. (4200)

A brief description of experimental sand-blow control in the Haarlem sand-blow area.

Hibbs, B. (4201)

Wind erosion in the Southwest and the destruction of topsoil by wind are discussed. The damage by wind during the spring and summer of 1933 is described. Proper tillage, lister ridging, restoration of grasslands, and other control measures are discussed, and cooperation among farmers is urged.

Hopkins, E. S., Barnes, S., Palmer, A. E., and Chepil, W. S. (4202)

Soil drifting is traced back to 1887 by the authors. "During the years from 1931 to 1934 soil drifting assumed such serious and widespread proportions and caused such tremendous damage to farm property that more definite action towards effective and permanent control has become imperative." This bulletin offers information on how to control drifting. Wheat yields, acreages cropped, summer fallow, and total annual precipitation data are presented in tabular form, pages 30-39.

Huntington, E. (4203)

"Professor Huntington first gave public expression to his appraisal of the Shelter Belt Project at the recent annual meeting of the Society for the Protection of New Hampshire Forests ... His remarks, coming from a recognized authority on economic geography made a profound impression on his audience, including a number of professional foresters, and created a demand to see them in print. It is in response to that demand that the following article is offered to the Journal's readers." Introduction.

Ireland Department of Agriculture and Technical Instruction. (4204)

"In a country swept by westerly gales with such frequency as Ireland, the successful breeding and feeding of livestock greatly depend upon the artificial or natural shelter afforded by buildings, shelterbelts, or hedge-row timber through the winter months ... Besides acting as wind-
breaks, trees provide shaded air spaces in hot, sunny weather, and ... tend to reduce the temperature and increase the circulation of air on a still day." The form and position of shelter trees are discussed, and a list is given of the principal species suitable for planting as shelter against wind, for ornament, and for hedgerows.

ISAAC, E. E. (4205)

Methods of planting and cultivation are described.

"Any person owning a farm in Montana, either dry land or irrigated, may file an application for trees for a wind break, shelter belt, or woodlot planting for that farm." Instructions on location, size, preparation of ground, species, and methods of planting are given.

JABDINE, W. M. (4207)

The author gives data as to the frequency and velocity of windstorms in Kansas. He illustrates various methods to control soil blowing, and describes the implements best suited for farming operations on wind-blown lands. Demonstrations by farmers in cooperation with the Kansas Agricultural College prove beyond doubt "that the soil of the Great Plains area can be held in place ... by the use of the lister ... and adapted tillage implements."

JOEL, ARTHUR H. (4208)

This report deals primarily with erosion resulting from destruction of vegetative cover or by some activity of man. Causes of accelerated erosion, analysis of erosion data, and types and degrees of erosion are discussed. Tabular data relating to dust storms, climate, agricultural statistics, and erosion are included.

JONES, Ewing. (4209)

A discussion of dust storms in the Middle West and their relation to soil erosion.

JONES, H. A. (4210)

At the Wagon Wheel Gap Experiment Station, Colo., during the night of March 18-19, 1913, "a 2-quart pan packed full of snow showed, after the snow had melted, about an eighth of an inch of sediment on the bottom of the pan ... it was evident the dust had come across the Continental Divide from the desert plains of New Mexico ... The melting season was nearly a month in advance of the normal ... and much of this advance is attributed to the presence of the dust blanket."

JULIEN, A. A. (4211)

An abstract of Julien's paper, in which "he described the physical characteristics of the beach sand of Cape Cod, and showed them to be in general derived from the Tertiary formation and from the glacial sands and gravels ... The sand movement under the influence of the wind is extensive, and many results of erosion by moving sand are seen in the wearing of cliffs and in the pitted surfaces of the pebbles on the beaches. The author showed also that the sand grains suspended in the air are subjected to rapid erosion from mutual impact, and thus that sand particles
too small to be eroded in water are much comminuted when dry, and set in motion in the air. This fine resulting silt is carried and deposited as fine mud."

Keet, J. D. M.

(4212)

REPORT ON DRIFT SANDS IN SOUTH AFRICA. So. African Dept. Agr. and Forests Bull. 172, 41 pp., illus. 1936.

Results of the survey of drift sands, origin, principles underlying reclamation and recommendations are discussed in the first part of the report. Notes on methods employed in fixing drift sand in South Africa are given in appendix C, pages 32-34.

Kellogg, Cha.s. E.

(4213)

The author attributes the great dust storm of 1934 not only to the drought of that year but also to "the cumulative effect of deficiency of rainfall of several preceding years." Control measures such as tillage, windbreaks, and strip farming are prescribed.

Kenety, W. H.

(4214)

Lists of suitable trees, for various counties of Minnesota are given, as well as general information relative to the establishment, maintenance, and value of windbreaks.

Keyes, C.

(4215)

"Of the three titanic powers of erosion ever at work leveling and lowering the face of the earth the wind receives least and last attention. Yet, as an agent of general denudation, the wind is actually . . . perhaps on the whole more competent than all others combined." The author says that the "dust storm" or "sand storm" is in reality as much a transportative agent as a river, and that wind is responsible for more general erosion than is rain or any other agency.

King, F. H.

(4216)

"There are extensive areas of light sandy loam, or sandy loam soil in Wisconsin well adapted to certain crops especially potatoes, on which crops are subject to serious injury by parching winds and drifting soil . . . The means recommended for reducing the injury are frequent rotation in long, narrow strips of land, running as a rule at right angles to the direction of prevailing winds; use of an abundance of organic manures; leaving the ground rough after seeding; clearing woodlands in belts at right angles to prevailing winds, and planting windbreaks."—Expt. Sta. Rec. 6: 622. 1894-95.

Kirsch.

(4217)

Excerpts from a letter to A. C. Lane, Cambridge, Mass. "Even a forest belt to be erected on the windward side of the zone which is to be protected would be more efficient if it were irregularly interrupted. A forest is not only a means of water preservation and holding down the soil, but it is also a means of influencing the air flow up to heights of several thousand meters."

Lake, E. R.

(4218)

The author states that some of the advantages of windbreaks are protection from cold; lessening of evaporation from soil and plants; lessening of windfalls; lessening of liability to mechanical injury of trees; retention of snow and leaves; protection to blossoms from severe winds; enabling
trees to grow more erect; lessening of injury from the drying up of small fruits; hastening maturity of fruits in some cases; encouragement of birds; and ornamentation.

LAW, A. H. (4219)
THE "DUST BOWL" COMES BACK. INTELLIGENT EFFORT WILL PRESERVE GREAT PLAINS PRODUCTIVENESS. Farm and Ranch 65: 1, 10, illus. February 15, 1936.
A general discussion of the four major achievements in high plains wind-erosion control for 1935.

LONGYEAR, B. O. (4220)
Instructions for the construction and location of windbreaks and shelter belts are given.

MACDONALD, Gilmour B. (4221)
RENEWING THE SHELTERBELT. Iowa Agr. Expt. Sta. Cir. 27, 16 pp., illus. 1916.
"By following any one of the methods described in this circular the old stand of trees may be cut out and a new stand of the same or some other species secured while keeping the shelterbelt in a more or less effective condition." Trees adapted for planting are listed.

MAIDEN, J. H. (4222)
"A brief report is given on the attempts which have been made to prevent the drifting of sands in two portions of New South Wales ... A list of shrubs and trees suitable for seaside planting is given, together with brief notes as to their relative value; also several grasses valuable as sand-binders."—Expt. Sta. Rec. 12; 319. 1900.

MARKLEY, M. C. (4223)
THE PROBLEM OF WIND EROSION. Northwest Miller 189: 15, 24, illus. March 31, 1937.
 Discusses soil blowing in Gaines County, Tex. Strip cropping is described and recommended as a control measure.

MARTIN, R. J. (4224)
Contains extracts from a letter describing a trip through a portion of the dust bowl. "Severe soil erosion occurred in some southeastern districts of Colorado during this month [February 1937], and most wheat, and even buffalo grass, suffered ... March and April brought the most extensive dust-storms that have prevailed in recent months ... The dust-fall at Fort Collins, Colo., was estimated at 420 tons per square mile."

Notes areas experiencing light, dense, and severe dust storms during May 1936. "In portions of Minnesota seeded fields were damaged where grain was not high enough to keep the soil from being blown away ..." Colorado had severe dust storms. "In parts of Baca County heavy dust was reported blowing from fields an hour or two after rainfalls of one-half inch or more."

MATTHEWS, O. R. (4226)
The agricultural history of the section is given together with results of field-crop, farm-orchard, and shelterbelt investigation, the latter made for the purpose of determining the species of trees and methods of planting
The successful growth of a shelterbelt. Laurel, willow, boxelder, green ash, northwest poplar, American elm, and the Siberian pea-tree are among those used.

Extracts from reports of section centers show the intensity and seriousness of the dust. "An encouraging feature of these storms is the fact that the major soil blowing seems to have been confined to a relatively small portion of the agricultural area [Texas Panhandle] of the country."

The Weather Bureau circularized its stations east of the Rocky Mountains to obtain detailed reports of this and other similar storms, the reports being summarized in this article. "These extracts from station reports are intended to show the approximate maximum spread of dust from day to day."

It is estimated that it pays to devote 10 percent of the orchard area to windbreak trees and to spend $15 per orchard acre for windbreak maintenance. The author also discusses wood lattice frames for protecting new orchards while windbreak trees are getting established.

When biting dust sweeps across the land. N. Y. Times Mag., pp. 6, 20, 22, Illus. April 11, 1937.

A description of a visit to the West and a drive through a dust storm in the Middle West. The plowing up of the prairies was a Nation's mistake and is now a Nation's problem. Grass must be replanted. The sod restored—but the problem of what to do with the population of these dusty acres remains.

The author discusses soils included in the two major pedologic groups of the proposed shelterbelt. "As a result of soil and topographic variation within the shelter belt there are undoubtedly many areas which present soil moisture conditions sufficiently favorable for the growth of a tree species which is adapted to withstand long periods of soil desiccation."

"The soil series referred to in the following pages may be placed in four groups, each group consisting of soils having similar textural ranges and parent materials, but occurring in different zones." This paper is primarily concerned with wind erosion, but water erosion in southern Saskatchewan is also considered.

The author analyzes the emergency wind erosion control program, which started in March 1936 and ended July 1937, and which has proved successful in dry-land counties of New Mexico. "Nearly two million acres have been farmed on contour lines... and it is safe to say that this practice is so well established that farms in eastern New Mexico will continue to follow it in the future years."
New Mexico College of Agriculture and Mechanic Arts, Agricultural Extension Service. (4234)

In 14 counties in the dry-land area with the same general policies prevailing, the emergency wind erosion control program has been reopened. Annual reports of county extension workers show that the acres listed on contour lines were trebled over previous years.

New Mexico State Planning Board. (4235)

This report, in discussing the sandstorm of March 15-16, 1935, in eastern New Mexico, states: "Marginal land purchases of these wind erosion districts should be pushed to discourage attempts at crop farming and to bring the eroded lands under government or state control." The different types of land subject to wind erosion are described.

O'Brien, M. P., and Rindlaub, B. D. (4236)

Experiments to discover the relationship between wind velocity and weight of sand transported. Graphs show typical sieve analyses of beach sands at the mouth of the Columbia River, wind velocity gradients during typical runs, and relation between wind velocity and rate of sand movement.

Palmer, A. E. (4237)

In recommending control methods for wind erosion the author describes crop rotations, windbreaks, cover crops, and strip farming.

The author, who is connected with the Dominion Experimental Station for southern Alberta, in Canada, presents "his own conception of certain phases of the soil drifting problem," in a paper read before the soils group of the Canadian Society of Technical Agriculturists at the University of Alberta, Edmonton, June 25, 1935. Not examined.

Panfilov, J. (4239)

Results of observations are presented on the influence of forest walls of different directions upon the development of tree and other seedlings. The author contends that shading explains "the low yield of fruit trees adjacent to shelterbelts, and the small crops of vegetables growing under fruit trees in orchards, etc." Construction of shelterbelts which do not shade adjacent fields is described. Accompanied by literature citations.

Plouche, J. S. (4240)

A description of the dust storms in Kansas. "Despite dust storms, drought, crop failures and depression the people of the great plains region are neither defeated nor discouraged ... They have no thought of abandoning the country ..." Methods of fighting erosion are described, and the question of submarginal lands is considered.

Pogue, J. E. (4241)

Attention is called to some suggestions regarding the effect which ground water, existing under a special condition, may have upon erosion.
TEN POINTERS ON TREE WINDBREAKS. Purdue Agr. Ext. Leaflet 189, 4 pp., illus. 1934.

These pointers are discussed under benefits, location, preparation of site, spacing of trees, types of windbreaks, planting stock, planting, protection of plantations, and growth.

PUTNEY, BRYANT.

This pamphlet is divided into four parts: (1) The new attack on the wind-erosion menace, namely the coordinated program of the Department of Agriculture; (2) causes of distress in the dust bowl, such as unregulated settlement of the southern Great Plains, overstocking, land-tenure system, and soil erosion; (3) proposed methods of reconstruction; and (4) progress of Federal and State programs, including the Federal emergency wind-erosion-control program and recent State soil conservation districts laws.

RAMSEY, G. R.
EVERGREEN WINDBREAKS FOR IOWA FARMSTEADS. Iowa Agr. Col. Ext. Cir. 217, 32 pp., illus. 1936.

Practical information is presented on planting and maintaining shelter belts for the control of wind erosion.

REAGAN, A. B.

Discusses observations on the effects of wind erosion in Iowa, New Mexico, Arizona, South Dakota, and Washington. In conclusion the author states: "Various means have been adopted to prevent the movement of soil by winds. The Moqui Indians do not plow their soil at all. They simply dig a hole in the sand for each hill of corn and then tramp down the dirt with their feet to keep it from blowing away. Many people in the southwest do not plow their land until the windy season is over. And in the irrigated regions the ground is flooded as soon as plowed. To prevent the movement of soil by wind as well as to level the land, the farmers of the Plains region roll their land or crush it with a weighted plank float."

REYNOLDS, F. S.

Relates experience in planting corn and beans in small strips to keep soil from blowing on a nonirrigated farm in Colorado.

RILEY, J. A.

Sandstorms in Texas are of three distinct types. The writer discusses type, velocity, and density and compares them to similar storms in the Egyptian Sudan.

ROBINSON, W. A.

Presents mechanical and chemical analysis of colloidal matter in brown snow sample from Wells River, Vt, collected during the brown snow fall of February 24, 1936, and discusses the origin of various soil constituents found to occur in the snow.

ROLFE, DEBBIE.

A description of the wind and dust storms in Illinois on June 6 and 7, 1926, an unusual experience in that part of the country.

RULE, GLENN K.

The writer suggests control measures to the farmer by saying: "(1) He can protect stalk, stubble, and pasture fields from being overgrazed or burned; and (2) he can have his unprotected fields roughened before the
soil starts drifting." The lister and chisel cultivator are recommended for protective cultural operations. Emergency tillage as a temporary measure is discussed. "Water is the key to wind-erosion on the Great Plains. Soil moisture helps to insure vegetation, and vegetation, in turn, is the only permanent control against wind erosion."

Russell, R. D.

"Dust samples collected from two dust storms passing over Baton Rouge on April 12, 1934, and April 11, 1935, are described and compared. The mineral composition of the samples is given, with percentage determinations on grains larger than 0.01 mm. diameter."

Russell, R. J., and Russell, R. D.

One of the most severe dust storms on record in the South. Weather conditions and a description of the dust are given.

Sabin, D. R.

Practices that may lessen soil blowing on lands planted to spring crops are suggested with recommendations for handling bare fields in winter and seeding down old fields to perennial grasses.

Sanford, F. H.

A brief description of experimental work in sand-blow control in Ottawa County under the supervision of the county agent, with the assistance of the forestry department of the agricultural college.

Sears, P. B.

"The entire problem of modern civilization is emerging into its true light, as a vast, ecologically conditioned enterprise ... at the start it is emphasized that shelter-belt planting can only represent one aspect of a comprehensive land management policy, and that its benefits must come from local amelioration rather than any influence on climate as such. The Great Shelter-Belt project clearly exemplifies the strength and weakness of our modern technological culture." Discussing the area the author says, "No Chinese wall of forest, but a combination of field-plantings, windbreaks, and some block-planting is recommended, all with due regard to soil topography and water supply." Close spacing, diversity of composition, and a stream-line top contour are recommended.

Silcox, F. A.

The drought-relief project of a forest shelterbelt 100 miles wide and extending more than 1,000 miles across the Great Plains from the Canadian border to Texas is described. "It is to combat these new, partly man-made conditions that President Roosevelt specified that drought relief should include measures to limit wind erosion and to conserve water by restricting cultivation, extending the grass areas, and planting protective forest strips. Man can not change the cosmic forces of the solar system, but he can modify his own surroundings. This has been proved by reforestation of the Karst, near the Mediterranean Sea; of the lands in southern France and of the sand hills of Nebraska, all of which are striking examples of the conquest of man over the inimical forces of nature."
SIMMONS, E. F.

A farmer relates his experience with sandy land in Dundy County, Nebr. He disked his ground once, and sometimes twice and three times, and had successful crops. But when he followed the teachings of Campbell and disked his land in early spring, a terrific wind rose and swept the rolling portion of 75 acres as clear as a roadbed and as deep as it had been cultivated. A great percentage of the seed was not disturbed but failed to thrive afterwards in spite of various measures he took to help it. He asks for advice and remedy. In an editorial note it is stated that "farmers who have sandy land must handle it as carefully as they would handle a delicate piece of china." Advice is given to remedy the situation.

SINGLETON, R. C.

Advises planting of *Caragana* hedges for field shelterbelts in northwest prairie sections and suggests a plan by which each farmer may devote 1 day per year per quarter section of land to planting trees crosswise of the prevailing winds in an effort to prevent soil blowing.

SLOAN, S.

One inch of topsoil removed from a farm amounts to from one-fourth to one-sixth of the soil to ordinary plow depth. "This layer in approximate figures would contain plant food equal to the amount removed from the soil by 20 crops of wheat, each yielding 50 bushels to the acre." Methods of control vary with local conditions such as soil type and cropping systems; but "in areas where soil-blowing has become chronic it is necessary to adopt some method that will actually prevent the soil from drifting ... Strip-farming is the only practical method so far developed." The advantages and disadvantages of strip farming are summarized.

SMITH, W.
TREES STOP DRIFTING DOLLARS. Successful Farming 35: 26, 97, illus. April 1937.

"Just how much value to put upon shelter from midwestern winds has been the object of investigation among 340 farmers in 26 Nebraska counties . . . At least $326 annual saving per farm was their answer." Experiences with tree windbreaks and shelterbelts are cited.

SPAFFORD, W. J.

The writer discusses the causes of sand drifts, methods of farming sandy lands to prevent drift, controlling surface drifts, and the measures to be taken in growing sand-binding plants from seed or by transplanting them. He lists a number of plants that can be used as windbreaks.

STAMM, H. K.

"This is a discussion of the subject based upon a report by Free and Stuntz (E. S. R. 25 p. 424), emphasizing especially the means which may be adopted to reduce the damage done by wind erosion."—Expt. Sta. Rec. 29: 811. 1913.

STARRING, C. C.

Presents planting plan for trees and shrubs in windbreak for best results in reduction of wind velocity and ground shade. Planting arrangement is given in tabular form.
STOWE, E. (4265)

A description is given of the cutting action of a long bank of fine sea sand, at the mouth of the Waikato River, on blocks of pumice brought down by the waters of the river from the interior of the country.

THOMAS, E. L. P. (4266)
ORNAMENTAL AND WINDBREAK TREES AT GROOTFONTEIN. Farming In So. Africa 9: 111. March 1884.

Eucalyptus, pine, cypress, and other varieties of windbreak trees are listed.

THROCKMORTON, R. I. (4267)

The author analyzes the seriousness and severity of dust storms and endeavors to refute news pictures and sensational reports that irreparable devastation of vast areas is imminent. He finds that only small areas have been permanently impaired and believes that an end to the prolonged drought and institution of farming practices that take account of annual high winds will restore and stabilize the Great Plains and make living both tolerable and profitable.

TOWNSEND, T. L. (4268)

Discusses a conference on wind erosion in Regina, Saskatchewan. The opinions of heads of various Dominion experimental farms are given.

TRENT, F. B. (4269)

"Northwesterly, westerly, and southwesterly, are the winds chiefly concerned in this discussion, and this knowledge will be of value later, when we discuss the matter of planting and developing the most efficient windbreak." Factors affecting the efficiency of windbreaks and shelterbelts are discussed, and in considering the establishment of a proper windbreak a "tabular key for windbreak planting" is presented.

UDDEN, J. A. (4270)

"Samples of different kinds of materials moved by the wind have been collected from different places of disposition [deposition] and from the atmosphere directly for this study." The author places these materials into four categories: (1) Lag gravels; (2) drifting sand; (3) fine sand; and (4) dust.

UNION OF SOUTH AFRICA, DIVISION OF FORESTRY (4271)
ANNUAL REPORT ... FOR THE YEAR ENDED MARCH 31, 1936. Union So. Africa, Div. Forestry, 47 pp., illus. 1936.

Various references are made in this report to efforts of the Union of South Africa Government to control erosion, particularly drifting sands.

UNITED STATES BUREAU OF PLANT INDUSTRY. (4272)

"The following instructions are given to shelter-belt cooperators to assist them in obtaining the best results with their plantings." General topics—cultivation, pruning, fencing, control of insect pests, and equipment.
UNITED STATES EXTENSION SERVICE.

CUSHIONING THE WIND IN NEW MEXICO. FARMS AIDED BY EMERGENCY PROGRAM TO CONTROL WIND EROSION. U. S. Ext. Serv. Rev. 7: 133-134. September 1936.

The value of contour furrowing for checking wind erosion and for the conservation of moisture is stressed by the writer. "Two million dollars was allotted to check losses from wind erosion in the southern Great Plains area. New Mexico, one of the states in this area, is making great progress in slowing up the movement of soil with the wind."

Funds for an emergency program were made available to the southern Great Plains area by an act of Congress approved February 29, 1936. The campaign started early in March. The States of Colorado, Kansas, New Mexico, Oklahoma, and Texas are cooperating in this work which calls for the listing of 8,252,585 acres of land subject to wind erosion.

UNITED STATES FOREST SERVICE, LAKE STATES EXPERIMENT STATION

The main headings in this publication are: The Problem, by F. A. Silcox; What The Study Discloses (A Summary of Findings and Recommendations), by Raphael Zon; Prospective Effects of the Tree-Planting Program, by Raphael Zon; Economic and Social Aspects of Agriculture in the Plains Region, by M. L. Wilson; Soil and Forest Relationships of the Shelterbelt Zone, by F. A. Hayes and J. H. Stockecker; The Native Vegetation of the Region, by J. M. Alkman; Ground-water Conditions of the Shelterbelt Zone, by G. E. Condra.

VIESER, S. S.

"The following discussion is concerned chiefly with the probable climatic effects of the proposed belt. It is written by one who has spent years within the proposed zone and several additional years a few miles east of it. The especial basis for its discussion is, however, a somewhat extended study of the influences affecting climate of the past and present." The author's conclusion is that the proposed shelterbelt is not justified climatically.

VUREN, J. P. J. VAN

Causes, results, and preventive measures for wind erosion in the Orange Free State and the Transvaal, Union of South Africa are discussed.

WAHLBERG, H. E.

The need for protective windbreaks is pointed out by means of a table presenting financial results from orchards with and without windbreaks. "In 1933... the windbreak protected orchards returned $90 more per acre than did the unprotected orchards. The average total returns on the former were $229.64 per acre and on the latter $137.08 per acre." Planting suggestions and advice on careful management are given.

WALDRON, C. B.

"The profit derived from tree-planting is not measured wholly by the timber supply. Trees may be profitably planted to prevent the washing away of soil on hillsides, the forming of gullies across the land... The primary object of tree-planting in North Dakota has been and should be for protection." Advice on planting windbreaks and hedges is given with choice of trees suitable for different sections.
Wallace, H. A. (4281)
Remarks of the Secretary of Agriculture, broadcast in the National Farm and Home Hour, April 27, 1937. The soils carried by the dust storm of February 1937, from the Panhandle of Texas, western Oklahoma and Kansas into Iowa and Michigan showed by analysis that "typical virgin topsoil of that area which has not been harmed by the wind contains about one percent of organic matter. When the wind works on it, the soil which is left contains only one-third as much organic matter. Fortunately, we are developing soil defense measures that, properly and patiently applied, may preserve us from such waste and ruin; but we have made a late beginning; . . . Can we stop these troubles and keep the soil from marching, the deserts from growing? I believe we can, if we will."

Warren, J. A. (4282)
Presents practical data on dry-farm management in the Midwest. The construction of windbreaks is treated, page 38.

Watt, A. S. (4283)
"In Breckland's vegetational and soil history wind erosion has played and still plays an important part. Broadly two kinds of erosion may be distinguished. The first, demonstrated on any dry windy day in March or early April by the drift of sand from newly tilled fields, may be described as frontal; in this type the causal winds blow more or less straight or direct. In the second type the causal winds are cyclonic: the erosion is local and a wind-furrow or blow-out is formed." The article is a discussion of causes and effects of wind-blown sand. "No blow-out can be formed where there is a continuous cover of higher plants stabilizing the soil. The opportunity is presented only where degeneration of the plant communities takes . . . place."

Westveld, R. H. (4284)
TREE WINDBREAKS FOR MISSOURI FARMS. Mo. Agr. Col. Ext. Ctr. 343, 7 pp., illus. 1936.
Directions are given on location, spacing, and arrangement of shelterbelts. Information is also given on selecting species and caring for the windbreak.

Whitfield, C. J. (4285)
This article describes the problem of erosion in eastern Colorado.

Wilson, M. L. (4286)
WIND EROSION FOUGHT IN A UNIFIED PROGRAM. N. Y. Times 84: 10E. April 28, 1935.
"Temporary programs can contribute something to the development of permanent programs for arresting soil erosion, and it is on the permanent programs that emphasis is being placed by farmers and the technically trained agriculturists of the Southwest dust-storm region" The work of the Federal and State erosion-control agencies is described.

Wilson, R. (4287)
"Experiments conducted since 1916 in cooperation with nearly 2,000 farmers have demonstrated that shelter belts of trees for the protection of farm buildings, gardens, and orchards can be grown successfully on the Northern Great Plains. The purpose of this bulletin is to present the plans, practices, and methods that have been found successful in these experiments."
BIBLIOGRAPHY ON SOIL EROSION AND CONSERVATION

WILSON, R., AND COBB, F. E. (4288)

“To show the possibility of planting trees for shelter belts and to demonstrate the proper methods of starting and caring for these plantings the Northern Great Plains Field Station near Mandan, N. Dak., in the development of one line of its work, has undertaken a cooperation with a number of farmers in the Northern Great Plains area. The main objects of the cooperation are to stimulate interest in the improvement of farm homes by planting belts of trees around the farm buildings and to determine by actual trial the species of trees best adapted to the different sections of the region.”

WRIGHT, P. H. (4289)

Caragana arborescens, the Siberian pea-tree, is a most useful windbreak, hedge, and ornamental shrub. Uninjured by winter cold, it will survive rainless seasons in competition with the prairie sod and appears to be “one of the hardest and generally toughest plants in existence.”

SOIL DRIFTING AND ITS CONTROL. Alberta Univ. Cir. 13, 26 pp., illus. 1932.

This circular is comprised of four talks on soil drifting, prepared in response to requests from farmers for information regarding methods of control. The articles are: Soil Types and Management in Relation to Soil Drifting, by F. A. Wyatt; The Influence of Machinery on Soil Drifting, by J. McG. Smith; Cropping Systems in Relation to Soil Drifting, by R. Newton; The Farm Nursery and Shelterbelt, by C. C. Gillies.

YEAGER, A. F. (4291)
SHELTERBELTS FOR NORTH DAKOTA. N. Dak. Agr. Col. Ext. Cir. 43, 7 pp., illus. 1921.

Plans for planting shelterbelts for farmstead protection are discussed. Locating the plantings and their size are considered.

ZON, RAPHAEL. (4292)

Discusses the plan of “... a belt of forest trees stretching through the Great Plains from North Dakota to Texas ... The plan, as properly visualized, called for regimenting the trees into uninterrupted and undeviating parallel forest strips, 8 to 10 rods wide, rigidly spaced one mile apart, irrespective of topography, soil, or direction of prevailing winds.”

SAND DUNES

ANONYMOUS. (4293)
HOLLIES ON NEW JERSEY DUNES. Forester 3 (10): 113, illus. October 1897.

The writer recommends the planting of beach hollies on sand dunes.

HOLLY FOR DUNE PLANTING. Forester 3: 2. January 1897.

The writer recommends holly trees to check sand dunes moving inland on the Jersey coast near Avalon. “Holly grows under adverse conditions, forms an excellent shelter, and produces a clean white wood which is used in the manufacture of fancy articles.”

A survey is made of European sand barrens, turfs, and sand dunes, with results of 27 years’ experiments in vegetative cover for reclamation. “The system of nurseries has proved a great success, their great value being that the plants are started in the same kind of soil into which they are to be transplanted, and exposures incidental to long transportation are avoided.”

Describes the work of the Soil Conservation Service in controlling shifting sands from the sea which were destroying rich pastures in Clatsop County, Oreg. Methods used are picket fences, dunegrass plantings, and brush mats.

AUTHOR, LEON.

The author gives a geological classification of sand dunes, based on the origin of the sand. He continues by a climatic classification, based on the humidity of the earth and air, and as distinguishing dry dunes from wet dunes. A cyclo-dynamic classification of dunes forms the third part of the paper, and a short discussion follows.

BAKER, H. P.

Studies in dune movement and the extent and injury resulting therefrom are presented. Dune reclamation is recommended through planting of beach grass, sea lyme grass, and various species of conifers.

BENNETT, F. M.

The author tells the story of the "Little Sahara in America," made so by deforestation. Within the past 50 or 60 years about 300 acres of a farm near Freeport, Maine, has undergone a complete physical metamorphosis, sand dunes covering what was once fertile land. "Small trees have been completely covered, while the tops of the largest trees that are left protrude from the summits of the dunes and now present the appearance of bushes four to nine feet in height." The owner felled his large forest trees to supply wood for railroad engines.

CASE, G. O.

"The object of this book is more particularly to draw attention to the advantages of collecting the inblown sand in the formation of a large coast protection dune, which when built up by the wind, under the guidance of man, to a proper height and inclination, serves several useful purposes . . . (1) such a littoral dune prevents inland sand drift and the formation of sand wastes; (2) it acts as an embankment or line or defense against erosion of the coast; (3) it enables, and makes it commercially worthwhile, to reclaim and convert into beautiful pine woods, any existing inland areas of sand wastes or useless belts of sand dunes only partially covered by vegetation." The use of marram grass and other suitable grasses and trees for the reclamation of sand wastes is discussed and illustrated. "The efficiency of vegetation for this purpose is not open to question." Many examples, both in the United States and Europe, are cited, among them the making of the Golden Gate Park at San Francisco.

COBB, C.

Sand reefs along the North Carolina coast with Cape Hatteras off Hatteras Island are the subject of this article. "The strong north winds pile the sands up into great barchanes or medanos, crescentic sand dunes known locally as whaleheads, which are moving steadily southward The writer has found by experiment that heterogeneous sands, consisting essentially of quartz, orthoclase, some mica, iron, bits of shell, and many mineral substances, showing little if any decomposition, ripple readily in the wind and are easily arrested." He describes methods used, and the planting of trees and sand-binding plants and grasses.
COLLINS, P.

The author describes the advance of sand dunes and the checking of their movement through the use of marram grass, fir plantations, bentgrass tufts, and seaholly. "Certain maritime plants and grasses with spreading fibrous roots subserve a useful purpose in thus arresting and binding together the loose sand on the seashore." Measures employed in soil control on the Scotch coast, France, and on the coasts of the Netherlands and Denmark are cited.

CORNISH, V.

The scope of this investigation of phenomena attending the making and distributing of pebble, sand, and dust, is described. "The plan of work adopted in the present research has been to deal first with the behavior of blown sand upon a manageable scale, and then to apply the results to the elucidation of the larger phenomena, which is the method of the experimental sciences. Further, I have kept the phenomena of waterways constantly in view, and as the research has progressed, I have been confirmed in the opinion that sand-dunes are best studied in conjunction with waves." The rippling of sand by wind, law of rippling by wind, the vertical section of dunes, the ground plan of dunes, and the action of obstacles are considered in turn.

CRESSEY, G. B.

NOTES ON THE SAND DUNES OF NORTHWESTERN INDIANA. Jour. Geol. 30: 248-251. 1922.

Discusses investigations conducted to determine the effect of wind transportation on sand grains. Fifty samples were taken from the southern shore of Lake Michigan. Findings are in the form of generalizations due to the fact that "shifting winds render it impossible in some places to ascertain whether the sand at any given point has recently arrived or is part of the original material of the dune."

FILLER, G. D.

The use of trees and shrubbery to control shifting sands is discussed.

GIFFORD, JOHN C.

"... the sandy coast-line of America, which is at present constantly changing, can be rendered practically stable by the application of forestry and engineering skill..." The author discusses the damage caused by shifting sands and the formation of dunes on the Atlantic coast and describes the construction and benefits of a protective or littoral dune, extending from the mouth of the Gironde River to Bayonne, in France.

HILL, E. J.

"The changes to which the dunes have been subjected at some period of their history help to explain one of the peculiar features of their flora and its mixed character." Plants are found here which seem to be out of place "but the principal reason for their presence in such places must be the supply of those elements favorable to their growth." The eyeshifting sands bury the vegetation and so provide organic matter for these plants; their roots are finely divided and run deep so that they are able to take moisture from the bases of the sand dunes which are saturated with water from lakes or neighboring sloughs.

HITCHCOCK, A. S.

The writer was sent by the Department of Agriculture to investigate the methods used in Europe for controlling sand dunes. Work of this charac-
ter has engaged the attention of the various governments for over 50 years. “The fundamental principle of dune fixation is to cover the sand with a layer of any material which will prevent the access of the wind to the surface and thus prevent drifting.” Preliminary methods of fixation are described.

HITCHCOCK, A. S. (4309)

“Much work has been done in controlling shifting sand dunes in Europe during the past century, and methods have been developed whereby it is possible to control the sand and in many cases to cover it again with vegetation ... An outline of the methods that have been successfully employed in those countries is given in this bulletin, together with some other information of general interest concerning the subject of sand dunes.”

HOGBOM, IVAR. (4310)

“The present work has a twofold object: first, to present a survey of the ancient North and Middle European inland dunes, their regional distribution and their morphology; secondly, to inquire how far our views on the post glacial climatic development may be affected by such an exposition ... In this treatise the dunes mainly have had to speak for themselves, and only incidentally I have brought their testimony in connection with observations of other than physics, geographical, or geological character.”

KROODEMA, R. F. (4311)

The author describes in detail the methods and costs of stabilizing moving sand dunes.

LA GORCE, J. O. (4312)

Discusses shifting sand dunes and wind erosion along the coast line of the United States from the Virginia capes to the Rio Grande. The coast of New Jersey is also considered, showing how many acres have been reclaimed from the sea.

LAMB, F. H. (4313)

The essential features of the sand dunes along the Pacific coast are described. “The problem to be solved in studying and reclaiming the sand dunes of Washington and Oregon is whether it is more expedient to construct littoral dunes and allow the enclosed area to become seeded with the native *pinus contorta*, or to reclaim it, as was done at Golden Gate Park, San Francisco, by the planting of lupines and other persistent herbaceous plants, followed by shrubs and trees.”

The reclamation of sand dunes for the Golden Gate Park at San Francisco is described, and the methods followed are given. “The entire cost of reclamation by these methods does not average more than $50 per acre.”

LAVR, C. G. (4315)

Describes methods used in South Africa for the reclamation of coastal sands, including brushwood and wooden palisading barriers built one above another for the construction of a littoral dune of such a height that sand will not likely be blown over it. Grass and tree plantings for stabilizing sand areas are suggested.
MCLAREN, J.
This paper gives details on sowing barley, shrubs, trees, and sea bent-grass to prevent sand from drifting.

MADIGAN, C. T.
A study of the Australian deserts in which the author traces the formation of longitudinal sand ridges from small beginnings, the ridges growing as insolation and disintegration provides the material. Includes various comparative descriptions, with topographical and vegetational data, of other deserts.

MELTON, F. A.
Discusses four types of wind-rift dunes: (1) simple ovoid, (2) progressive wind rift, (3) the retrogressive wind rift, and (4) a long straight wind rift between ridges.

MELTON, F. A.
"Vegetation without doubt plays an important part in guffing headward elongation of rivulets in many localities . . . The chief function of clump vegetation lies in directing the segmentation of residual soil strips by rivulets of secondary size. Although many examples could be shown of bushes forming the resistant nucleuses of hillocks, a greater number of such features probably exist without any protecting agent . . ."
Shepherd, Frederick.

Discusses the characteristics and formation of sand dunes along Lake Michigan. Marram grass is described as one of the firmest of all sand-binding grasses.

Stevenson, Ellen B.

"This study of dunes was made in the Manistique section on the north shore of Lake Michigan . . . The major portion of the time was spent on the western section . . . The author states that the results here presented supplement the correlations of Cressey in the Indiana dune area.

Stone, G. H.

This article on shifting sand dunes in the Androscoggin Valley deals with "... two less common phases of wind action," namely, till burrowing and sand carving.

Thompson, W. O.

"This paper presents, in detail, facts about original structures of modern beaches, bars, and dunes, and stresses especially their stratification. It attempts also to formulate criteria for recognition of ancient bars, dunes, and stratified beaches that lack organic remains, which might reveal the origin of the deposits . . . The writer spent nearly a year along the coast of California, between San Francisco and San Diego, examining various deposits, some of which are modern beaches, and others contain fossils indicative of ancient beaches. In addition, beaches and bars of lakes, as well as eolian deposits, were examined in many localities in the western states, as far east as Colorado."

Todd, J. E.

This paper was read at the fifth annual meeting of the Iowa Academy of Science. "An account of the formation of dust drifts, four feet in depth, during the spring of 1880, in southwestern Iowa. Similar conditions are supposed to account for the filling of ancient gullies which are frequently found, the rounded form of the loess hills, and the unusual height of certain bluffs near ancient bends of the Missouri River."

Topley, W.

The author describes the sand dunes on the coast of England and the Atlantic coast of Europe. "From the amount of calcareous matter which it contains, the sand often produces a fertile soil. At Cape Briton the dunes have been planted with vineyards for the last two hundred years." In discussing the dunes of Gascony the author says: "It is doubtful to what extent, if any, these and similar dunes were originally wooded. It has been supposed that during the time of the old forest growth they were covered with trees which have been mainly destroyed by man." The erosive action of sand is treated at length.

Westoate, J. M.

"For a century and a half beach grass has been utilized for sand-binding work upon the cape . . . but it was not until 1893 that the State of Massachusetts put in operation the present extensive system of reclamation . . . Since these operations are proving so successful and the methods developed there are applicable in a large measure to other similar areas in this country, the author was authorized to visit Cape Cod for the purpose of investigating the details of the work now in progress . . . The results of this investigation are presented in this bulletin."
WHITFIELD, C. J. (4331)

The breaking down of sand dunes and their subsequent planting with suitable vegetation is the subject of this article.

WILLEY, D. A. (4332)

"The formation of sand hills or sand dunes along the Atlantic seacoast of the United States is so frequent that these eminences are common sights . . . An excellent opportunity has been given in the Columbia Valley to study the exact effect of wind currents blowing in different directions . . ."
The writer discusses the erosive power of the wind, and some comparatively successful methods of checking the movement of sand.

WOOD LOTS

ANONYMOUS. (4333)

Discussion of forestry in conjunction with soil conservation. Presents objectives of the Soil Conservation Service demonstrational woodland improvement program for Pennsylvania, with some practical directions for woodland maintenance.

BABRETT, DEPRE. (4334)
ARTIFICIAL REFORESTATION IN GEORGIA. South. Agr. 67: 18, 30. October 1936.

Stresses importance of farm wood lots. "We believe . . . that conservation of our disappearing timber supply is a most serious question . . . Protection of the trees and accumulated organic matter is of prime importance to the welfare of the farmer."

BEFORE, EDWARD. (4335)

"The new Agricultural Conservation Program, replacing the invalidated AAA may provide a major stimulant to farm forestry. This is of special significance in the Northeast, where farm woodlands constitute such an important element in rural economy." Soil conservation is not an end in itself, but it is essential as the basis for maintenance of economic productivity of the land resource. Address before Plant Science Club, Yale University, May 11, 1936.

CLARKE, S. C. (4336)
FARM TREE PLANTING. Idaho Agr. Col. Ext. Cir. 46, 12 pp., illus. 1933.

Russian-olive and Siberian pea-tree are recommended for windbreaks and shelterbelts. Black locust has proved most satisfactory for wood-lot planting. Instructions are given for establishing windbreaks and wood lots.

COPE, J. A. (4337)

The author stresses the importance of wood lots as an integral part of the farm—an additional crop-producing unit. Classification of wood-lot species is given. Principal wood-lot crop as logs, mine props, poles, posts, and fuel are discussed.

A continuation of Bulletin 270 (4337). The author discusses the steps necessary in handling trees so that they will produce more and better crops in less time.
Crabb, P. W.

The advantages gained in Benton County, Ark., by a farmer who planted black locust trees on a 2-acre plot of run-away hillside are described. Not only is the locust a legume and excellent soil builder, but it provides profitable material for posts and fuel.

Den Uyl, D.
FARMWOODS SHOULD NOT BE PASTURED. Purdue Agr. 29: 73, 78, illus. May 1935.

"The farmer is interested primarily in his stock, when it comes to a decision between stock and woodlands. Hence the farmwoods has suffered from neglect, inattention, and carelessness. The forester naturally champions the cause of better forests and woodlots. Here we have a forester showing why it does not pay you financially to pasture your woodlots..."—Editor's note.

Diller, O. D.

The results of this study covering one season of observation "are inconclusive, but they have served to establish a rather definite relationship between the very critical soil-moisture conditions which exist in the open grazed woodlands during the midsummer drouth periods and the repeated failure of natural regeneration in many of these areas."

Bibliography, pages 401-402.

Describes work done on the author's 90-acre farm in northwestern Ohio toward the restoration of woodland to economic production and for wildlife preservation.

Ferguson, J. A.

One cannot "continuously cut trees out of the woodlot and have the woodlot too." Directions are given for sowing the seed of trees in such manner that they may be safe from rodents.

Fernow, B. E.

Gives practical information to farmers who own small timber tracts or wood lots, or who wish to plant some part of their land to forest. The relation of farm forestry to soil conservation is discussed, pages 45-46.

The author shows the relation of forest conservation to soil-erosion control. In discussing the problems of the individual farmer, the utility of forest patches for farm use is considered.

Pitava, A. E.

Discusses forest and farm wood-lot management for soil and moisture conservation.

Fonda, Morris.

The economic value of the black locust is proved in Gallatin County, Ill.
The forest must be regarded as a crop which must be planted... A scarcity of forest products and an increase in population, in spite of low transportation rates for long distances, will soon render a conservative policy necessary, regardless of the beneficial effects of the forest on the community in many other ways. The richness of our virgin soils is due mainly to the detritus of the forest..." Planting of black locust, black walnut, white pine, white cedar, white oak, chestnut, and yellow pine is advocated.

The story is told of J. J. Lydick, of Craig, Nebr., whose farmstead plantings have gained him national recognition and from whom the State of Nebraska obtained its concolor fir trees for the grounds of the 10 million-dollar State House. "Even during the drouth years of 1934 and 1936 not a single conifer was lost. The hardiness and present vigor of these plantings speak well for the wise selection of seed and choice of species." Among these species are Austrian pine, Douglas fir, white spruce, Black Hills and Colorado spruce, and ponderosa and limber pine.

The soil-prevention measures suggested include engineering operations, special methods of cultivation, rotation of crops, woodland management, establishment of windbreaks, retirement of steep and eroded land from cultivation and their conversion to permanent pasture or woodlands.

"Today it is gratifying to note that along with the development of a program to control soil and moisture... there is increased recognition of the farm woodland. It is a generally recognized fact that "farm woodland is destined to become an increasingly important factor in the control of erosion and the rehabilitation of worn-out soils."

"It is the purpose of this bulletin to put before the Indiana farmer information that will help to increase the direct returns from the farm woodlot." Native commercial species and their uses are listed, with 16 marketing suggestions.
McComb, A. L., and Stevenson, H. A. (4335)
Describes equipment consisting of two tractors, a seeder, a cultivator, and a digger used at the Soil Conservation Service nursery, Ames, Iowa. Factors influencing selection of equipment and its advantages are pointed out.

Mattoon, W. R. (4356)
LARGE INCREASE IN FARM WOODLAND. Jour. Forestry 34: 917-918. October 1936.
During a 5-year period, 1930-35, wooded land on farms increased 23.7 percent, or 35,529,240 acres. This means that a little more than 1 acre out of every 6 on farms is in some kind of tree growth.

Mattoon, Wilbur R. (4357)
Advocates the use of black locust for erosion control in addition to its value as fence posts, stakes, poles, etc. Describes methods of planting, care, and cutting for greatest profit.

Miller E. E. (4358)
This tree has soil-building properties and is of rapid growth. The State of Tennessee furnished seedlings to plant demonstration areas. "The demonstration has been so convincing that farmers are beginning to take up the work themselves."

Moore, R. S. (4359)
The value in soil conservation is estimated and suggestions for best varieties of trees for such use in California are made.

Morrell, F. (4360)
"What do trees mean to prairie homes? Here is one answer—the most human of them all—for it deals with the lives of those who have lived and will continue to live in the plains region. Mr. Morrell's article was written almost ten years ago and printed in the December, 1926, number of Successful Farming. It is here reprinted because it portrays so intimately the human side of President Roosevelt's shelterbelt of trees for the Prairie States."—Editorial note.

Mount, H. A. (4361)
The need for forest protection and for reafforestation is the subject of this article. The example of China's deforested and sterile areas that once were fertile is cited. This deforestation is the cause of floods in the United States even as it is in China. The remedy is prevention, not only with regard to national forests but to farm wood lots. "The farmers own as large an area of woodland as the lumbermen and all others combined." The observation of Arbor Day by school children is extolled.

Mulford, Furman Lloyd. (4362)
"In the following pages an effort is made to present the essential factors for successfully moving trees and shrubs, without attempting to discuss conditions for continued success in their cultivation, their arrangement in garden, orchard, windbreak, forest plantation, or landscape, or the climatic range of their probable successful cultivation after being moved."
NELSON, A. L. (4363)

"Trees can be grown on the plains of Wyoming under dry-farm conditions if given careful attention. Factors which are vital are the preparation of the soil, the kind of trees or shrubs, and the purpose for which they are planted ... for the farmer or rancher who wishes to have a shelterbelt around his farmstead, a limited variety of fruits for home consumption and the beauty of yard plantings, this circular will show to some extent what has been observed at the Archer Field Station ..."

NEW HAMPSHIRE UNIVERSITY, EXTENSION SERVICE. (4364)
CONSERVATION PRACTICES FOR WOODLANDS. N. H. Univ. [Agr.] Ext. Clr. 196, 4 pp. [1937]

The author recommends seven softwood and eight hardwood species for forest planting. General data on planting are included.

PARSONS, E. R. (4365)

The benefits of tree plantings are described. Yellow pine and Russian-olive are especially recommended. The author presents data on the relation of spacing to water conservation.

PICH, B. (4366)

"In the interests of conservation of the soil resources and the welfare of the people engaged in deriving a living from peat land vegetable production, wind hazards must be eliminated or brought under control. Systematic tree planting offers the only known protection, is relatively inexpensive and easy to apply." Instructions for planting windbreaks are given.

PRESTON, J. F. (4367)

This article stresses the necessity for making the farmer appreciate his woods, which are the best means of holding the soil. This can best be done by the forester, whose training and experience make him peculiarly adaptable to soil conservation work.

"Census figures show that the woodland products of the farm constitute a considerable part of the total farm revenue." The author contends that the farmer's idea of woods being so much waste land "is a natural heritage from early days, the result of the struggle of the pioneer to hew a farm out of the wilderness." This point of view, however, changes and "more and more ... is it becoming recognized by the farmers that ... so-called wasteland, including the woods, should be managed for whatever resource it will provide."

RAMSEY, G. R. (4369)
WOODLANDS FOR IOWA FARMS. Iowa Agr. Col. Ext. Clr. 222, 12 pp., illus. 1936.

Farm woodlands are believed capable of returning a good income to owners if correctly managed. "Forest products were one of the ten leading farm crops in the United States in 1933 with a cash income of $62,782,000. In that year Iowa forest products ranked ninth in the Central States in cash income from forest products cut and sold from farms with $869,000." The author cites factors favoring growth of woodlands such as tax adjustment, refuges for wildlife, and maintenance of steady stream flow.
Rodd, T. E.
General notes on shelter plants are given, planting rules are summarized, plants are listed, and the various uses of timber on a farm are discussed.

Shaw, T. E.
WOODLAND CONSERVATION NECESSITATES PROTECTION. Purdue Agr. 30: 106, 117. June 1936.
"Much of the erosion control work now being done by the Civilian Conservation Corps [in Indiana] is the direct result of pasturing land which should have remained in forest." The writer points out the benefits to be gained by the State in forest conservation and proposes forestry practices to this end.

Shivery, G. B.
The author points out the various advantages of farm woodlands. They are a source of revenue through the sale of timber, fuel, posts, and poles; they reclaim eroded or waste lands and protect steep exposed hillsides; they utilize wet lands and odd-shaped portions of land; they distribute and retard run-off; and they invite bird and animal life.

"Everything considered, such as growing site and soil, practical logging with special regard for safeguarding immature trees, very close utilization, improvement cutting, protection against fire and grazing, and a sympathetic stable ownership, it would appear that we have in the demonstration described in this publication an example in woods management especially worthy of consideration as well as a guide for all farm owners who desire to practice forestry."

Shuhiart, Don V.
"Farm forestry is an essential part of a well coordinated and carefully integrated program of soil and water conservation, based on sound principles of farm management ... In solving this farm forestry problem in Oklahoma ... the standard practice established by foresters in both this country and abroad is being followed, tempered with the experience of farmers in each community in which projects or work areas are located."
The plan of attack is described.

Siecke, E. O., and Wyman, L.
"A popular treatise on tree planting for the nonwooded farms of Texas. The authors point out the value of windbreaks in their beneficial influence on crops, in lessening erosion, and in mitigating the severity of sandstorms. Instructions are presented relative to the establishment and maintenance of windbreaks and groves with reference to location, selection and arrangement of species, and renewal."—Expt. Sta. Rec. 44: 838. 1921.

Smith, H. L.
This paper offers practical data on maintaining farm forests for profit. Forestry practices for small wooded areas are suggested.

Spring, S. N.
PUBLIC HAS INTEREST IN MANAGEMENT. Forestry News Digest, p. 5. November 1936.
The author suggests furthering the sustained yield idea in wood-lot management through a cooperative farmers’ association.
SPINO, S. W., AND GUISE, C. H. (4378)

"Forests are being planted not only for financial and economical consideration, but to secure protection from wind, to prevent the erosion of soils from hillslides, to make property more beautiful, and to aid in improving certain unfavorable social and economic conditions that are bound to appear when our supply of valuable timber is gone." Choice of species, planting methods, care of plantations, and economics are discussed.

STEEN, E. B. (4379)
THE FARM WOODLOT AS A BIRD REFUGE. Outdoor Ind. 3 (2) : 2, 25, illus. March 1936.

Discusses value of birds in farm wood lots, with suggestions for feeding and for cover to encourage those species which control injurious insects and spread the seeds of fleshy fruits, nuts, and coniferous trees.

STEPHEN, E. H., AND GENAUX, CHAS. M. (4380)

This bulletin presents practical data on forestry conditions in Washington and gives planting information on various species of trees. A partial list of trees is as follows: Cedar, larch, pine, spruce, ash, locust, poplar, elm, and oak. Local conditions are given consideration.

TILLOTSON, C. R. (4381)

"It has been found in the prairie region that through the protection afforded by the most efficient grove windbreaks, the yield in farm crops is increased to the extent of the crop that could be grown on a strip three times as wide as the height of the trees . . ."

"It is the purpose of this publication to point out simple methods which may be followed in planting and caring for hardwood trees on the farm and in collecting, extracting, and storing the seed of the common hardwood trees of the United States and in growing the young trees in a home garden or nursery." Pages 6 and 7 deal with the location and planting of windbreaks to assist in checking wind erosion.

TRENK, F. B. (4383)

Five points on successfully growing a windbreak are given: (1) Choose the best location; (2) prepare the soil properly; (3) choose the right trees; (4) space the trees most effectively; and (5) give young trees the most helpful conditions for growth.

TURNER, GEORGE W. C. (4384)
GROWING TIMBER ON THE VERMONT FARM. Vt. Agr. Ext. Cir. 90, 31 pp., illus. 1936.

The Vermont timber situation is stated, with a discussion on improvement and protection of young timber stands, and the effect of grazing on soil and woodland vegetation. "A general knowledge of how trees and forests grow and of their environment is essential in the care of the forest. Every tree and group of trees presents a slightly different problem and calls for a separate judgment by the worker."

WALDRON, C. B. (4385)

This circular gives information on what species of trees are suitable and how to plant them. A list of trees is included of windbreak, timber, and ornamental value.
WALLACE, H. A. (4386)
Draws attention to the necessity of forest conservation as an important factor in the solution of the soil-erosion problem.

WATKINS, C. W. (4387)
"The program now being organized by the U. S. Forest Service for establishing strip shelterbelts through the agricultural sections of six plains states should be of interest to residents of Nebraska. This tree planting program, although larger than any previous undertaking is only a planned expansion of what has been going on in this state since the beginning of its development." An outline of the program is given.

WESTVELD, R. H., and VAN CAMP, J. L. (4388)
Forest plantations are suggested for sandy or stony soils, and for steep slopes. Recommended species include northern white pine, red, Jack, Scotch, and western yellow pines; white, Norway, and black spruces; black locust and black walnut. Instructions for planting are given.
AUTHOR INDEX

BARNES, W. C.: Item
Cattle. Herds in San Simon Valley 2974
Story of Manti; A Study in Cause and Effect 2061
Story of the Range 2883

BARNETTE, R. M.: Item
Herds in San Simon Valley 2974

BARTLE, F. C.: Item
Inventory of Water Resources of the North Atlantic Drainage Area 3344

BARROW, L. E.: Item
Study of Run-off from Terraced Fields 3026
Terracing Machinery and Terrace Construction 838
Types of Terraces 1805

BAYED, R. W.—Item
Soil Erosion Studies. With B. H. Hendrickson 1834
Some Definite Information Regarding the Winds of Texas. With B. S. Reinholt 482
Study of Run-off from Terraced Fields 3026

BAKER, O. E.: Item
Relocation of Non-Conforming Land Users of the Zoned Counties in Wisconsin 3206

BAKER, W. M.: Item
Red River as an Erosion Agent. Major Land-use Problem Areas 1687

BALKEN, H.: Item
Graphic Summary of Physical Features and Future Need for Farm Land 2665

BALLESTIER, R. E.: Item
Stabilization of Open Channels 3333

BANCHETTE, R. E.: Item
Formation of a Soil and Water Conservation System 1943

BARNES, S.: Item
"Soil and Water Conservation Facts—Erosion and the Middle West's Bald Farms" 660

BARTHOLOMEW, R. P.: Item
Forest Influence on Streamflow Under Different Types of Field Soils Receiving Different Methods of Cultivation 3144

BARTON, L. V.: Item
Great Plains Tree Shelterbelt Project 4121

BARROWS, H. K.: Item
Inventory of Water Resources of the North Atlantic Drainage Area 3344

BARROWS, L.: Item
Forests and Floods in New Hampshire. Fall of Brown Snow in New Hampshire 2017

BARROWS, L.: Item
Stream and Floods in New Hampshire. Fall of Brown Snow in New Hampshire 2017
<table>
<thead>
<tr>
<th>Item</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>482</td>
<td>CURRY, ALBERT S.</td>
<td>Research Work Having to Do with Problems of the Conservation of Soil and Moisture in the Utilization of Highways and Farm Roads.</td>
</tr>
<tr>
<td>3882</td>
<td>CURRY, J. B.</td>
<td>Special Orchard Cultivation Experiences.</td>
</tr>
<tr>
<td>190</td>
<td>CURTIS, HUGH</td>
<td>Conservation is Youth's New Headlands.</td>
</tr>
<tr>
<td>900</td>
<td>CURTIS, J. S.</td>
<td>Conservation is Youth's New Headlands.</td>
</tr>
<tr>
<td>181</td>
<td>CUTLER, J. S.</td>
<td>Generalized Land Use Suggestions for Ohio.</td>
</tr>
<tr>
<td>2009</td>
<td>DEBERARD, W. W.</td>
<td>Ohio Valley Land Use Extension Program.</td>
</tr>
<tr>
<td>2008</td>
<td>DEETER, E. B.</td>
<td>Some Problems in Adjusting Land Use.</td>
</tr>
<tr>
<td>2610</td>
<td>DULTON, J. S.</td>
<td>Some Aspects of Soil Erosion Control in the U. S. A. With Helmut Kohne.</td>
</tr>
<tr>
<td>1235</td>
<td>DUFFINO, H. A.</td>
<td>Dust Storm in Vermont.</td>
</tr>
<tr>
<td>1210</td>
<td>DAVISON, C.</td>
<td>Physical Changes in Soils of the Southern High Plains Due to Cropping and Wind Erosion.</td>
</tr>
<tr>
<td>2090</td>
<td>DAVITT, P. F.</td>
<td>Erosion in the Appalachian and Piedmont Regions.</td>
</tr>
<tr>
<td>199</td>
<td>DAVIS, ARNOLD</td>
<td>Erosion in the Upper Mississippi Valley. Coon Creek. Watershed. With M. H. COLE.</td>
</tr>
<tr>
<td>1425</td>
<td>DAVIS, K. C.</td>
<td>Second Annual Report, Coon Creek Demonstration Area, LaCrosse, Wis.</td>
</tr>
<tr>
<td>904</td>
<td>DAVIS, LUTHER</td>
<td>Watershed Treatments and Flood Control.</td>
</tr>
<tr>
<td>199</td>
<td>DAVIS, R. H.</td>
<td>Erosion in the Upper Mississippi Valley. Coon Creek. Watershed. With M. H. COLE.</td>
</tr>
<tr>
<td>1900</td>
<td>DAVISON, H. P.</td>
<td>Conservation at the Soil Erosion Experiment Station, Temple, Tex.</td>
</tr>
<tr>
<td>906</td>
<td>DAVISON, J.</td>
<td>Summary of the Recent Results of Agricultural Experiments in Soil and Water Conservation at the Blackland Soil Erosion Station, Temple, Tex.</td>
</tr>
<tr>
<td>194</td>
<td>DAVIES, W. L.</td>
<td>Calculated Net Income Resulting From Level Terraces on Richfield Silt Loam Soil and Suggested Lines of Defense.</td>
</tr>
<tr>
<td>2988</td>
<td>DAVIS, KENNETH</td>
<td>Beneficial Effects of Forest Cover.</td>
</tr>
<tr>
<td>2988</td>
<td>DAVIS, LUTHER</td>
<td>Beneficial Effects of Forest Cover.</td>
</tr>
<tr>
<td>2989</td>
<td>DAVIS, R. H.</td>
<td>Beneficial Effects of Forest Cover.</td>
</tr>
<tr>
<td>2999</td>
<td>DAVIES, R. H.</td>
<td>Beneficial Effects of Forest Cover.</td>
</tr>
<tr>
<td>3039</td>
<td>DANFORTH, G. C.</td>
<td>Rainfall Characteristics and Their Relation to Soils and Runoff.</td>
</tr>
<tr>
<td>3039</td>
<td>DANFORTH, G. C.</td>
<td>Rainfall Characteristics and Their Relation to Soils and Runoff.</td>
</tr>
<tr>
<td>3689</td>
<td>DAVIES, M. H.</td>
<td>Beneficial Effects of Forest Cover.</td>
</tr>
<tr>
<td>3964</td>
<td>DAVIES, D.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>4102</td>
<td>DAVIES, S.</td>
<td>Role of Strip-Cropping in Erosion Control in the Blacklands of Texas. Summary of the Recent Results of Agricultural Experiments in Soil and Water Conservation at the Blackland Soil Erosion Experiment Station, Temple, Tex.</td>
</tr>
<tr>
<td>2921</td>
<td>DAVIES, W. L.</td>
<td>Artificial Reseeding on Western Mountain Range Lands. With C. L. FORSYNG.</td>
</tr>
<tr>
<td>2913</td>
<td>DAVIES, W. L.</td>
<td>Important Western Browse Plants.</td>
</tr>
<tr>
<td>3372</td>
<td>DAVIES, W. L.</td>
<td>Importance of Western Browse Plants.</td>
</tr>
<tr>
<td>2091</td>
<td>DAVIES, W. L.</td>
<td>Importance of Western Browse Plants.</td>
</tr>
<tr>
<td>684</td>
<td>DAVIES, W. L.</td>
<td>Importance of Western Browse Plants.</td>
</tr>
<tr>
<td>3040</td>
<td>DEEGER, E. B.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>2064</td>
<td>DEK, S. F.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>1225</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>904</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>482</td>
<td>DEK, S. F.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>5033</td>
<td>DAVIES, W. L.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>1225</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>904</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>482</td>
<td>DEK, S. F.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>1225</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>904</td>
<td>DEGRELLE, J.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>482</td>
<td>DEK, S. F.</td>
<td>Outstanding Experimental Results in Erosion Control at Temple, Tex.</td>
</tr>
<tr>
<td>GOLDFRED, L. M. — Continued.</td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Advance Report on the Sedimentation Survey of Lake Calhoun, Galva, Ill. With V. H. Jones.</td>
<td>3410</td>
<td></td>
</tr>
<tr>
<td>Advance Report on the Sedimentation Survey of Lake Decatur, Decatur, Ill. With V. H. Jones.</td>
<td>3411</td>
<td></td>
</tr>
<tr>
<td>GOLBE, W. C.: Forest and Soil Protection.</td>
<td>3420</td>
<td></td>
</tr>
<tr>
<td>GOLDBERG, A. C.: Reconnaissance Erosion Survey of the Brazos River Watershed, Tex. With H. V. Gehl.</td>
<td>3421</td>
<td></td>
</tr>
<tr>
<td>GODLEY, LLOYD: County Soil Erosion Campaign.</td>
<td>1354</td>
<td></td>
</tr>
<tr>
<td>Extension Work in Payne County, Okla.</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>GONG, ALICE: Shelterbelts for the Prairies; an Annotated Bibliography of the More Important References on Shelterbelts and Windbreak Plantings in America. With Helen Moore and Alice Stuart.</td>
<td>1184</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, R. B.: Conditions Confronting the Pioneers in the Cumberland Plateaus in the Prizelville Forest Regions.</td>
<td>2308</td>
<td></td>
</tr>
<tr>
<td>GOODMAN, R. L.: Factors That Make for Success in Farming in the South.</td>
<td>1441</td>
<td></td>
</tr>
<tr>
<td>Goodrich, C. L.: Conservation Measures, An Economic Opportunity.</td>
<td>1445</td>
<td></td>
</tr>
<tr>
<td>GORDON, O.: Forests, Land and Water.</td>
<td>4020</td>
<td></td>
</tr>
<tr>
<td>Gorst, M. A.: Preliminary Vegetation Study of Indians.</td>
<td>3709</td>
<td></td>
</tr>
<tr>
<td>GORDON, SETH: Conservation Madness.</td>
<td>4027</td>
<td></td>
</tr>
<tr>
<td>GORZELAN, R. J.: Erosion Survey of the Uhl Valley.</td>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>Foothills Grazing Problem in Indiana.</td>
<td>2925</td>
<td></td>
</tr>
<tr>
<td>Great Plains Shelterbelt Project.</td>
<td>4190</td>
<td></td>
</tr>
<tr>
<td>Note on Soil Erosion in the Punjab.</td>
<td>933</td>
<td></td>
</tr>
<tr>
<td>Use and Misuse of Land.</td>
<td>2925</td>
<td></td>
</tr>
<tr>
<td>GORES, W. L.: Mustards Used as Cover Crops.</td>
<td>3850</td>
<td></td>
</tr>
<tr>
<td>GORES, W. R.: Banker. The.</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>Bank's Interest in Erosion Control.</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>Soil and Water Conservation Work in Texas.</td>
<td>934</td>
<td></td>
</tr>
<tr>
<td>GOUDE, CHAS. N.: Biggest of Oklahoma's Three Big Problems</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>GRABER, L. F.: Renovating Blue Grass Pastures.</td>
<td>2029</td>
<td></td>
</tr>
<tr>
<td>GRAF, DOROTHEY W.: Agricultural Engineering; a Selected Bibliography.</td>
<td>1174</td>
<td></td>
</tr>
<tr>
<td>Bibliography on Flood Control.</td>
<td>1175</td>
<td></td>
</tr>
<tr>
<td>Bibliography on Land Drainage.</td>
<td>1176</td>
<td></td>
</tr>
<tr>
<td>Soil and Flood Control, and the Prevention of a Famine. List of References, 1900–34.</td>
<td>1177</td>
<td></td>
</tr>
<tr>
<td>GRANDFELD, C. O.: Relation of Fallow to Restoration of Soil Moisture in an Old Alluvial Plain and the Sequelae to Deforestation after Reeding. With W. H. Metzger.</td>
<td>3509</td>
<td></td>
</tr>
<tr>
<td>GRANGE, W. R.: Improving the Farm Environment for Wildlife. With W. L. Wells.</td>
<td>4028</td>
<td></td>
</tr>
<tr>
<td>GRANDE, C. W.: CCC and Soil Conservation in the Southwest.</td>
<td>933</td>
<td></td>
</tr>
<tr>
<td>GRANTHAM, G. M.: Soil Conservation, Methods and Management. With C. E. Uller.</td>
<td>3570</td>
<td></td>
</tr>
<tr>
<td>Soil Fertility. With M. M. McCool and C. E. Milner.</td>
<td>3228</td>
<td></td>
</tr>
<tr>
<td>GRANTHAM, H. A.: Rotation of Crops Benefits the Farm and the Farmer.</td>
<td>3571</td>
<td></td>
</tr>
<tr>
<td>GRAY, C. H.: 'The Diet of the Spire the Trees.</td>
<td>2309</td>
<td></td>
</tr>
<tr>
<td>GRAVES, H. S.: National Forests and the Farmer.</td>
<td>2310</td>
<td></td>
</tr>
<tr>
<td>National Farming in the Conservation of Natural Resources.</td>
<td>2623</td>
<td></td>
</tr>
<tr>
<td>GRAY, C. H.: National Flood Control Policy in India.</td>
<td>2115</td>
<td></td>
</tr>
<tr>
<td>GRAY, O. H.: Forests, Flood and Drought.</td>
<td>2116</td>
<td></td>
</tr>
<tr>
<td>GREELY, W. B.: Forestry Opportunities in Georgia and Other Southern States.</td>
<td>2424</td>
<td></td>
</tr>
<tr>
<td>Part of Forestry in Flood Control.</td>
<td>2311</td>
<td></td>
</tr>
<tr>
<td>GREEN, A. T.: Worn-out lands.</td>
<td>2312</td>
<td></td>
</tr>
<tr>
<td>GREEN, H. E.: Farm Wind-break and Shelterbelts.</td>
<td>4101</td>
<td></td>
</tr>
<tr>
<td>GREEN, W. J.: Forest Conditions in Ohio.</td>
<td>2622</td>
<td></td>
</tr>
<tr>
<td>GREER, H.: Soil Conservation and Improvement. Some of the Elements of a State Land-use Program.</td>
<td>2703</td>
<td></td>
</tr>
<tr>
<td>Use of Land.</td>
<td>2630</td>
<td></td>
</tr>
<tr>
<td>Use and Misuse of Our Lands for Crop, Pasture, and Forests.</td>
<td>1443</td>
<td></td>
</tr>
<tr>
<td>GREFF, W. B.: Relative Influence of Demodulation and Earth Movements in Moulding the Surface of the Earth.</td>
<td>1239</td>
<td></td>
</tr>
<tr>
<td>GREGORY, M. H.: Checking the Waste: A Study in Conservation.</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>GREGORY, R. L.: Run-off—Rational Run-off. With W. C. Arnold.</td>
<td>3069</td>
<td></td>
</tr>
<tr>
<td>GREGORY, W. H.: County Land Terracing Program.</td>
<td>1873</td>
<td></td>
</tr>
<tr>
<td>GREGORY, W. H.: Influence of Forests Upon the Anglo-Egyptian Sudan.</td>
<td>2633</td>
<td></td>
</tr>
<tr>
<td>GREENE, S. W.: Level Terracing for Pasture Lands.</td>
<td>1872</td>
<td></td>
</tr>
<tr>
<td>GREENFIELD, W. R.: Methods for Using and Shocking in the Fog of a Dust Bowl Storm.</td>
<td>4192</td>
<td></td>
</tr>
<tr>
<td>GREGORY, W. R.: Forecasting Floodflows.</td>
<td>2117</td>
<td></td>
</tr>
<tr>
<td>GREGORY, J. W.: Relative Influence of Demodulation and Earth Movements in Moulding the Surface of the Earth.</td>
<td>1238</td>
<td></td>
</tr>
<tr>
<td>GREGORY, M. H.: Checking the Waste: A Study in Conservation.</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>GREGORY, R. L.: Run-off—Rational Run-off. With W. C. Arnold.</td>
<td>3069</td>
<td></td>
</tr>
<tr>
<td>GREGORY, W. H.: County Land Terracing Program.</td>
<td>1873</td>
<td></td>
</tr>
<tr>
<td>GRIFFIN, GERALD: Scraping off Silt to Find Farms.</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>GRIFFITH, J. R.: Runoff for Culvert Design in Farming Country.</td>
<td>3009</td>
<td></td>
</tr>
<tr>
<td>GRIFFITH, W. M.: Theory of Silt and Scour.</td>
<td>3413</td>
<td></td>
</tr>
<tr>
<td>GRIFFITH, W. R.: Wind Erosion of Soils in the Agricultural Areas.</td>
<td>4193</td>
<td></td>
</tr>
<tr>
<td>GRINNELL, J.: Why We Need Wild Birds and Mammals.</td>
<td>4029</td>
<td></td>
</tr>
<tr>
<td>Grinnell, J.: Report of the Committee on Soil Erosion.</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>GROSS, C. E.: Erosion and Its Prevention.</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>GROSS, L. C.: Management of Nebraska Soils. With P. H. Stewart.</td>
<td>3613</td>
<td></td>
</tr>
<tr>
<td>Terracing to Prevent Erosion.</td>
<td>1874</td>
<td></td>
</tr>
<tr>
<td>GROSS, M. R.: Rodents Require Control.</td>
<td>4030</td>
<td></td>
</tr>
<tr>
<td>GROSS, W. B.: Passage of Turbid Water through Lake Mead. With C. S. Howard.</td>
<td>3416</td>
<td></td>
</tr>
<tr>
<td>Standing Waves in Rivers.</td>
<td>2118</td>
<td></td>
</tr>
<tr>
<td>Surface Water Supply of the United States. With C. E. Ellsworth.</td>
<td>3417</td>
<td></td>
</tr>
<tr>
<td>Surface Water Supply of the United States. With C. E. Ellsworth.</td>
<td>3418</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>SEVERN, C. R. :</td>
<td>Item</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>Erosion & Control of Soil Erosion</td>
<td>Erosion's Conquest of our Land</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection Forests of the Mississippi River</td>
<td></td>
</tr>
</tbody>
</table>
THOMPSON, W. O.: Original Structures of Dunes, Bars, and Dunes
THOMPSON, W. R.: Moisture and Farming in South Africa
TONE: Impounding Desert
THORN, D. W.: Influence of Soil Infiltration on the Growth of Black Locust Seedlings
THORNTHWAITE, C. W.: Changes in North America According to a New Classification
THORNWORTH, J. M.: Saving the Humus
THORP, J.: Saving the Humus
TIDWELL, R. B.: Grazing Districts; Their Nature and Possibilities
TODD, O. J.: China's Ol' Man River
TODD, J. E.: Recent Wind Action Upon the Loess Plains
TODD, J. S.: American Student Views Upon Chinese Farming
TODD, J. S.: Chinese Farming
TOLMAN, O.: Erosion and Deposition in the Northern Great Plains
TOLMAN, O.: Erosion Control
TOLLS, E. H.: Contour Terracing
TOLTON, C. R.: History of Rains and Their Influence on the Slope and Discharge
TOLTON, G.: Flow of Petroleum in Kansas
TOLTON, G.: Flow of Petroleum in Kansas
TOLTON, H. E.: History of Human Flood Control
TOLTON, R.: Growing and Planting Hardwood Seedlings
TOOFT, E. F.: Engineering Strip Farming
TOOFT, E. F.: Drift of a Soil-Drifting Conference
TOOLEY, M. S.: Influence of Moistening Remedies
TOWNSEND, C. M.: Flow of Sediment in the Mississippi River and Its Influence on the Slope and Discharge
TOWNSEND, G. H.: Flow of Sediment in the Mississippi River
TOWNSEND, R. G.: Forestry and Soil Conservation in Nyassaland. With P. Topham
TOWNSEND, W. L.: Sand-Dunes and Blowing Sand
UHLMANN, W.: Influence of Moistening Remedies
UHLR, W.: Influence of Moistening Remedies
ULLMANN, W.: Influence of Moistening Remedies
ULLMAN, W.: Influence of Moistening Remedies
ULLMANN, W.: Influence of Moistening Remedies
<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Soil Erosion Service—Contd. Erosion Control Methods for the South Carolina Piedmont.</td>
<td>1574</td>
</tr>
<tr>
<td>Fight Against Erosion, Greatest Enemy of the Soil. Preliminary Report on the Beneficial Uses of Water Resources.</td>
<td>566</td>
</tr>
<tr>
<td>Soil Erosion Control and Land-use Program, Deep River and Reedy Fork Project.</td>
<td>3827</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VAN CAMP, J. T.: Forest Planting on Michigan Farms. With R. H. Westveld.</td>
<td>4388</td>
</tr>
<tr>
<td>VAN CLEAVE, H. J.: Man Meddles with Nature.</td>
<td>3207</td>
</tr>
<tr>
<td>VAN DEKINDEN, LEE: Metals in Soils, Fertilizer, Foods, and Health.</td>
<td>3237</td>
</tr>
<tr>
<td>VAN DONAN, LOYAL: Sink Hole Terrace Outlets in Minnesota.</td>
<td>4068</td>
</tr>
<tr>
<td>VAN HIRE, CHAS. RICHARD: Conservation of Natural Resources in the United States.</td>
<td>3520</td>
</tr>
<tr>
<td>VAN ORNUM, J. L.: Regulation of Rivers.</td>
<td>1325</td>
</tr>
<tr>
<td>VAN OSTRAND, C. E.: Some Recent Applications of Physics to Sedimentation Problems.</td>
<td>3472</td>
</tr>
<tr>
<td>VAN REZENAN, R.: Regulated Grazing and Erosion.</td>
<td>3804</td>
</tr>
<tr>
<td>VAN RENSTROO, J. A.: Use of Kikuyu Grass in Combating Soil Erosion.</td>
<td>3820</td>
</tr>
<tr>
<td>VAN TUTT, F. M.: Physiographic Development of the Front Range. With T. S. Glover.</td>
<td>1319</td>
</tr>
<tr>
<td>VANCE, A. M.: Excessive Rainfall in Texas.</td>
<td>3215</td>
</tr>
<tr>
<td>VANDERBORN, C. F.: Soils of Tennessee.</td>
<td>1140</td>
</tr>
<tr>
<td>VAYS, A. F.: Agricultural Planning and Farm Management in the Range Territory.</td>
<td>1503</td>
</tr>
<tr>
<td>VEHRE, A. C.: Geology and Underground Water Resources of Northern Louisiana.</td>
<td>1141</td>
</tr>
<tr>
<td>VEHRE, J. C.: Classification of Organic Soils.</td>
<td>3206</td>
</tr>
<tr>
<td>VHEE, A. E.: Weed Control. With D. F. Soil Moisture as a Determinant Wilting Point of Plants. With A. H. Hendrickson.</td>
<td>858</td>
</tr>
<tr>
<td>Vermont Agricultural Experiment Station: Soil Deterioration and Soil Humus. Soil Phylography.</td>
<td>3920</td>
</tr>
<tr>
<td>VINAL, H. N.: Forage Crops for the Sand-Hill Section of Nebraska.</td>
<td>3847</td>
</tr>
<tr>
<td>Virginia State Planning Board: Tentative Report on the Virginia State Planning Board on Land Use and Agriculture.</td>
<td>2775</td>
</tr>
<tr>
<td>VOLOVSKY, E. A. Fifty Years of Field Experiments at the Wohurn Experimental Station. With E. J. Russell.</td>
<td>3002</td>
</tr>
<tr>
<td>VOLD, K. Q.: Economic Limits of Conservation of Flood Water by Spreading.</td>
<td>67</td>
</tr>
<tr>
<td>VON ENGELIN, O. D.: Disposition of Sediment in Lakes by Glacial Streams.</td>
<td>3331</td>
</tr>
<tr>
<td>Failing Water.</td>
<td>3322</td>
</tr>
<tr>
<td>VON HERRMANN, C. F.: Floods of March 1912 in the South Atlantic and East Gulf States.</td>
<td>2201</td>
</tr>
<tr>
<td>VON TRELLE, R. L.: Erosion Control with Culverts. Lahor Advantages of Contour Listing. Work Goes on at Allison.</td>
<td>1670</td>
</tr>
<tr>
<td>VON TRELLE, W. H.: Adaptation Trials with Grasses and Other Plants for Soil Conservation in Southern California.</td>
<td>3803</td>
</tr>
<tr>
<td>VORHIES, C. T.: Rodents and Conservation.</td>
<td>2440</td>
</tr>
<tr>
<td>VORCH, T. C.: Rodents and Conservation.</td>
<td>4268</td>
</tr>
<tr>
<td>VORHER, H. J.: Upstream Flood Control—San Dimas Experimental Forests.</td>
<td>2202</td>
</tr>
<tr>
<td>VUREN, J. P. J.: Van: Problem of Wind-Eroded Lands.</td>
<td>4278</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>WADSWORTH, R. G.: Three Types of Design in California Flood Control Dam.</td>
<td>1762</td>
</tr>
<tr>
<td>WAHLBERG, R. F.: It's Cover Crop Time Again. Protecting the Orchard Against Wind.</td>
<td>3854</td>
</tr>
<tr>
<td>WARELL, R. E.: Social and Economic Effects of Soil Erosion.</td>
<td>4270</td>
</tr>
<tr>
<td>WARMAN, SELAMANSE A.: Soil Deterioration and Soil Conservation from the Viewpoint of Soil Microbiology.</td>
<td>1506</td>
</tr>
<tr>
<td>WARD, B. L.: Flood Report.</td>
<td>3300</td>
</tr>
<tr>
<td>WARD, C. B.: Trees, Shrubs, and Plants for North Dakota Farmlands.</td>
<td>4838</td>
</tr>
<tr>
<td>WINDBREAKS AND HEDGES.</td>
<td>4280</td>
</tr>
<tr>
<td>WALDROP, J. D.: Grassed Shoulders Resist Erosion.</td>
<td>3804</td>
</tr>
<tr>
<td>Item</td>
<td>Author and Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>606</td>
<td>Whitmore, J.: Fighting Erosion on a Test Farm</td>
</tr>
<tr>
<td>1671</td>
<td>What Corn Belt Farmers Are Discussing</td>
</tr>
<tr>
<td>1151</td>
<td>When a Gun Goes into a Deep Ditch</td>
</tr>
<tr>
<td>2333</td>
<td>Whitten, J. N.: Pasture Should Be</td>
</tr>
<tr>
<td>3811</td>
<td>Benefits Farmer, Pastoralist, Seed Merchant, and Countryman</td>
</tr>
<tr>
<td>2208</td>
<td>Whittington, W. M.: National Flood Control Demanded by Increasing Hazards and Destruction</td>
</tr>
<tr>
<td>2209</td>
<td>Folley and Diagram for Flood Control</td>
</tr>
<tr>
<td>3289</td>
<td>Whittier, C. A.: Chasm of Erosion and Forest Defense</td>
</tr>
<tr>
<td>2456</td>
<td>Extended Soil Erosion Battle Lines</td>
</tr>
<tr>
<td>667</td>
<td>Wilger, C. P.: Parks and Forests</td>
</tr>
<tr>
<td>2703</td>
<td>State's Forestry Program and the Soil Erosion Problem</td>
</tr>
<tr>
<td>2457</td>
<td>Wilbur, R. L.: Continental Conservation</td>
</tr>
<tr>
<td>2458</td>
<td>Conservation in the Department of the Interior, With W. A. Du Puy</td>
</tr>
<tr>
<td>606</td>
<td>Wilcox, E. V.: Droughts and Floods</td>
</tr>
<tr>
<td>1331</td>
<td>Wilcox, W. J.: Interrelationships of Livestock Production and Crop Systems on Iowa Farms</td>
</tr>
<tr>
<td>388</td>
<td>Willey, D. J.: Tenant Erosion</td>
</tr>
<tr>
<td>610</td>
<td>Wilkins, F. S.: Choosing Legumes and Perennial Grasses, With H. J. Gehen</td>
</tr>
<tr>
<td>3812</td>
<td>Effect of Species of Grasses and Legumes Sown and Treatment on the Population of Meadows and Pastures</td>
</tr>
<tr>
<td>3007</td>
<td>Effects of Overgrazing on Kentucky Bluegrass Under Conditions of Extreme Drought</td>
</tr>
<tr>
<td>3008</td>
<td>Wilkins, W. B., Trees with One-Horse Equipment</td>
</tr>
<tr>
<td>3813</td>
<td>Wilkinson, W. L.: Rhodes Grass for the Lower Gulf Coast</td>
</tr>
<tr>
<td>3814</td>
<td>Willey, D. A.: Forest Erosion and Erosion of Arable Lands</td>
</tr>
<tr>
<td>2459</td>
<td>Sand Waves and Their Work</td>
</tr>
<tr>
<td>4332</td>
<td>Williams, B. F.: Discussion on Terracing and Flood Control</td>
</tr>
<tr>
<td>492</td>
<td>Williams, Carl: Land Use Problems in the South</td>
</tr>
<tr>
<td>2758</td>
<td>Williams, E. H.: Alleghany Valley Erosion</td>
</tr>
<tr>
<td>1332</td>
<td>Williams, F. E.: Ice-Eroded Fords: The Mode of Origin of Lynn Canal, Alaska, With L. Martin</td>
</tr>
<tr>
<td>724</td>
<td>Williams, Merton Y.: Land Movements and Sedimentation</td>
</tr>
<tr>
<td>3534</td>
<td>Williams, O.: Moisture Measurements Point Way to Erosion Control</td>
</tr>
<tr>
<td>1152</td>
<td>Willomitzer, Alfred: Forschliche Und Forsttechnische Arbeiten Der Wildhacherbauung Im Galgentobel</td>
</tr>
<tr>
<td>1672</td>
<td>Wilson, B. W.: Waste of National Resources</td>
</tr>
<tr>
<td>3006</td>
<td>Wilson, C. M.: Saga of Drought</td>
</tr>
<tr>
<td>1392</td>
<td>Wilson, C. P.: Soil and Rainfall Conservation in New Mexico, With P. E. Neale, K. W. Parker, and H. N. Watenpaugh</td>
</tr>
<tr>
<td>611</td>
<td>Wilson, F. W.: Nevada Soil Conservation Program</td>
</tr>
<tr>
<td>1153</td>
<td>Wilson, James: What Forestry Means to the United States</td>
</tr>
<tr>
<td>2460</td>
<td>Wilson, J. B.:bo Herring In Alabama, With A. Carnes</td>
</tr>
<tr>
<td>1822</td>
<td>Wilson, K. A.: Land Settlement Administration and Its Relation to the Economic and Social Aspects of Agriculture in the Eastern Shore of Maryland, With E. A. Vaugh</td>
</tr>
<tr>
<td>4095, 4094</td>
<td>Wilson, W. J.: Agricultural Conservation</td>
</tr>
<tr>
<td>2786</td>
<td>Another Chapter in Agriculture</td>
</tr>
<tr>
<td>2805</td>
<td>Best Use of the Land</td>
</tr>
<tr>
<td>812</td>
<td>Economic and Social Aspects of Agriculture in the Plains Region</td>
</tr>
<tr>
<td>4276</td>
<td>Wind Erosion Fought in a Unified Program</td>
</tr>
<tr>
<td>4298</td>
<td>Wilson, W. N.: Size of Terracing Equipment</td>
</tr>
<tr>
<td>2009</td>
<td>Willey, L. H.: Note on Dust in the Atmosphere</td>
</tr>
<tr>
<td>612</td>
<td>Whitmore, J.: Another Chapter in Agriculture. The Best Use of the Land</td>
</tr>
<tr>
<td>611</td>
<td>Whitmore, W. F., Jr.: Relation of Runoff to Runoff in American Rivers</td>
</tr>
<tr>
<td>3128</td>
<td>White, W. F., Jr.: Relation of Runoff to Runoff in American Rivers</td>
</tr>
<tr>
<td>3128</td>
<td>Whittaker, C. H.: Human Value in Upstream Engineering</td>
</tr>
<tr>
<td>569</td>
<td>Whittaker, H. L.: Reconnaisance Mapping of Natural Vegetation of the Central Great Plains Region, With Ben Osborn</td>
</tr>
<tr>
<td>4092</td>
<td>Whittaker, J. R.: Our Natural Resources and Their Conservation, With A. E. Parkinsons</td>
</tr>
<tr>
<td>415</td>
<td>Whiteman, George: "Oats are Passing Out," The "Say," Soviet, Compelling Them Aside in the Rotation on Indiana Farms,</td>
</tr>
<tr>
<td>3809</td>
<td>Whipple, G. H.: A Century of the Management of the Natural Resources of the Empire State, 1885-1935</td>
</tr>
<tr>
<td>602</td>
<td>Whittington, W. M.: Control of Blowing Soils, With E. E. Free</td>
</tr>
<tr>
<td>2982</td>
<td>White, J. H.: Range Preservation and Its Relation to Erosion Control On Western Grazing Lands, With A. W. Sampson</td>
</tr>
<tr>
<td>2456</td>
<td>White, F. S.: On the Reclamation of Irrigated Soils, With G. W. Israelson</td>
</tr>
<tr>
<td>3308</td>
<td>White, N. E.: Soil Erosion, With T. J. Dunnewald</td>
</tr>
<tr>
<td>609</td>
<td>White, W. E., Jr.: Relation of Runoff to Runoff in American Rivers</td>
</tr>
<tr>
<td>3128</td>
<td>Whittaker, Charles H.: Human Value in Upstream Engineering</td>
</tr>
<tr>
<td>569</td>
<td>Whittaker, H. L.: Reconnaisance Mapping of Natural Vegetation of the Central Great Plains Region, With Ben Osborn</td>
</tr>
<tr>
<td>4092</td>
<td>Whittaker, J. R.: Our Natural Resources and Their Conservation, With A. E. Parkinsons</td>
</tr>
<tr>
<td>415</td>
<td>Whiteman, George: "Oats are Passing Out," The "Say," Soviet, Compelling Them Aside in the Rotation on Indiana Farms,</td>
</tr>
<tr>
<td>3809</td>
<td>Whipple, G. H.: A Century of the Management of the Natural Resources of the Empire State, 1885-1935</td>
</tr>
<tr>
<td>602</td>
<td>Whittington, W. M.: Control of Blowing Soils, With E. E. Free</td>
</tr>
<tr>
<td>2982</td>
<td>White, J. H.: Range Preservation and Its Relation to Erosion Control On Western Grazing Lands, With A. W. Sampson</td>
</tr>
<tr>
<td>2456</td>
<td>White, F. S.: On the Reclamation of Irrigated Soils, With G. W. Israelson</td>
</tr>
<tr>
<td>3308</td>
<td>White, N. E.: Soil Erosion, With T. J. Dunnewald</td>
</tr>
<tr>
<td>609</td>
<td>White, W. E., Jr.: Relation of Runoff to Runoff in American Rivers</td>
</tr>
<tr>
<td>3128</td>
<td>Whittaker, Charles H.: Human Value in Upstream Engineering</td>
</tr>
<tr>
<td>569</td>
<td>Whittaker, H. L.: Reconnaisance Mapping of Natural Vegetation of the Central Great Plains Region, With Ben Osborn</td>
</tr>
<tr>
<td>4092</td>
<td>Whittaker, J. R.: Our Natural Resources and Their Conservation, With A. E. Parkinsons</td>
</tr>
<tr>
<td>415</td>
<td>Whiteman, George: "Oats are Passing Out," The "Say," Soviet, Compelling Them Aside in the Rotation on Indiana Farms,</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

WEIQLT, P. I.: Land Use in Pennsylvanla......... 2792
Land Utilization and Farm Management in Wyoming County...... 2798

WATTS, F. A.: Soil Types and Management in Relation to Soil Drifting........... 4130

WYCKOFF, WAYNE W.: Design of Earth Fills Dams...... 1767

WYMAN, J.: Tree Planting by Farmers for Fuel, Fence Posts, and Shelter. With E. O. Sleek... 4375

WYTONE, F. H.: Conservation of Wildlife............... 4096

Application of Rainfall Intensity—Frequency Data...... 3131
Determining Flood Discharges from Small Watersheds...... 3333
Flow of Water in Drain Tile. With S. M. Woodward...... 3336
Rainfall Intensity—Frequency Data........... 3332

YERGER, A. F.: Shelterbelts for North Dakota........... 4201

YODER, Fred: Rye as a Cover Crop........... 3533
New Power Equipment for Terracing. With M. L. Nichols......... 1945
Sheer Erosion Studies on Cecil Clay. With E. Disker........... 3048

YOUNG, A. A.: Conservation of Water. With W. F. Rowe........... 455

YOUNG, G. E.: Economic Utilization of Land for Pasture in Southern Indiana........... 3015

YOUNG, W. R.: Boulder Dam Plays Its Part in Reclamation........... 3537

YOUNGOXER, O. V.: Measuring Ohio's Rivers. Stream Flow During the Water Year 1935........... 3538

Z

ZEBRA, O. B.: Control Soil Erosion by Crops, Terraces, and Dams........... 653
Early Work on Soil Erosion Control in Wisconsin........... 654

ZEBRA, O. R.:—Continued. Soil Erosion—A Local and National Problem. With C. G. Bates........... 2572
Strip Crops and Terrace Best Ways to Reduce Erosion........... 3994

ZEN, W. H.: Some Problems in Wild Life Management on Reservation........... 4077

ZIEGLER, E. A.: Forest Relation to Floods and Soil Erosion........... 2465

ZINK, F. J.: Design of a Machine for Harvesting Buffalo Grass Seed........... 3018

ZINN, W. D.: Farm Practice: Erosion Control........... 3625, 3626

ZOBEEL, J. D.: Erosion. With George Stewart........... 2538
Soil-management and Crop-production Studies, Carbon County Area........... 685

ZOCE, R. T.: Brief List of Works on Meteorology........... 1163
On the Relation Between Rainfall and Stream Flow........... 3330

ZOLCINSKI, J.: Deluvial Soil Processes as a Secret Plague of Agriculture; Soil Erosion and Sedimentation as Results of Mechanical Soil Cultivation and Atmospheric Precipitation........... 3207

ZON, RAPHAEL: Can Floods be Controlled?........... 2214
Do Forests Prevent Floods?........... 2406
Floods and Water in the Light of Scientific Investigation........... 2407
Forests as a Factor in Flood Control within the Upper Mississippi River Basin........... 2418
How the Forests Feed the Clouds?........... 1338
Importance of Forests in the Circulation of Water........... 1194
National Economic and Social Objectives in Forest Policy........... 2488
Prospective Effects of the Tree-planting Program........... 4278
Relation of Forests in the Atlantic Plain to Humidity of the Central States and the Prairie Region........... 2469
Shelterbelts—Feudal Dream or Workable Plan........... 4292
Silviculture as a Factor in Maintaining the Fertility of Forest Soils........... 3206
Woodlands as a Control for Floods........... 2470

ZOOK, L. L.: Maintenance of Organic Matter in Dry-land Soils........... 394

ZSCHOKKE, T. C.: Problem of Soil Saving in the Hawaiian Islands........... 636

ZIKERMAN, O. R.:—Continued. Soil Erosion—A Local and National Problem. With C. G. Bates........... 2572
Strip Crops and Terrace Best Ways to Reduce Erosion........... 3994

ZIMMERMAN, O. R.—Continued. Item
Soil Erosion—A Local and National Problem. With C. G. Bates........... 2572
Strip Crops and Terrace Best Ways to Reduce Erosion........... 3994